# Cloning and characterization of novel human SLC4A8 gene products encoding Na<sup>+</sup>-driven CI-HCO<sub>3</sub> exchanger variants NDCBE-A, -C and -D

- 1. PCR analysis of human NDCBE splice variants (page ii)
- 2. Data analysis (pages iii-ix)

# **Supplementary Figure**



FIGURE 1. PCR analysis of human NDCBE splice variants. PCR products (P) were separated by agarose gel electrophoresis and visualized on a UV transilluminator. *A*: Nested 5'–RACE product represented in manuscript-Figure 2*B*. *B*: Gene-specific PCR product corresponding to a fragment of SLC4A8 that includes exons 19–24, as represented in manuscript-Figure 2*C*. *C*: 3'–RACE product corresponding to a fragment of SLC4A8 including exons 24 and 25, as represented in manuscript-Figure 2*D*. *D*: Gene-specific PCR product corresponding to the extended fragment of exon 25, as represented in manuscript-Figure 2*E*. DNA ladders (M) were the 1-kb Plus Ladder from Invitrogen (panels A–C) and the 1-kb ladder from Sigma-Aldrich (panel *D*).

# **Data Analysis**

#### Comparison of NDCBE-A, -B, -C, and -D (oocyte resting pH<sub>i</sub>)

The table below shows the mean resting intracellular pH (pH<sub>i</sub>) values for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, -C or -D (see manuscript-Figure 7). Values are presented as means (column 2)  $\pm$  S.E (column 3) together with the number of replicate experiments (column 4).

|                  | Mean pH <sub>i</sub> | Standard Error | Number of<br>Replicates |
|------------------|----------------------|----------------|-------------------------|
| NDCBE-A          | 7.35                 | 0.04           | 14                      |
| NDCBE-B          | 7.33                 | 0.03           | 13                      |
| NDCBE-C          | 7.39                 | 0.03           | 15                      |
| NDCBE-D          | 7.35                 | 0.03           | 14                      |
| H <sub>2</sub> O | 7.33                 | 0.02           | 14                      |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set is shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-C ("C"), NDCBE-D ("D"), and  $H_2O$ -injected cells ("H<sub>2</sub>O").

| One Way ANC<br>Response: B<br>Factor A: 5 Gro<br>A, B, C, D, H | 0VA<br>oups<br>H₂O                      |                    |          |              |
|----------------------------------------------------------------|-----------------------------------------|--------------------|----------|--------------|
| Analysis of Va                                                 | riance Results                          |                    |          |              |
| Source                                                         | DF                                      | SS                 | MS       | I P          |
| Total                                                          | 69                                      | 0.791377           | 0.011469 |              |
| A                                                              | 4                                       | 0.038749           | 0.009687 | 0.836 0.5069 |
| Error                                                          | 65                                      | 0.752628           | 0.011579 |              |
| Student-Newm<br>Comparison                                     | an-Keuls Multiple<br>Mean<br>Difference | e Comparison<br> q | Р        |              |
| C vs H2O                                                       | 0.065571                                | 2.319              | 0.478    |              |
| C vs B                                                         | 0.059692                                | 2.0703             | 0.4649   |              |
| C vs D                                                         | 0.047                                   | 1.6622             | 0.472    |              |
| C vs A                                                         | 0.044857                                | 1.5864             | 0.2661   |              |
| A vs H2O                                                       | 0.020714                                | 0.7203             | 0.9566   |              |
| A vs B                                                         | 0.014835                                | 0.5062             | 0.9319   |              |
| A vs D                                                         | 0.002143                                | 0.0745             | 0.9581   |              |
| D vs H2O                                                       | 0.018571                                | 0.6458             | 0.8916   |              |
| D vs B                                                         | 0.012692                                | 0.4331             | 0.7604   |              |
| B vs H2O                                                       | 0.005879                                | 0.2006             | 0.8876   |              |

## Comparison of NDCBE-A, -B, -C, and -D (oocyte resting V<sub>m</sub>)

The table below shows the mean resting membrane potential  $(V_m)$  values for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, -C or -D (see manuscript-Figure 7). Values are presented as means (column 2) ± S.E (column 3) together with the number of replicate experiments (column 4).

|                  | Mean V <sub>m</sub> (mV) | Standard Error | Number of  |
|------------------|--------------------------|----------------|------------|
|                  |                          | (mV)           | Replicates |
| NDCBE-A          | -41                      | 2              | 14         |
| NDCBE-B          | -39                      | 2              | 13         |
| NDCBE-C          | -44                      | 2              | 15         |
| NDCBE-D          | -45                      | 2              | 14         |
| H <sub>2</sub> O | -53                      | 3              | 14         |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set is shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-C ("C"), NDCBE-D ("D"), and  $H_2O$ -injected cells ("H<sub>2</sub>O").

One Way ANOVA Response: B Factor A: 5 Groups A, B, C, D, H<sub>2</sub>O

| Analysis<br>Results | of | Variance |          |          |          |         |
|---------------------|----|----------|----------|----------|----------|---------|
| Source              |    | DF       | SS       | MS       | F        | Р       |
| Total               |    | 69       | 6240.986 | 90.44907 | •        | •       |
| А                   |    | 4        | 1571.89  | 392.9724 | 5.470697 | 0.00074 |
| Error               |    | 65       | 4669.096 | 71.83225 |          |         |

| Student-Newman-Keuls |            | Multiple |        |
|----------------------|------------|----------|--------|
| Comparison           |            |          |        |
| Comparison           | Mean       | al       | Р      |
| •                    | Difference |          |        |
| B vs H2O             | 13.7582    | 5.9604   | 0.0007 |
| B vs D               | 5.32967    | 2.3089   | 0.3678 |
| B vs C               | 5.08205    | 2.2379   | 0.2605 |
| B vs A               | 1.47253    | 0.6379   | 0.6534 |
| A vs H2O             | 12.2857    | 5.4238   | 0.0016 |
| A vs D               | 3.85714    | 1.7028   | 0.4551 |
| A vs C               | 3.60952    | 1.6207   | 0.256  |
| C vs H2O             | 8.67619    | 3.8958   | 0.0205 |
| C vs D               | 0.247619   | 0.1112   | 0.9376 |
| D vs H2O             | 8.42857    | 3.721    | 0.0106 |

## Comparison of NDCBE-A, -B, -C, and -D (oocyte pH<sub>i</sub> recovery rate)

The table below shows the  $pH_i$  recovery rates following a CO<sub>2</sub>-induced acid-load for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, -C or -D (see manuscript-Figures 7 and 8). Values are presented as means (columns 2)  $\pm$  S.E (column 3) together with the number of replicate experiments (column 4).

|                  | Mean pH <sub>i</sub> recovery<br>rate | Standard Error                        | Number of<br>Replicates |
|------------------|---------------------------------------|---------------------------------------|-------------------------|
|                  | $(\times 10^{-5} \text{ pH units/s})$ | $(\times 10^{-5} \text{ pH units/s})$ |                         |
| NDCBE-A          | 19                                    | 2                                     | 14                      |
| NDCBE-B          | 15                                    | 2                                     | 13                      |
| NDCBE-C          | 18                                    | 2                                     | 15                      |
| NDCBE-D          | 12                                    | 1                                     | 14                      |
| H <sub>2</sub> O | 2                                     | 1                                     | 14                      |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set are shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-C ("C"), NDCBE-D ("D"), and  $H_2O$ -injected cells ("H<sub>2</sub>O").

One Way ANOVA Response: B Factor A: 5 Groups A, B, C, D, H<sub>2</sub>O

Analysis of Variance Results

| 7 11 101 9 010 0 |    | oouno    |          |        |         |
|------------------|----|----------|----------|--------|---------|
| Source           | DF | SS       | MS       | F      | Р       |
| Total            | 69 | 4473.943 | 64.83975 |        |         |
| А                | 4  | 2726.645 | 681.6613 | 25.358 | < .0001 |
| Error            | 65 | 1747.298 | 26.88151 |        |         |

Student-Newman-Keuls Multiple Comparison

| Ivlean     | <b>q</b>                                                                                                                      | Р                                                                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Difference |                                                                                                                               |                                                                                                                                                    |
| 17.5       | 12.6292                                                                                                                       | < .0001                                                                                                                                            |
| 7.35714    | 5.3094                                                                                                                        | 0.0021                                                                                                                                             |
| 3.90659    | 2.7666                                                                                                                        | 0.1314                                                                                                                                             |
| 1.61429    | 1.1849                                                                                                                        | 0.4052                                                                                                                                             |
| 15.8857    | 11.6602                                                                                                                       | < .0001                                                                                                                                            |
| 5.74286    | 4.2153                                                                                                                        | 0.0111                                                                                                                                             |
| 2.29231    | 1.6501                                                                                                                        | 0.2476                                                                                                                                             |
| 13.5934    | 9.6265                                                                                                                        | < .0001                                                                                                                                            |
| 3.45055    | 2.4436                                                                                                                        | 0.0888                                                                                                                                             |
| 10.1429    | 7.3198                                                                                                                        | < .0001                                                                                                                                            |
|            | Mean<br>Difference<br>17.5<br>7.35714<br>3.90659<br>1.61429<br>15.8857<br>5.74286<br>2.29231<br>13.5934<br>3.45055<br>10.1429 | Mean q Difference17.512.62927.357145.30943.906592.76661.614291.184915.885711.66025.742864.21532.292311.650113.59349.62653.450552.443610.14297.3198 |

The results of a two-way ANOVA generated by Kaleidagraph for the above data set are shown below. In order to make all groups equal size (i.e., n = 13), the one or two most recent experiments in each case were disregarded as necessary to equalize the size of the data groups. Groups are defined as Clones with the long Nt common to NDCBE-A/B ("NAB"), clones with a short Nt common to NDCBE-C/D ("NCD"), clones with a long Ct common to NDCBE-A/C ("CAC"), and clones with a short Ct common to NDCBE-B/D ("CBD").

Two Way ANOVA Response: C Factor A: 2 Groups NAB, NCD (long vs short N terminus) Factor B: 2 Groups CAC, CBD (long vs short C terminus)

| Analysis of V | arianc | e Results |          |          |         |
|---------------|--------|-----------|----------|----------|---------|
| Source        | DF     | SS        | MS       | F        | Р       |
| Total         | 51     | 2077.75   | 40.7402  |          |         |
| Α             | 1      | 81.25     | 81.25    | 2.399432 | 0.12795 |
| В             | 1      | 360.9423  | 360.9423 | 10.65916 | 0.00202 |
| Interaction   | 1      | 10.17308  | 10.17308 | 0.300426 | 0.58616 |
| Error         | 48     | 1625.385  | 33.86218 |          |         |

Similar results were obtained when the analysis was performed on a data set omitting the one or two oldest experiments to equalize the size of the data groups. The results of this analysis are reproduced below.

Two Way ANOVA Response: C Factor A: 2 Groups NAB, NCD (long vs short N terminus) Factor B: 2 Groups CAC, CBD (long vs short C terminus)

| Analysis of V | /ariance | Results  |          |          |         |
|---------------|----------|----------|----------|----------|---------|
| Source        | DF       | SS       | MS       | F        | Р       |
| Total         | 51       | 2024.827 | 39.70249 |          |         |
| A             | 1        | 76.32692 | 76.32692 | 2.207044 | 0.14392 |
| В             | 1        | 281.5577 | 281.5577 | 8.141427 | 0.00637 |
| Interaction   | 1        | 6.942308 | 6.942308 | 0.200741 | 0.65614 |
| Error         | 48       | 1660     | 34.58333 |          |         |

#### Comparison of NDCBE-A, -B, and -X (oocyte resting pH<sub>i</sub>)

The table below shows the resting intracellular pH (pH<sub>i</sub>) values for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, -X (see manuscript-Figure 9). Values are presented as means (column 2)  $\pm$  S.E (column 3) together with the number of replicate experiments (column 4).

|                  | Mean pH <sub>i</sub> | Standard Error | Number of<br>Replicates |
|------------------|----------------------|----------------|-------------------------|
| NDCBE-A          | 7.31                 | 0.01           | 6                       |
| NDCBE-B          | 7.37                 | 0.03           | 6                       |
| NDCBE-X          | 7.33                 | 0.03           | 7                       |
| H <sub>2</sub> O | 7.30                 | 0.04           | 4                       |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set are shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-X ("X"), and  $H_2O$ -injected cells (" $H_2O$ ").

One Way ANOVA Response: B Factor A: 4 Groups A, B, H<sub>2</sub>O, X

Analysis of Variance Results

| DF | SS                  | MS                                                | F                                                                           | Р                                                                                         |
|----|---------------------|---------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 22 | 0.090782            | 0.004126                                          |                                                                             |                                                                                           |
| 3  | 0.018869            | 0.00629                                           | 1.661824                                                                    | 0.20884                                                                                   |
| 19 | 0.071913            | 0.003785                                          |                                                                             |                                                                                           |
|    | DF<br>22<br>3<br>19 | DF SS<br>22 0.090782<br>3 0.018869<br>19 0.071913 | DF SS MS   22 0.090782 0.004126   3 0.018869 0.00629   19 0.071913 0.003785 | DF SS MS F<br>22 0.090782 0.004126<br>3 0.018869 0.00629 1.661824<br>19 0.071913 0.003785 |

Ρ

| Student-Newma | n-Keuls Multiple | e Comparison |
|---------------|------------------|--------------|
| Comparison    | Mean             | lġl          |
|               |                  |              |

|          | Difference |        |        |
|----------|------------|--------|--------|
| B vs H2O | 0.075833   | 2.7006 | 0.2573 |
| B vs A   | 0.066667   | 2.6543 | 0.1726 |
| B vs X   | 0.039048   | 1.6134 | 0.2681 |
| X vs H2O | 0.036786   | 1.3491 | 0.6139 |
| X vs A   | 0.027619   | 1.1412 | 0.4297 |
| A vs H2O | 0.009167   | 0.3264 | 0.8199 |
|          |            |        |        |

#### Comparison of NDCBE-A, -B, and -X (oocyte resting V<sub>m</sub>)

The table below shows the resting membrane potential  $(V_m)$  values for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, -X (see manuscript-Figure 9). Values are presented as means (column 2)  $\pm$  S.E (column 3) together with the number of replicate experiments (column 4).

|                  | $V_{m}(mV)$ | Standard Error<br>(mV) | Number of<br>Replicates |
|------------------|-------------|------------------------|-------------------------|
| NDCBE-A          | -47         | 3                      | 6                       |
| NDCBE-B          | -44         | 4                      | 6                       |
| NDCBE-X          | -46         | 2                      | 7                       |
| H <sub>2</sub> O | -55         | 4                      | 4                       |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set are shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-X ("X"), and  $H_2O$ -injected cells (" $H_2O$ ").

One Way ANOVA Response: B Factor A: 4 Groups A, B, H<sub>2</sub>O, X

Analysis of Variance Results

| DF | SS                  | MS                                                | F                                                          | Р                                                                   |
|----|---------------------|---------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| 22 | 1254.957            | 57.04348                                          |                                                            |                                                                     |
| 3  | 304.2661            | 101.422                                           | 2.026967                                                   | 0.14422                                                             |
| 19 | 950.6905            | 50.03634                                          |                                                            |                                                                     |
|    | DF<br>22<br>3<br>19 | DF SS<br>22 1254.957<br>3 304.2661<br>19 950.6905 | DFSSMS221254.95757.043483304.2661101.42219950.690550.03634 | DFSSMSF221254.95757.043483304.2661101.4222.02696719950.690550.03634 |

Student-Newman-Keuls Multiple Comparison

| Mean       | q                                                                               | Р                                                                                         |
|------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Difference |                                                                                 |                                                                                           |
| 11         | 3.407                                                                           | 0.1092                                                                                    |
| 3.16667    | 1.0966                                                                          | 0.7222                                                                                    |
| 2.64286    | 0.9497                                                                          | 0.5099                                                                                    |
| 8.35714    | 2.6657                                                                          | 0.1703                                                                                    |
| 0.52381    | 0.1882                                                                          | 0.8955                                                                                    |
| 7.83333    | 2.4262                                                                          | 0.1025                                                                                    |
|            | Mean<br>Difference<br>11<br>3.16667<br>2.64286<br>8.35714<br>0.52381<br>7.83333 | Mean q Difference113.4073.166671.09662.642860.94978.357142.66570.523810.18827.833332.4262 |

## Comparison of NDCBE-A, -B, -X (oocyte pH<sub>i</sub> recovery rate)

The table below shows the  $pH_i$  recovery rates following a CO<sub>2</sub>-induced acid-load for oocytes injected with H<sub>2</sub>O or cRNAs encoding NDCBE-A, -B, or -X (see manuscript-Figure 9). Values are presented as means (columns 2) ± S.E (column 3) together with the number of replicate experiments (column 4).

|                  | Mean pH <sub>i</sub> recovery<br>rate<br>$(\times 10^{-5} \text{ pH units/s})$ | Standard Error $(\times 10^{-5} \text{ pH units/s})$ | Number of<br>Replicates |
|------------------|--------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|
| NDCBE-A          | 25                                                                             | 1 (× 10 pří units/s)                                 | 6                       |
| NDCBE-B          | 16                                                                             | 1                                                    | 6                       |
| NDCBE-X          | 25                                                                             | 1                                                    | 7                       |
| H <sub>2</sub> O | 2                                                                              | 1                                                    | 4                       |

The results of a one-way ANOVA generated by Kaleidagraph for the above data set are shown below. Groups are defined as NDCBE-A ("A"), NDCBE-B ("B"), NDCBE-X ("X"), and  $H_2O$ -injected cells (" $H_2O$ ").

One Way ANOVA Response: B Factor A: 4 Groups A, B, X, H<sub>2</sub>O

Analysis of Variance Results

| Source | DF | SS       | MS       | F        | Р       |
|--------|----|----------|----------|----------|---------|
| Total  | 22 | 2.09E-07 | 9.52E-09 |          |         |
| Α      | 3  | 1.67E-07 | 5.57E-08 | 25.01413 | < .0001 |
| Error  | 19 | 4.23E-08 | 2.23E-09 |          |         |

Student-Newman-Keuls Multiple Comparison

| Comparison            | Mean       | q       | Р       |
|-----------------------|------------|---------|---------|
| -                     | Difference |         |         |
| A vs H <sub>2</sub> O | 0.00023    | 10.7181 | < .0001 |
| A vs B                | 0.00009    | 4.5856  | 0.0114  |
| A vs X                | 0.00000    | 0.0641  | 0.9643  |
| X vs H <sub>2</sub> O | 0.00023    | 10.9812 | < .0001 |
| X vs B                | 0.00009    | 4.6946  | 0.0036  |
| B vs H <sub>2</sub> O | 0.00014    | 6.6166  | 0.0002  |
|                       |            |         |         |