Derivation of equation used to calculate cytosolic cAMP concentration.

The absolute maximal FRET response observed *in vitro* (F_{ABS}) and the maximal FRET response observed in the intact cell (F_{MAX}) are described by Eq. 1 and Eq. 2, respectively:

$$F_{ABS} = \frac{R_{MAX} - R_{0 \text{ in vitro}}}{R_{0 \text{ in vitro}}}$$
(Eq. 1)

$$F_{MAX} = \frac{R_{MAX} - R_{0 cell}}{R_{0 cell}}$$
(Eq. 2)

where R_{MAX} = maximum CFP/YFP fluorescence ratio; $R_{0 \text{ in vitro}}$ = minimum CFP/YFP fluorescence ratio *in vitro*; and $R_{0 \text{ cell}}$ = minimum CFP/YFP fluorescence ratio in the intact cell.

Based on Eq.1 and Eq. 2, and assuming that R_{MAX} is identical *in vitro* and in the intact cell, we can derive Equation 3:

$$F_{ABS} * R_{0 in vitro} + R_{0 in vitro} = F_{MAX} * R_{0 cell} + R_{0 cell} \rightarrow$$

$$R_{0 cell} = \left(\frac{F_{ABS} + 1}{F_{MAX} + 1}\right) * R_{0 in vitro}$$
(Eq. 3)

Furthermore, the FRET response observed under any given set of experimental conditions (F) can be described by Equation 4:

$$F = \frac{R_{cell} - R_{0 cell}}{R_{0 cell}}$$

$$R_{cell} = R_{0 cell} * (F+1)$$
 (Eq. 4)

where R_{cell} = the CFP/YFP fluorescence ratio in the intact cell.

Based on Eq. 3 and Eq. 4, we can derive Eq. 5, which describes the *equivalent* FRET response *in vitro* ($F_{eq in vitro}$):

$$F_{\text{eq in vitro}} = \frac{R_{cell} - R_{0 \text{ in vitro}}}{R_{0 \text{ in vitro}}} = \frac{R_{0 \text{ cell}} * (F + 1) - R_{0 \text{ in vitro}}}{R_{0 \text{ in vitro}}} \qquad \Rightarrow$$

$$F_{\text{eq in vitro}} = \frac{\left[\left(\frac{F_{ABS} + 1}{F_{MAX} + 1}\right) * R_{0 \text{ in vitro}}\right] * (F + 1) - R_{0 \text{ in vitro}}}{R_{0 \text{ in vitro}}} \qquad \Rightarrow$$

$$F_{eq in vitro} = \left(\frac{F_{ABS} + 1}{F_{MAX} + 1}\right) * (F + 1) - 1$$
 (Eq. 5)

The Hill equation describing the *in vitro* FRET response of the probe to different cAMP concentrations is:

$$F_{\text{eq in vitro}} = \frac{F_{ABS} * [cAMP]^n}{EC_{50}^n + [cAMP]^n} = \frac{F_{ABS}}{1 + \left(\frac{EC_{50}}{[cAMP]}\right)^n}$$
(Eq. 6)

where EC_{50} = the concentration of cAMP that produces half-maximal activation of the probe and n is the Hill coefficient.

Based on Eq. 5 and Eq. 6 we can derive Eq. 7 to calculate the concentration of cAMP that produces a given FRET response in an intact cell (F):

$$[cAMP] = EC_{50} * \left(\frac{F_{eq\,in\,vitro}}{F_{ABS} - F_{eq\,in\,vitro}}\right)^{1/n} \rightarrow$$

$$[cAMP] = EC_{50} * \left(\frac{(F_{ABS} + 1) * (F + 1) - F_{MAX} - 1}{F_{ABS} * (F_{MAX} + 1) - [(F_{ABS} + 1) * (F + 1) - F_{MAX} - 1]} \right)^{1/n} \rightarrow$$

$$[cAMP] = EC_{50} * \left(\frac{F_{ABS} * (F+1) + F - F_{MAX}}{F_{ABS} * (F_{MAX} - F) - F + F_{MAX}}\right)^{1/n}$$
(Eq. 7)

Supplement Table 1: MODEL PARAMETERS					
Parameter	Value	Units	Description		
$R_{\beta 1 TotalCav}$	0.633	μΜ	concentration of β₁R in Cav compartment		
$R_{\beta 1 TotalEcav}$	1.098	μΜ	concentration of β₁R in Ecav compartment		
$R_{\beta 1 TotalCyt}$	0.603	μΜ	concentration of β₁R in Cyt compartment		
K _H	0.062	μΜ	high affinity binding constant between ligand and receptor		
ΚL	0.567	μΜ	low affinity binding constant between ligand and receptor		
Kc	8.809	μΜ	affinity binding constant between free receptor and G protein		
$R_{M2TotalCav}$	0.506	μΜ	concentration of M ₂ R in Cav compartment		
$R_{M2TotalEcav}$	0.506	μΜ	concentration of M ₂ R in Ecav compartment		
R _{M2TotalCyt}	0.301	μΜ	concentration of M ₂ R in Cyt compartment		
K _H	0.16	μΜ	high affinity binding constant between ligand and receptor		
KL	11	μΜ	low affinity binding constant between ligand and receptor		
Kc	30	μΜ	affinity binding constant between free receptor and G protein		

G _{sTotalCav}	10	μΜ	concentration of G _s protein in Cav compartment
$G_{sTotalEcav}$	10	μΜ	concentration of G _s protein in Ecav compartment
G _{sTotalCyt}	10	μΜ	concentration of G _s protein in Cyt compartment
GiTotalCav	20	μΜ	concentration of G _i protein in Cav compartment
G _{iTotalEcav}	1	μΜ	concentration of G _i protein in Ecav compartment
G _{iTotalCyt}	10	μΜ	concentration of G _i protein in Cyt compartment
k _{act1Gi}	0.1	s⁻¹	activation rate constant for RG _i complexes
k _{act2Gi}	5	s ⁻¹	activation rate constant for LRG _i complexes
k _{act1Gs}	0.1	s ⁻¹	activation rate constant for RG _s complexes
k _{act2Gs}	5	s ⁻¹	activation rate constant for LRG _s complexes
k _{hydrGi}	0.8	s⁻¹	hydrolization rate constant of $G_{i\alpha\text{-}\text{GTP}}$
k _{reasGi}	1.21*10 ³	s ⁻¹ μM ⁻¹	reassociation rate constant of $G_{i\alpha\text{-}GDP}$ and $G_{\beta\gamma}$
k _{hydrGs}	0.8	s⁻¹	hydrolization rate constant of $G_{s\alpha\text{-}GTP}$

k _{reasGs}	1.21*10 ³	s⁻¹ µM⁻¹	reassociation rate constant of $G_{s\alpha\text{-}GDP}$ and $G_{\beta\gamma}$
AC _{5/6-Cav}	3.379	μΜ	concentration of Cav AC _{5/6}
AC _{5/6-Cyt}	0.126	μΜ	concentration of Cyt AC _{5/6}
ATP	5 * 10 ³	μΜ	concentration of ATP (constant)
K _{mATP}	315	μΜ	AC _{5/6} K _m for ATP
AF _{5/6}	500	mg purified protein mg membrane protein	amplification factor for $AC_{5/6}$
MW _{AC5/6}	130	Kda	molecular weight of AC _{5/6}
AC _{4/7-Ecav}	0.200	μΜ	concentration of Ecav AC _{4/7}
AC _{4/7-Cyt}	0.006	μΜ	concentration of Cyt AC _{4/7}
AF _{4/7}	130	mg purified protein mg membrane protein	amplification factor for AC _{4/7}
MW _{AC4/7}	130	KDa	molecular weight of AC _{4/7}
K _{mPDE2}	50	μΜ	PDE2 Km for cAMP
K _{mPDE3}	0.08	μΜ	PDE3 Km for cAMP
K _{mPDE4}	2.2	μΜ	PDE4 Km for cAMP
K _{PDE2}	20	s ⁻¹	rate constant for PDE2
K _{PDE3}	1.25	s⁻¹	rate constant for PDE3
K _{PDE4}	2.5	s⁻¹	rate constant for PDE4

PDE_{2Cav}	4.5	μΜ	PDE2 concentration in Cav compartment
PDE _{2Ecav}	0.002	μΜ	PDE2 concentration in Ecav compartment
PDE _{2Cyt}	0.068	μΜ	PDE2 concentration in Cyt compartment
PDE _{3Cav}	5.6	μΜ	PDE3 concentration in Cav compartment
PDE _{3Cyt}	0.113	μΜ	PDE3 concentration in Cyt compartment
PDE_{4Cav}	2.0	μΜ	PDE4 concentration in Cav compartment
PDE _{4Ecav}	0.01	μΜ	PDE4 concentration in Ecav compartment
PDE _{4Cyt}	0.027	μΜ	PDE4 concentration in Cyt compartment
J _{Cav/Ecav}	5 * 10 ⁻¹⁵	Liters * s ⁻¹	flux rate between Cav and Ecav compartments
J _{Cav/Cyt}	7.5 * 10 ⁻¹⁴	Liters * s ⁻¹	flux rate between Cav and Cyt compartments
J _{Ecav/Cyt}	0.9 * 10 ⁻¹⁴	Liters * s ⁻¹	flux rate between Ecav and Cyt compartments

Supplement Figure 1. Concentration dependence of the cAMP-dependent change in Epac2-camps CFP/YFP emission intensity ratio (Δ R/R₀) observed *in vitro (see Methods)*. Parameters of fit to data points: EC₅₀, 1.1 µM, Hill coefficient, 1, maximum FRET response 43%.