Kanaoka, Pillitteri, Fujii, Yoshida, Bogenschutz, Takabayashi, Zhu, and Torii (2008) SCRM/ICE1 and SCRM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation

Supplemental Fig. 1. Seedling phenotypes of *scrm-D/+* and *scrm-D*. Shown are ten-day-old seedlings of wild type (WT: left), *scrm-D/+* (middle), and *scrm-D* (right). Compared to the wild type, cotyledons and rosette leaves of *scrm-D/+* and *scrm-D* are wrinkled and disintegrated. *scrm-D/+* rosette leaves produce reduced numbers of trichomes, and *scrm-D* does not produce any trichomes: excessive stomatal differentiation occurs in the expense of trichome development. Images are taken under the same magnifications. Scale bar, 2 mm.

Supplemental Figure 2. Map-based cloning of SCRM

(A) Physical mapping. The locations of molecular markers (SSLP markers, KTL3.120, KTL3.200, KTL3.250, KTL3.300 and KTL3.400; CAPS markers, KTL3.230 and 3.260), the number of recombinants and chromosomes, and the corresponding BAC clone are indicated. Open reading frames within the 27 kb interval are shown at the bottom. SCRM encodes At3g26744 (red). (B) Domain structure of SCRM protein and the point mutation in scrm-D. An acidic domain (black), a serine-rich domain (gray), a KRAAM motif (red), a bHLH domain (green) and a zipper region (light blue) are shown. The arginine at amino-acid 236 is replaced with histidine in *scrm-D* mutant (arrow).

WT ICE1:ICE1R236H in WT

Supplemental Figure 3. Recapitulation of *scrm-D* phenotype by introduction of *ICE1:CE1*_{R236H} to wild-type plants. (Left) Abaxial rosette leaf epidermis of wild-type (WT). (Right) Abaxial rosette leaf epidermis of a transgenic plant expressing *ICE1:ICE1*_{R236H}. Images are taken under the same magnification. Scale bar, 20 μm.

ICE1:GUS in WT

ICE1:GUS in spch

Supplemental Figure 4 Effects of *spch* on *ICE1:GUS* expression in non-stomatal cells/tissues. (Left) *ICE1:GUS* in wild-type seedling. (Right) *ICE1:GUS* in *spch* seedling. While *ICE1:GUS* activity in leaf epidermis is abolished, it is detected in roots and hydathodes (arrowhead) in the *spch* mutant seedling.

Supplemental Figure 5. Structure of *ICE1* and *SCRM2* genes, and SCRM2 mRNA and amino-acid sequence. (A) Structure of *ICE1* and *SCRM2* genes. Lines, non-coding regions (5' promoter region and introns); Grey boxes, exons. The size of each exon and intron is indicated. The locations of T-DNA insertions in *ice1-2* and *scrm2-1* are indicated. Next page: (B) Full-length cDNA and amino-acid sequence of SCRM2. The major (black) and minor (grey) transcripts start at 71 and 135 bp upstream of a translation initiation site (bold), respectively. The 5' end of *SCRM2* mRNA was determined by 5' RACE PCR. (C) Nucleotide sequence of the 5' end of *scrm2-1* mRNA and a potential open reading frame. The *scrm2-1* mRNA contains a chimeric 5' untranslated region (UTR), with an upstream, 136 bp sequence derived from T-DNA (red) preceding the 49 bp *SCRM2* 5' UTR (black). The T-DNA-derived transcripts codes for a short open-reading frame (red).

ACCAA TACATTACACTAGCATCTGAATTTCATAACCAATCTCGATACACCAAATCGAATTCAATT $\mathsf{CGGCGTTAATTCAGTACATTAAAAACGTCCGCA \mathbf{ATG} \mathsf{TGTTATTAAGTTGTCTAAGCGTCA}$ -49 М +1 **ATG**AACAGCGACGGTGTTTGGCTTGACGGCTCCGGTGAATCTCCCGGAAGTTAATAACGGT M N S D G V W L D G S G E S P E V N N G

L D T A G Y A G L V *

+1081	AAAGGCCAA K G O	ACAACCAAG O P R	AGTTGAGGI V E V	TAGATTAAG R L R	F G K	GGCAGTGAA A V N	CATACAC T H	+380
	M F C	G R R	P G L	L L S	T M R	A L D	N L	
+1201	GGATTGGAT G L D	IGTTCAACA V Q Q	AGCGGTGAT A V I	TAGCTGTTI S C F	TCAATGGTTT N G F	TGCTTTGGA A L D	TGTTTTC V F	+420
	CGCGCTGAG R A E	GCAATGTCA Q C Q	AGAAGACCA E D H	ATGACGTGTT DVL	TACCTGAACA P E Q	AATCAAAGC. I K A	AGTGCTT V L	
+1321	TTAGATACA	AGCAGGTTA	CGCTGGTTT	IGGTTTGA				

+450

- +961 ACCGAACTTGAATCTACTCCACCGAGTTCTTCAAGCTTGCATCCGTTAACACCGACTCCA +340T E L E S T P P S S S S L H P L T P T P ${\tt CAAACGCTGTCTTACCGTGTTAAGGAAGAGTTGTGTCCATCTTCCTCCTTGCCAAGTCCT}$ Q T L S Y R V K E E L C P S S S L P S P . 1 0 0 1
- +841 GATAGGCTTTACATGCTTAGATCAGTTGTTCCCAAGATCAGCAAAATGGATAGAGCATCA +300D R L Y M L R S V V P K I S K M D R A S ${\tt ATACTTGGAGATGCTATTGATTACCTCAAAGAGCTTTTACAAAGAATCAACGATCTTCAC$ I L G D A I D Y L K E L L Q R I N D L H
- +260 D I S G L N Y E S D D H N T N N N K G K K K G M P A K N L M A E R R R R K K L N
- Q K R A A M R Q S S S S K M C N S E S S +220TCTGAAATGAGGAAATCGAGCTACGAGAGAGAGAGATTGACGATACTAGTACCGGAATCATC S E M R K S S Y E R E I D D T S T G I I +721 GATATCTCTGGATTGAATTACGAATCTGATGACCATAATACTAATAACAACAAAGGTAAG
- +180L P A P E N S S G S C G L S P L F S N R GCAAAGGTTTTAAAACCGTTACAGGTAATGGCTTCATCTGGCTCGCAGCCAACTCTGTTT A K V L K P L Q V M A S S G S Q P T L F +601CAGAAACGAGCTGCAATGCGTCAGAGCTCGAGTAGCAAAATGTGCAATTCTGAGAGTTCT
- AATCATCAATCTCCGAACTCGATGAATTTCACTGGCTTAAACCACTCAGTACCGGATTTT N H O S P N S M N F T G L N H S V P D F +481CTTCCAGCTCCGGAAAACAGCTCAGGATCATGTGGATTGAGTCCTCTGTTCTCAAACAGA
- Q S F L A T K A C I V S L L N V P T I N +361 AACAACACTTTCGATGACTTCGGCTTTGACTCTGGTTTCTTAGGACAACAATTCCATGGA +140N N T F D D F G F D S G F L G Q Q F H G
- +2.41CATCCTTTCACACTCGACGCTGCTTCACAGCAACAACAACAACAACAACAACAACAAGGAA +100H P F T L D A A S Q Q Q Q Q Q Q Q E
- AATCTGCTTCTTCTTCTTCAGCAATCGATTGATTCTTCTTCTTCTTCTTCTCCGTTATTA N L L L L Q Q S I D S S S S S P L L
- GAAGCTGCGTCTTGGGTCAGAAACCCAGATGAAGACTGGTTCAATAACCCACCACCACCA E A A S W V R N P D E D W F N N P P P Ρ +121 CAACACACTAATCAAAACGACTTCAGATTCAATGGTGGCTTTCCTTTAAACCCCTCAGAG +60 Q H T N Q N D F R F N G G F P L N P S E
- ACGCCTCCTTTCAAG AAAAATCTCTCTCTATATTATCTACGTTTCTCTCCGCCTTGTCTCCCTTTTGAGGTTCCATT (-71)+1 **ATG**AACAGCGACGGTGTTTGGCTTGACGGCTCCGGTGAATCTCCGGAAGTTAATAACGGT M N S D G V W L D G S G E S P E V N N G +20
- B

С

-135

Supplemental Figure 6. RT-PCR analysis of *ICE1*, *SCRM2*, *SPCH*, *MUTE*, and *FAMA* transcript accumulation in wild-type (wt), *ice1-2*, *scrm2-1*, *ice1-2 scrm2-1/+*, and *ice1-2 scrm2-1* seedlings. Actin serves as a control. No *SPCH*, *MUTE*, or *FAMA* transcripts were detected in *ice1-2 scrm2-1* double mutant plants, consistent with the complete absence of stomatal cell lineage. In *ice1-2 scrm2-1/+*, *FAMA* transcripts were negligible in accordance with the absence of GMC formation. *MUTE* transcripts accumulated to higher levels in *ice1-2 scrm2-1/+*, which may reflect the increased numbers of meristemoids due to developmental arrest. *ice1-2* single mutation did not lead to significant change in transcript accumulation of other stomatal bHLH genes, consistent with the fact that only a small fraction of stomatal precursors form abnormal tumors.

Supplemental Figure 7. Complementation of *ice1 scrm2* loss-of-function mutants by *ICE1* and *SCRM2*. Shown are abaxial epidermis of rosette leaves. (A) *ice1-2 scrm2-1*. The complete loss of *ICE1* and *SCRM2* results in the epidermis solely composed of pavement cells. (B) Transgenic *ice1-2* plant expressing pMK157, a full-length *ICE1* cDNA driven by its native promoter (*ICE1:ICE1*). *ICE1* is sufficient to rescue the 'caterpillar-like' tumors occasionally formed in *ice1-2*. (C) Transgenic *ice1-2 scrm2-1* plant expressing pMK157. Introduction of *ICE1* rescues the pavement cell-only phenotype in *ice1-2 scrm2-1*. (D) Transgenic *ice1-2 scrm2-1* plant expressing pMK181, a full-length *SCRM2* cDNA driven by its native promoter (*SCRM2:SCRM2*). Introduction of *SCRM2* rescues the pavement cell-only phenotype in *ice1-2 scrm2-1*.

Supplemental Table 1: List of primers and their DNA sequence used for genotype analysis

Mutant name	Туре	Restriction er	n Primer name	Primer sequence
tmm	dCAPS	Apo1	TMM 960 dCAPS	AACGCGTTCAAAGGGCTCAAGAAATT
		cuts mutant	TMM 1254rc	GAACCGAATGCATCATCCAAGTCACT
mute	dCAPS	Bsll	MUTE dCAPs F	TTCGTTCTTTGACTCCTTGTTTCTAC C TCAAAAG
		cuts WT	MUTE dCAPs R	CTTCGAGAAAATAATTAGGATTGTGAATTGAG
spch	T-DNA PCR		SAIL_LB3	TAGCATCTGAATTTCATAACCAATCTCGATACAC
			53210 1281.rc	AACCTGAAGAATCTCAAGAGCC
fama	T-DNA PCR		SALK_LBa1	TGGTTCACGTAGTGGGCCATCG
			FAMA –609	ATGTGTACCATTCACACCC
scrm-D	CAPS	Nla3	SCRMg429F	CAAATCCATGCTCCTATTTCGATGG
			Chr3-9835011F	GTAAGTGTTTACTTTGCTGATCTTGG
ice1-2	T-DNA PCR		SALK_003155RP	TGAGGAAGAGGCTCGTGATAG
			SALK_LBa1	TGGTTCACGTAGTGGGCCATCG
scrm2-1	T-DNA PCR		SAIL808B10RP	TAACTTCCGGAGATTCACCG
			SAIL_LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC

Supplemental Table 2: List of primers and their DNA sequence used for map-based cloning of SCRM

Marker name	Chrc Lo	cation (k Type	Restrict	ic Col bands (I	Ler bands (b	Forward primer
KTL1.100	1	3200 SSLP		630	460	AAGACTCCATCTTGACACTGTTATGC
KTL1.120	1	11000 SSLP		820	600	CTTTACCCTTCCACGATTTTTAAGCAATGG
KTL1.130	1	23000 SSLP		780	500	GACAACAAAACCCTGTTGTTTCTGAGC
MSAT2.36	2	8827 SSLP		158	200	GATCTGCCTCTTGATCAGC
MSAT2.9	2	18295 SSLP		173	135	TAAAAGAGTCCCTCGTAAAG
KTL4.100	4	7200 SSLP		700	440	GACCAAGCTTCGTTATCGAAGATAACC
KTL4.120	4	16800 SSLP		795	550	TAATTTGTCTCCCTGTGTTAACTTGC
KTL5.100	5	7600 SSLP		815	435	GTTTTATTGGTGGTGTTGAGAGGAATGG
KTL5.120	5	16800 SSLP		830	430	TTTGGTGGACCATAGAGATTGATTGG
KTL5.130	5	25000 SSLP		750	530	ATACTTGTCGACTTCAGGTTCTACTCC
KTL3.110	3	2400 SSLP		780	460	ACGTGCTCTTCTTGGTTCATCTATATATCC
KTL3.120	3	9100 SSLP		670	510	ATGAGTTTAGATCATCAAGATCGGAGG
KTL3.130	3	9250 SSLP		247	220	ATAGTTCTGGTTCACTTACAGAACC
KTL3.140	3	9400 SSLP		1197	409	GCTTTTTATGTTCATAAGACTTGGAAGC
KTL3.150	3	9540 SSLP		240	199	TGGAAGGAGAAACATCTTTCTAGG
KTL3.160	3	9570 SSLP		213	191	AGATTACATTACTTATTGTGCCTTATCG
KTL3.170	3	9620 SSLP		213	240	GGACAAAAAGATTCAGCAACCTTCG
KTL3.180	3	9640 SSLP		272	234	AACACAGAGCTTCCTAACTTCTTTCC
KTL3.190	3	9680 CAPS	Pst1	738	738	TCAGACTCACCAGAATACAAAAGTGC
KTL3.200	3	9705 SSLP		171	155	TTACAAAATCTACGCAACGCAATGG
KTL3.210	3	9776 CAPS	Mbo1	460	226, 234	TGTAAGTGTGAGCGATTAAATGCTACC
KTL3.220	3	9786 SSLP		140	155	GACAGAGGTGATCAGCTGAACC
KTL3.230	3	9791 CAPS	Xho1	933	590, 343	CTCTGCATTTTCGTTTCCGATTGC
KTL3.240	3	9820 CAPS	Mfe1	598, 375	973	GCAACTTCCTTACTGATACCAACG
KTL3.250	3	9830 SSLP		1102	414	TCTACAAGTCTTTGTAACCACTCC
KTL3.260	3	9847 CAPS	Nco1	179, 314	493	CTTGAATGAGTTATGGCATGGTCAGG
KTL3.270	3	9862 SSLP		1032	771	GTCACACTGGTAATTATTGACAAATCC
KTL3.280	3	9960 SSLP		158	144	CGAATGATGCTATATTGGTTAATTCTGG
KTL3.290	3	10010 CAPS	Mbo1	240, 491	731	GCTGCATCTTCACGAAGAGTTTTGG
KTL3.300	3	10030 SSLP		243	221	GTTCCACTATATAACCACGTCTCG
KTL3.310	3	10160 SSLP		157	143	GTAGTTAATGAGCTTTAGGAGTGTG
KTL3.320	3	10270 CAPS	Xba1	1083	715, 368	TCATCTCTATGGATGGAAACAATCC
KTL3.330	3	10300 SSLP		200	176	AATGTGGTGATGTAGCAACCACTGG
KTL3.340	3	10400 SSLP		251	232	AGCTGGAGGATTAAGTGCGATGC
KTL3.350	3	10700 SSLP		230	201	GACCATGAGATTGAAATAACTTACAGC
KTL3.360	3	11000 SSLP		885	343	AGATTTCCAACTCGTAGGTGACG
KTL3.370	3	11400 SSLP		872	573	CAGAGATAGGCCATTGTGACG
KTL3.380	3	11800 SSLP		1564	422	GGATGAAGATTTTGTTGACTCAAGG
KTL3.390	3	12300 SSLP		1280	415	TAACATTAGCAGCAACTGGACTTGG
KTL3.035	3	12560 SSLP		257	200	TGGTTGTTACAAATTTGCACTC
KTL3.400	3	17000 SSLP		930	530	CACCGAGTTTTGCTTTGTTCATTTTGC

Reverse primer CTCAGAAAGGAAAACGCACAGTAGC GAGCAAAAATTAACATCACGTGACATGACC TCCTCTAGTCATTTCTCATAAGATCCAC CCAAGAACTCAAAACCGTT GTTGTTGTTGTGGCATT AAAGAGAACTCACCGGCATACC GTAGGTAACGAGATCCAGATCTTCC TATCTCTTGTCGTTGTGAGTGTGTTGG CTTTGTACTTTTACTCGGTTGATGACG GCAAACTTATAATTCTCACTTTGGTTCAGG AGTATTGAATCCGTCAAAAGCTGTCG CCAACCGAAATGAACCAAAAAACCATCG CGCAACAATTACAGGTCCATAAACC GACTCAACGCAATTTGAGGTTTTGC CCAGATGTGACCTTTTAGAACTTTGC GTCAAATAAGCCAAAATATTCAAAAATAGG TTAGCAGCATACGGAATTAGTTACG TCGTAGTTTCTTCTTCGGATACAGC AATTCGGATTTGGGAGTTCTCTGC AGGAGCAACTAGCGATGGTGG GCAATCCCAAAGCCATTTAAGTTTCC CACTTTGCCAATTCGTTATCTTGG GAACCGCTTTGATCGATATGTATAGC ATGTTCCATTTGTCTTCATGGTGG ACAAACGAACATTGCCAACAAAGC ACCTAGCCGGAATCATAAACTTAGC CAGCACTAAGAACTGAAAGAACTGC TTATTAAATGTCTCTTTCTATAGGTCTAAG GTATTGGGAGGAGTCTAAACGTTGC ACGAGATCATGATACGTGTCAGTG AAGCTTTGATTAAGTAAATATGGTTCATAC GCATTGCATATTTGTTACTTCCTACC CTTTCTTCTCACTCTTCTAAATGG CGTTTACTGTTTACCTTTATCGTTTGC TTGGAATAATCTTGACAGTAAAACAAGG ACGATTGACTTGTTACGTGTCACG TTTCGTTTTGTCGGGAGTTGAGG GGTTTAACCAACGAGCTGAAAGC AGCCGGTACAACAACTTAGAAAACG GTGGAGAAGAACAAAAGTGTG GTGAGATCCGACGAAGAGTTTACC

	plasmid ID	description	insert	vector	process	PCR primer forward1	PCR primer reverse1	PCR primer for PCR primer rev restriction enzymes
reast two Hyono	pMK151	ICE1cDNA in pOBK17	ICE1 (DNA	pobri/	PCR, Igabon PCR, ligation	SCRM1-ECORTF	SCRM3endBamH1.rc	EcoR1, BallH1
	oMK152	com DoDNA in pORD 17	som D cDNA	ORKT7	PCR lightion	SCRMLEcoR1E	SCRM2andBamH1 m	EcoP1 BamH1
	pMK154	scrm-DcDNA in pGADT7	sorm-D cDNA	pGADT7	PCR. ligation	SCRM1-EcoR1F	SCRM3endBamH1.rc	EcoR1, BamH1
	pNLB101	MUTE cDNA in pCRII-TOPO	MUTE cDNA	pCRII-TOPO	PCR. TOPO cloning	MUTE1-EcoRI linker	MUTE609 BamHI1.rc	EcoR1, BamH1
	pNLB103	SPCH cDNA in pCRII-TOPO	SPCH dDNA	pCRII-TOPO	PCR. TOPO cloning	53210 1-EcoRI linker	53210 1095 BamH1.rc	EcoR1, BamH1
	pNLB104	FAMA cDNA in pCRII-TOPO	FAMA cDNA	pCRII-TOPO	PCR, TOPO cloning	FAMA1-EcoRI linker	FAMA 1244 BamH1.rc	EcoR1, BamH1
	pNLB105	MUTE cDNA in pGBKT7	MUTE cDNA	pGBKT7	PCR, ligation			EcoR1, BamH1
	pNLB106	SPCH cDNA in pGBKT7	SPCH dDNA	pGBKT7	PCR, ligation			EcoR1, BamH1
	pNLB107	FAMA cDNA in pGBKT7	FAMA cDNA	pGBKT7	PCR, ligation			EcoR1, BamH1
	pNLB108	MUTE cDNA in pGADT7	MUTE cDNA	pGADT7	PCR, ligation			EcoR1, BamH1
	pNLB109	SPCH cDNA in pGADT7	SPCH dDNA	pGADT7	PCR, ligation			EcoR1, BamH1
	pNLB110	FAMA cDNA in pGADT7	FAMA dDNA	pGADT7	PCR, ligation			EcoR1, BamH1
ICE1	pMK142	ICE1genomic in pENTR	ICE1 genomic	pENTR/D-TOPO	PCR, TOPO cloning	SCRM5endGW	SCRM3endSTOP.rc	
	pMK143	ICE1 _{RCDBH} genomic in pENTR	ICE1 _{R2304} genomic	dENTR/D-TOPO	PCR. TOPO cloning	SCRM5endGW	SCRM3endSTOP.rc	
	pMK144	ICE1prom in pCR2.1	ICE1 promoter	pCR2.1	PCR, TA cloning	SCRMprom-2581Sbf1F	SCRMprom-1Kpn1R,rc	
	pMK145	ICE1prom::NosT in pMDC99	ICE1 promoter (pMK144)	pLJP185 (NosT in pMDC99)	ligation			Sbf1, Kpn1
	pMK155	GEP-ICE1 IN DENTR	GFP CUNA	pMK142 (ICE 1genomic in pENTR)	PCR, ligation	NOTIGEP-F	GFPnostop-Not1R.rc	Noti
	pMK156	GPP-ICE (prime III PENTIK	GFP CUNA	paik 143 (ICE Igran genomic in pen IR)	PCR. Idation	NOTIGEP-E	GEPhostop-Not1R.rc	Noti
	pMK157	ICE1-ICE1 NorT in pMDC99	ICE1 genomic (pMK142)	pMK145 (ICE1prom-Nos1 in pMDC99)	GATEWAY LR reaction			
	pMK 100	ICE1-GEP.ICE1	GER (CE1	plant 145 (ICE Ipromitivos 1 in plant Cost)	GATEWAT DR reaction			
	pMK162	ICE1-GEP.ICE1.NosT in oMDC99	GEP-ICE1 genomic (oMK155)	nMK145 (ICE1prom.NosT in pMDC99)	GATEWAY DR reaction			
	pMK171	ICE1 _{comp} in pENTR	ICE1 genomic E312G mutation	nENTR/D.TOPO	site directed mutagenesis	SCRM5endGW	SCRM-DBDmutationsB ro	SCRM.DBDmut SCRM3endSTOP m
	pMK172	ICE1ensegroup in pENTR	ICE1ettus genomic E312G mutation	nENTR/D.TOPO	site directed mutagenesis	SCRM5endGW	SCRM-DBDmutationsB ro	SCRM-DBDmut SCRM3endSTOP rc
	pMK173	ICE1:ICE1 _{dente} NosT in pMDC99	ICE1 ₆₁₁₁₀ (pMK171)	pMK145 (ICE1prom-NosT in pMDC99)	GATEWAY LR reaction			
	pMK174	ICE1:ICE1 _{8238KE2120} -NosT in pMDC99	ICE1 ₈₂₃₈₄₅₅₁₂₅ (pMK172)	pMK145 (ICE1prom-NosT in pMDC99)	GATEWAY LR reaction			
SCRM2	pMK147	SCRM2prom(-2300 to-1)::SCRM2 in pENTR	SCRM2prom(-2300 to-1)::SCRM2genomic	pENTR/D-TOPO	PCR, TOPO cloning	At1g12860g5endGW	At1g12860g3endSTOP.rc	
	pMK178	SCRM2prom(-2300 to-1)::SCRM2 _{R023H} in pENTR	SCRM2prom(-2300 to-1)::SCRM2 R203H mutation	DENTR/D-TOPO	site directed mutagenesis	ICE2R581HmutationF	At1a12860a3endSTOP.rc	At1o12860o5er ICE2R581HmutationR.rc
	pMK176	SCRM2prom(-3600 to -2300) in pCR2.1	SCRM2prom(-3600 to -2300)	pCR2.1	PCR, TA cloning	ICE2prom-1326Sbf1F	ICE2prom-1Kpn1.rc	
	pMK180	SCRM2prom(-3600 to -2300)-NosT in pMDC99	SCRM2prom(-3600 to -2300) (pMK176)	pLJP185 (NosT in pMDC99)	ligation			
	pMK181	SCRM2::SCRM2-NosT in pMDC99	SCRM2prom(-2300 to-1)::SCRM2 (pMK157)	pMK180 (SCRM2prom(-3600 to -2300)-NosT in pMDC99)	GATEWAY LR reaction			
	pMK185	SCRM2_SCRM2 _{event} -NosT in pMDC99	SCRM2prom(-2300 to-1)::SCRM2prom (pMK178)	pMK180 (SCRM2prom/-3600 to -2300)NosT in pMDC99)	GATEWAY LR reaction			
SplitYFP	pMK128	ICE1cDNA in pENTR	ICE1cDNA	pENTR/D-TOPO	PCR, TOPO cloning	SCRM5endGW	SCRM3endSTOP.rc	
	pMK130	sorm-D cDNA in pENTR	sorm-D cDNA	pENTR/D-TOPO	PCR, TOPO cloning	SCRM5endGW	SCRM3endSTOP.rc	
	pMK132	dual 35Sprom::n(1-174)EYFP-ICE1 in pE3136	ICE1cDNA (pMK128)	pE3136	GATEWAY LR reaction			
	pMK133	dual 35Sprom::c(175-end)EYFP-ICE1 in pE3130	ICE1cDNA (pMK128)	pE3130	GATEWAY LR reaction			
	pMK136	dual 35Sprom::n(1-174)EYFP- scrm-D in pE3134	sorm-D cDNA (pMK130)	pE3136	GATEWAY LR reaction			
	pMR 137	COMPLEXITY OF THE SUMPORT PERSON OF THE SUMPORT	SCINI-D CDNA (pMK130)	-ENTRIP TOPO	DCD TODO elector	ICED-E IE DACINE	AM-12052-2	
	pMK217	dual 359nomin/1.174/EVED.9CPM2 in nE3136	SCRM2 (DNA (oMK217)	pENTRO-TOPO	GATEWAY I Proaction	ICE2gbendecok IGWP	Actig 12860g3enida TOP-IC	
	pmin213	dual 35Sprom: c(175.end)EVEP.SCRM2 in pE3130	SCRM2 (DNA (oMK217)	nE3130	GATEWAY I R reaction			
	nl. JP173	dual 35Sprom m(1-174)EYEP-MITE in nE3135	MUTE genomic (ol. JP135)	pE3136	GATEWAY I B reaction			
	pLJP174	dual 35Sprom::c(175-end)EYEP-MUTE in pE3130	MUTE genomic (pLJP135)	pE3130	GATEWAY LR reaction			
	pLJP175	dual 35Sprom::n(1-174)EYEP-FAMA in pE3136	FAMA genomic (pLJP140)	pE3136	GATEWAY LR reaction			
	pLJP176	dual 35Sprom::c(175-end)EYFP-FAMA in pE3130	FAMA genomic (pLJP140)	pE3130	GATEWAY LR reaction			
	pLJP234	SCRM2prom(-2536)::SCRM2-GFP in pGWB4	SCRN2prom(-2536)::SCRM2 no stop	pGWB4	GATEWAY LRII reaction			
	pLJP238	dual 35Sprom::n(1-174)EYFP-SPCH in pE3136	SPCH genomic (pLJP142)	pE3136	GATEWAY LR reaction			
	pLJP237	dual 35Sprom::c(175-end)EYFP-SPCH in pE3130	SPCH genomic (pLJP142)	pE3130	GATEWAY LR reaction			

mental Table S3: List of plasmids constructed in this study and their description

Supplemental Table 4: List of primers and their DNA sequence used for plasmid construction

SCRM1-EcoR1F SCRM3endBamH1.rc SCRM5endGW SCRM3endSTOP.rc SCRMprom-2581Sbf1F SCRMprom-1Kpn1R,rc Not1GFP-F GFPnostop-Not1R.rc SCRM-DBDmutationsF SCRM-DBDmutationsR.rc At1q12860q5endGW At1g12860g3endSTOP.rc ICE2prom-1326Sbf1F ICE2prom-1Kpn1.rc ICE2R581HmutationF ICE2R581HmutationR.rc ICE2g5endEcoR1GWF MUTE1-EcoRI linker MUTE609 BamHI1.rc 53210 1-EcoRI linker 53210 1095 BamH1.rc FAMA1-EcoRI linker FAMA 1244 BamH1.rc

TGTCAGAATTCGCGATGGGTCTTGACG AGTCAGGATCCGATCAGATCATACC CACCATGGGTCTTGACGGAAACAATGG TCAGATCATACCAGCATACCCTGC AAGCCTGCAGGACCACCGTCAATAACATCG AGAGGTACCGCCAAAGTTGACACC GCTAGCGGCCGCCACCATGGTGAGC AGCGGCAGCGGCCGCAGCTCC CCTCTGATGGCTGGGAGGAGAAGGGGGGAAGAAG CCCTTCTCCTCCCAGCCATCAGAGGCTTAGCAG CACCATGGAGAGTAGAGAGGATTCATTC TCAAACCAAACCAGCGTAACCTGC GGTCCTGCAGGTTTCATGAGCTTCC TACTCTGGTACCCACTTTTATAAATACTAG CAACTCTGTTTCAGAAACATGCTGCAATGCGTCAG CTGACGCATTGCAGCATGTTTCTGAAACAGAGTTG CACCGAATTCATGAACAGCGACGGTGTTTGG CGGAATTCATGTCTCACATCGCTGTTGAA CGGGATCCTTAATTGGTAGAGACGATCAC CGGAATTCATGCAGGAGATAATACCGGAT CGGGATCCCTAGCAGAATGTTTGCTGAAT CGGAATTCATGGATAAAGATTACTCGGCA CGGGATCCTCAAGTAAACACAATATTTCCC

Supplemental Table 5: List of primers and their DNA sequence used for RT-PCR and 5' RACE PCR analysis

Gene	Primer name	Sequence
ICE1	SCRM 1209F	GGAGATGCAATTGATTATCTGAAGG
	SCRM 3'END BAMH1.RC	AGTCAGGATCCGATCAGATCATACC
SCRM2	SCRM2 2784	CACACTCGACGCTGCTTCAC
	SCRM2 3110.rc	GAAGCCATTACCTGTAACGG
SPCH	53210 1.GW	CACCATGCAGGAGATAATACCG
	53210 886.rc	CTAGCAGAATGTTTGCTG
MUTE	MUTE 1.GW	CACCATGTCTCACATCGCTGTTG
	MUTE 1486.rc	TTAATTGGTAGAGACGATC
FAMA	FAMA 1.GW	CACCATGGATAAAGATTACTCGG
	FAMA 799.rc	AGGCATGAGAGATCTAAGG
ACTIN	ACT2-1	GCCATCCAAGCTGTTCTCTC
	ACT2-2	GCTCGTAGTCAACAGCAACAA

5' RACE PCR of SCRM2

reverse primer reverse nested primer ACCCAAGACGCAGCTTCACCGTTA AGCCGTCAAGCCAAACAC