Supporting Information

Investigation of the Lactam Sidechain Length Necessary for Optimal Indenoisoquinoline Topoisomerase I Inhibition and Cytotoxicity in Human Cancer Cell Cultures

Andrew Morrell,[†] Michael S. Placzek,[†] Jamin D. Steffen,[†] Smitha Antony,[‡]
Keli Agama,[‡] Yves Pommier,[‡] and Mark Cushman[†],*

Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA

Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute,
Bethesda, MD 20892-4255, USA

Title page S1

Elemental Analyses S2

[†]Purdue University

^{*}National Cancer Institute

^{*}Corresponding Author: Phone number: 765-494-1465; fax number: 765-494-6790, e-mail: cushman@pharmacy.purdue.edu

Elemental Analyses

Compound	Molecular Formula		C %	H %	N %
19	$\mathbf{C_{16}H_{34}N_2O_2}$	Calc.	67.09	11.96	9.78
	G	Found	66.86	11.88	9.65
25	$C_{16}H_{10}N_2O_2\cdot 0.25 H_2O$	Calc.	72.04	3.97	10.50
2.1		Found	71.79	3.99	10.56
31	$\mathbf{C_{28}H_{32}N_2O_4}$	Calc.	73.02	7.00	6.08
22		Found	72.86	7.13	5.96
32	$C_{29}H_{34}N_2O_4$	Calc.	73.39	7.22	5.90
22	CHNO	Found	73.22	7.04	5.74 5.73
33	$\mathbf{C_{30}H_{36}N_2O_4}$	Calc.	73.74	7.43	5.73
2.4	CHNO	Found	73.67	7.24	5.60
34	$\mathbf{C_{31}H_{38}N_2O_4}$	Calc.	74.07	7.62	5.57 5.46
25	CHNO	Found	73.90	7.52	5.46 5.42
35	$C_{32}H_{40}N_2O_4$	Calc.	74.39 74.36	7.80 7.96	5.42 5.14
36	CHNO	Found Calc.	74.26 74.69	7.90 7.98	5.14 5.28
30	$\mathbf{C_{33}H_{42}N_2O_4}$	Caic. Found	74.69 74.43	7.98 7.91	5.26 4.94
40	C ₂₁ H ₂₁ ClN ₂ O ₂ ·0.75 H ₂ O	Calc.	65.96	5.93	7.33
40	$C_{21}\Pi_{21}C\Pi_{2}O_{2}O_{3}O_{4}O_{5}\Pi_{2}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5$	Found	66.25	5.61	7.33 7.37
41	C ₂₂ H ₂₃ ClN ₂ O ₂ ·0.5 H ₂ O	Calc.	67.43	6.17	7.37 7.15
71		Found	67.06	5.86	7.13 7.13
42	$C_{23}H_{25}CIN_2O_2\cdot0.5H_2O$	Calc.	68.06	6.46	6.90
12	C ₂₃ 11 ₂₅ Cll (₂ O ₂ 0.5 11 ₂ O	Found	67.96	6.21	6.90
43	$C_{24}H_{27}CIN_2O_2\cdot 0.75 H_2O$	Calc.	67.91	6.77	6.60
	24-27-21 (2012 21)	Found	67.97	6.67	6.23
44	$C_{25}H_{29}CIN_2O_2\cdot 0.75 H_2O$	Calc.	68.48	7.01	6.39
	23-29	Found	68.44	7.06	6.45
45	$C_{26}H_{31}CIN_2O_2\cdot 0.5 H_2O$	Calc.	69.71	7.20	6.25
	20 31 2 2 2	Found	69.51	6.95	6.42
46	C ₂₇ H ₃₃ ClN ₂ O ₂ ·1.0 H ₂ O	Calc.	68.85	7.49	5.95
	2, 66 2 2 2	Found	69.18	7.30	5.91
47	$C_{28}H_{35}CIN_2O_2 \cdot 1.25 H_2O$	Calc.	68.89	7.72	5.72
		Found	68.89	7.42	5.78
48	$C_{22}H_{14}N_2O_2$	Calc.	78.09	4.17	8.28
		Found	77.73	4.19	8.21
49	$C_{22}H_{15}CIN_2O_2$	Calc.	70.50	4.03	7.47
		Found	70.13	3.88	7.45
50	$C_{23}H_{17}CIN_2O_2$	Calc.	71.04	4.41	7.20
		Found	71.43	4.29	7.38
51	$C_{23}H_{16}N_2O_2\cdot 0.55 H_2O$	Calc.	76.25	4.76	7.73
		Found	75.94	4.47	7.80