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TEXT S1.  ADDITIONAL METHODOLOGICAL DETAILS  

AND SENSITIVITY ANALYSIS 
 

For 
“Effect of the California Tobacco Control Program on Personal Health Care Expenditures” 

by James Lightwood, Alexis Dinno, and Stanton Glantz 
 

 
Tests for Stationarity 

 
The Phillips-Perron unit root test was used 

to test for unit roots, using level or trend 
nonstationarity as the null [1].  (A unit root tests 
whether a variable y evolves as a random walk, 
i.e., with the dynamic relation yt = yt-1 + constant 
+ deterministic trend + errort.)  The KPSS test 
[1,2], which uses level or trend stationarity as 
the null, was used to confirm the results of the 
Phillips-Perron test and to check for sensitivity 
or results to choice of null hypothesis. The 
Phillips-Peron test may have low power in small 
samples [1], so the KPSS test and analysis of 
ACF/PCAFs were used to stationarity when 
there was a conflict and Phillips-Perron showed 
borderline significant results. Unit root tests 
were done using a testwise 5% significance level 
using the year as defined for the raw data 
(calendar year for health care expenditures, 
fiscal year for the rest). 

Automatic lag order selection was used for 
unit root tests and ACF/PACF analysis:  
ceiling(4[N/100]2/9) for Phillips-Perron; Hobijn 
[3] automatic bandwidth selection for KPSS test; 
min(ceiling [N/2-1], 40) for ACF/PACF. 

The same procedures were used to test for 
stationarity in the regression residuals as for the 
dependent variables. 

 
Regression Methods 
 

We used standard time series regression 
techniques appropriate for non-stationary 
variables.  Under the assumption of unit root, or 
random walk, nonstationarity, the appropriate 
procedure to determine any long run relationship 
between the variables is to estimate equations 
[1] and [2] as static regressions with no lagged 
variables. If these static regressions have 
stationary errors then they are called 

cointegrating regressions that describe the long 
run equilibrium relationship between the 
dependent and independent variables. Ordinary 
least squares estimates of cointegrating 
regression coefficients may poorly approximate 
t-distributions and be biased in small samples, so 
irrelevant instrumental variables (IIV) estimates 
[4,5] were used for estimation.  

We use orthogonal basis function irrelevant 
instrumental variables (IIV) regression methods 
developed by Phillips [5] that are valid 
asymptotically with Monte Carlo evidence of 
good performance in small samples.  

Adjustment for the long run covariance 
matrix of the Brownian motions of the 
regression variables (which is achieved by 
including first differences of explanatory 
variables in the IIV regressions) were not used 
for the estimates reported in Table 1. Inclusion 
of the first differences resulted in very small 
degrees of freedom and many apparent 
influential outliers. We believe that in this case 
omission of adjustment for the Brownian 
motions does not materially affect the 
conclusions. Ordinary least squares, and 
irrelevant instrumental variables regressions 
with and without adjustment for long run 
covariance of the random walks produced 
virtually identical results. Cointegrating 
regression slope coefficients converge at the rate 
of the number of observations (rather than at the 
square root for stationary variables), so stable 
estimates are expected even in small samples. 

Sinusidual polynomial basis functions were 
used for IIV instruments as suggested in Phillips 
[5]; fourteen instruments were generated and 
identical instrument set was used for all IIV 
regression estimates. Sensitivity analysis 
indicated that results were insensitive to 
alternative choice for basis functions and 
number of instruments.  
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Lag order of 3 and 4 were used for 
conventional instrumental variables estimates 
assuming stationarity, due to evidence of 
moving average process at lags 2 and 3 in IIV 
estimates of equation [2]. 

The ECM regression coefficients converge 
at the rate of the square root of the number of 
observations, so small sample size is a concern 
when estimating the ECM. We used a 10% level 
of significance for the error correction term in 
order to estimate ECMs for the expenditure 
equation because of the low power in such a 
small sample (25 data points) for stationary 
variables. Lagged first differences of order one 
were included as needed to produce uncorrelated 
residuals. This model selection strategy was 
used because it was suspected that significance 
tests on the ECM equation coefficients had low 
power. 

Parameter estimation was done using Stata 
Version 9 [6]. 

 
Results of Model Validity and Reliability 
Tests 
 

1) In-sample Dynamic Predictions. The 
dynamic in-sample predictions of the 
cointegrating regressions for California per 
capita health care expenditure track the observed 
variables closely (Figure 1, Tables 1 and A1). 
The prediction error measures are similar to that 
of the cointegrating regression equation, and the 

regression results indicate that the actual 
observations are accurately predicted by the 
dynamic predictions. The short-run ECM model 
predictions perform slightly more poorly than 
those of the long run cointegrating regressions, 
particularly RMSE, for predictions conditional 
on observed and predicted (Figure 1) cigarette 
consumption, which may be due to the 
uncertainty because of stationary estimation with 
a small sample. The corresponding predictions 
for California per capita cigarette consumption 
(equations [1, 4]) and health expenditures also 
track the observed time series closely (Figure 1 
and Table A1). 

 
2) Sensitivity analysis of variation in 

control states and price indices. Sensitivity 
analysis using the regional and national MCPI, 
and varying the control states, did not change the 
results for equation [1] substantially (Table A2).  
Variation of price indices used to calculate real 
expenditures produced similar estimates that 
were virtually identical. Use of different states 
for control populations did not change the basic 
results: the coefficient for difference in cigarette 
consumption was always negative and different 
from zero. This coefficient varied from -15.8 
(SE 1.83) when using Western region control 
states only to -33.8 (SE 2.24) when using all 
other states for control, which may be due to the 
effect of variation in non-smoking health related 
factors and their interaction with smoking in the 

Table A1. Evaluation of dynamic in-sample model predictions  
Forecast errors Regression, actual against forecast 

Coefficient of 
simulated/forecast value  

Predicted 
Obser-
vations 

Root mean 
square error 

Absolute 
proportional error R2 

Estimate SE 
Health care expenditures conditional on observed cigarette consumption (2004 dollars per capita) 
Long-run* 24 44.9 0.00809 0.91 0.98 0.0637 
Short run* 23 86.6 0.0163 0.71 0.81 0.114 

Health care expenditures conditional on dynamic predictions of cigarette consumption (2004 dollars per capita) 
Long-run* 24 67.3 0.0114 0.91 0.98 0.064 
Short-run* 23 111 0.0212 0.56 0.70 0.136 
 
Difference in control and California per capita cigarette consumption (packs per capita) 
Long-run* 24 1.64 0.0373 0.98 0.99 0.029 
Short-run  23 1.48 0.0302 0.98 0.97 0.027 
Note: two observations are lost in simulation due to initialization of dependent variables for in-sample dynamic predictions. 
*Long-run: predictions of the cointegrating regression describing the long-run relationship; short-run refers to adding. Short-run: 
predictions of the equilibrium correction model describing the short-run behavior of the variables. 
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different control populations. 
 

 3) Out of sample forecasts of the 
endogenous variables. The out of sample 
performance of the cointegrating regressions for 
equation [1] were explored by estimating model 
for initial 14 (used only for expenditure only) 
and 16, 18 and 20 observations. These out of 
sample forecasts of California health 
expenditure (equation [1]) performed very well 
(Table A3), and were the result of extremely 
stable coefficient estimates over a range of the 
chosen forecast horizons, and within the 95% 
forecast intervals. The RMSE and mean absolute 
percentage error of the forecast regressions were 
also stable over the forecast horizon. 

 
Corresponding forecasts for the difference in 

cigarette consumption (equation [2]) do not fare 
as well. Stable parameter estimates that produce 
accurate forecasts consistently within the 
forecast intervals (not shown) do not occur until 
estimation is performed over the first 20 
observations. This poor forecasting performance 
may be due to structural break that occurred 
with large tax increases at the end of the 1990s. 
(See discussion of recursive estimates below.) 

 
4) Reverse  regression of parameter 

estimates for equations [1] and [2].  All the 
reverse regressions of the cointegrating 
relationships in both equations [1] and [2] 

returned similar renormalized coefficient 
estimates, as expected in cointegrating 
regressions (Table A4). The results on reverse 
regressions also are strong evidence that there is 
only one cointegrating relationship each in 
equation [1] and equation [2]. The invariance of 
the parameter estimates to the choice of 
normalization is important because it increases 
the likelihood that we are estimating a unique 
cointegrating regression connecting all the 
variables in the regression, rather than a 
composition of several cointegrating regression 
that may not have an interpretation consistent 
with the theoretical causal model for the 
regressions [7]. 

 
5) Models of bootleg cigarette sales.  Time 

series models for untaxed (bootleg) sales were 
estimated. The best model used surveys of 
discount, Internet, Native American reservation, 
and Native American Internet real prices, which 
were between $1.60 and $2.00 per pack in year 
2004 prices. Additional terms, functions of the 
difference in real prices of taxed cigarettes and 
an unweighted average of available survey data 
on discount cigarettes, was added to equation [1] 
to model the effect of possible bootlegging.  
These models of the effect of discount and 
bootleg cigarettes changed the cigarette 
consumption coefficient from -27.0 to -26.0. and 
were consistent with untaxed consumption 
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Figure A1. Recursive estimates of coefficient for per 
capita California health expenditures in the 
cointegrating regression (equation [1]) show that the 
coefficient is very stable as annual observations are 
added to an initial estimate based on the years 1980 
to 1984.  The dotted lines are the 95% confidence 
interval for the estimates. 
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Figure A2. Recursive estimates of coefficient for 
difference in cigarette consumption in cointegrating 
regression (equation [2]) are stable as more years of 
data are added to initial estimate computed based on 
the years 1980 to 1984. (There may be an structural 
break associated with cigarette tax increases that 
occurred between 1997 and 1999.)    The dotted lines 
are the 95% confidence interval for the estimates. 
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between 5% and 10% of total consumption in 
California. 

6) Recursive estimates of coefficients.  
Recursive estimates of the difference in cigarette 

Table A2. Sensitivity analysis  of total health care expenditures and cigarette consumption (equation [1])  

 Constant Control 
expenditure 

Difference in 
cigarette 

consumption 
R2 RMSE Auto-

correlaton 

Original for total health care expenditures (from Table 1)  
Coefficient 2736 0.599 -27.0 0.91 46 0.09 
SE 173 0.0519 1.82    
       
United States national MCPI deflator 
Coefficient 3267 0.519 -28.5 0.89 63 0.40* 
SE 245 .0730 2.52    
       
Regional MCPI deflator 
Coefficient 3375 0.493 -28.2 0.94 46 0.03 
SE 171 .0517 1.83    
       
All other states used as controls 
Coefficient 2606 0.615 -33.8 0.92 45 0.03 
SE 186 .0528 2.24    
       
Northeast region controls only 
Coefficient 2867 0.458 -25.1 0.75 78 0.40* 
SE 312 .0774 3.17    
       
Midwest region controls only 
Coefficient 2772 0.513 -21.4 0.90 49 -0.03 
SE 180 .0482 1.53    
       
South region controls 
Coefficient 3346 0.588 -30.4 0.84 63 0.23 
SE 193 .0730 2.97    
       
West region controls only** 
Coefficient 2563 0.523 -15.8 0.77 76 0.51* 
SE 354 .0925 1.83    
*statistically significant auto-correlation in residuals at 5% significance level, Box-Ljung Q test 
**cointegrating regression (residuals stationary) by Phillips-Perron unit root test at 10% level but not at 5% level. Residuals 
stationary by KPSS test at > 10% level, and inspection of ACF/PACFs. 

 
Table A3. Evaluation of out-of-sample forecasts  

Forecast errors Regression, actual against forecast 
Coefficient of 

simulated/forecast value 
Sample periods used for 

estimate 
Initial 

forecast year Root mean 
square error 

Absolute 
proportional error R2 

estimate SE 
Expenditure forecasts, cointegrating regression 
1994 to 2004 1994 69.0 0.0126 0.95 1.38 0.107 
1996 to 2004 1996 71.8 0.0136 0.95 1.37 0.116 
1998 to 2004 1998 87.5 0.0178 0.97 1.23 0.0906 
2000 to 2004 2000 75.4 0.0135 0.97 1.33 0.124 
       
Difference in cigarette consumption forecasts, cointegrating regression 
1996 to 2004 1996 11.0 0.212 0.045 0.0553 0.104 
1998 to 2004 1998 11.2 0.231 0.064 -0.016 .00627 
2000 to 2004 2000 3.63 0.064 0.41 -1.12 0.319 
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consumption equation [1] were extremely stable 
over the whole sample period (Figure A1)..  

Recursive estimates revealed that the 
parameter estimates for the coefficient for the 
effect of cumulative California tobacco control 
program expenditures ( 1β ) in equation [2] are 
stable over successive sub-samples, though may 
experience a structural shift around 1997-1998. 
The recursive estimates for the cigarette price 
coefficients in equation [2] (Figure A2) indicate 
a structural break just before 2000, and most out 
of sample forecast inaccuracy is do to a sudden 
increase in sensitivity of cigarette consumption 
in both California and control states to price 
after 1998. These results show that the estimated 
models were quite stable over the observation 
period. 

 
7) Exogenous time trends. Deterministic 

time trends did not chnage the cointegrating 
relationship for California health expenditures 
(equation [1]). 
Alternative models using quadratic and cubic 

deterministic time trends in the cigarette demand 
equation (equation [2]) produced similar results, 
with somewhat larger effects of tobacco control 
expenditures in reducing cigarette consumption 
in California. A linear time trend only was used 
for the final estimates because it produced 
results that were less sensitive to outliers, and 
more stable recursive and rolling subsample 
estimates. 

 
8) Unrestricted estimation of California 

health expenditures. Removing the restriction 
that the coefficients of California and control 
state cigarette consumption be equal and of 
opposite sign do not change the regression 
estimates for equation [1]. 

The estimates of the cointegrating estimates 
were robust to the remaining sensitivity 
analyses. Alternative methods of estimating 
equations [1] and [2] (ordinary least squares, 
instrumental variables estimates using lagged 
variables as instruments, Johansen maximum 
likelihood estimates, Prais-Winston 
autoregressive estimates) produce similar 

 
Table A4. Reverse regressions for cointegrating relationships 

California Health Expenditure tCAh ,  (equation [1]) 

Dependent variable for reverse 
regression estimate constant 

Control state 
health 

expenditure 

Difference in 
cigarette 

consumption 
  

Control health expenditures, 
hcontrol,t 

2179 
(219) 

0.663 
(0.0863) 

-29.0 
(1.99)   

Difference in cigarette 
Consumption, (scontrol,t – sCA,t) 

2599 
(194) 

0.644 
(0.0553) 

-28.7 
(0.0679)   

Difference in cigarette consumption )( ,, tCAtcontrol ss −  (equation [2]) 

Dependent variable for reverse regression estimate 

CA tobacco 
control 

educational 
expenditure 

CA cigarette 
price 

Control 
state 

cigarette 
price 

Time 

CTCP cumulatve education 
expenditures, Et 

32.9 
(2.65) 

0.428 
(0.262) 

10.6 
(2.49) 

-22.4 
(3.26) 

1.39 
(0.246) 

California cigarette price, pCA,t  30.8 
(2.36) 

0.246 
(0.0847) 

14.4 
(0.187) 

-26.2 
(4.38) 

1.69 
(0.203) 

Control cigarette price, pcontrol,t 31.4 
(2.24) 

0.260 
(0.0800) 

13.1 
(0.0655) 

-25.3 
(2.043) 

1.72 
(0.192) 

Elapsed time, (t – t0)  30.1 
(2.19) 

0.214 
(0.0814) 

11.3 
(2.24) 

-23.0 
(2.96) 

1.84 
(0.100) 

The reverse regressions are estimated using variable listed in left-hand column as dependent variable, then renormalized so that 
coefficient California health care expenditure (top) or difference in cigarette consumption (bottom) is equal to one, in order to 
compare to estimates with normalization presented in Table 1. 
Approximate standard errors for IIV reverse regression calculated by the delta method [8] 
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results. Estimators not using instrumental 
variables produced systematically different 
coefficient estimates for the cigarette demand 
equation (equation [2]). This was in contrast to 
the expenditure equation (equation [1]), where 
all estimators produced nearly identical results. 
This result is consistent with the endogeneity 
expected in the explanatory variables in equation 
[2], and the results of the ECM equation 
estimates. All of the explanatory variables in 
equation [1] are exogenous, while for equation 
[2] there are theoretical reasons and evidence 
from ECM equations indicating that some of the 
explanatory variables (price of cigarettes) are 
endogenous. The ECM equations did not 
indicate endogeneity of cigarette prices in 
equation [2]. Price changes appeared to be 
mostly due to several large and presumably 
exogenous tax increases over the sample period, 
and may explain this result. No formal Hausman 
type tests were done, however. 

 
Other tests and estimates.  Additional 

variables were included in equation [1] to 
measure differences between California and 
control states. Demographic differences were 
measured by proportion of resident population 
age 65 years or older in both populations. 
Differences in economic activity were measured 
by per real per capita income (year 2004 dollars) 
in both populations using data from the Bureau 
of Economic Analysis, deflated by the all-item 
consumer price index for urban consumers. 
Differences in health care market structure were 
measured by proportion of Medicare recipients 
enrolled managed care in both populations, and 
the ratios of licensed physicians, and licensed 
acute care community hospital beds to resident 
populations of California and control state 
populations. The measure of managed care 
market penetration closely parallels the 
proportion of the total population enrolled in 
managed care programs in California and 
control states. Market penetration was calculated 
using annual issues of the National HMO 
Census, Kaiser Family Foundation reports, 
annual issues of Medicare Program Statistics 
reports, and data from the Centers for Medicare 
and Medicaid Services. The ratio of licensed 
physicians and hospital beds to the resident 
populations were taken from various issues of 

the Statistical Abstract of the United States, and 
Health United States. 

Adjustment for the differences in the 
proportion of elderly in the populations, per 
capita personal income, managed care market 
penetration, physicians and licensed hospital 
beds  between California and control 
populations did not change the estimates for 
equation [1] significantly. 

  Only the coefficient for the age adjustment 
variable showed consistent borderline statistical 
significance with the expected sign (that is, costs 
increase with proportion age 65 or older). The 
information of these additional variables was 
summarized using a principal components 
analysis based on the covariance matrix of 
rescaled variables; the largest two principal 
components explained 99% of the total 
variation.  Inclusion of these two principal 
components did not significantly change the 
estimates for equation [1] reported in Table 1. 

A similar analysis was done using the 
prevalence behavioral health risk factors  for 
California and control states taken from the 
Behavioral Risk Factor Surveillance Survey. 
Exploratory adjustment using the prevalence of 
overweight, obesity, binge drinking and 
hypertension among those with history of a 
blood pressure check did not significantly 
change the results. These risk factors with were 
also used in a principal components analysis and 
the two factors that accounted for over 95% of 
total variation in the data set. Neither component 
significantly affected the results. A final 
exploratory analysis was done by replacing the 
proportion of population that was elderly with a 
principal components analysis of the age 
structure of the population (age groups 0-5, 5-
17, 18-24, 25-44, 45-64, 65+); this analysis also 
did not significantly change the results. 

 
Comparison with Distributed Lag Models 
Assuming Stationarity 
 

Exponential distributed lag models using 
annual California tobacco control program 
expenditures in the cigarette demand equations 
(equation [2]) produced results roughly 
consistent with the cointegrating regression. The 
estimated annual decay of the effect of annual 
tobacco control expenditure on the difference in 
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cigarette consumption was statistically 
significant and between 0.12% and 0.05%, 
depending on the regression specification. These 
results indicate that annual tobacco control 
expenditures have persistent effects. The 
distributed lag model performed as well as the 
cointegrating model by standard in-sample 
statistical measures such as the F test for 
statistical significance and R2. However the 
residuals displayed significant autocorrelation 
and dynamic predictions of the dependent 
variable did not perform as well as the 
cointegrating and ECM regressions. 

 
Fiscal vs. Calendar Year Time Aggregatation. 
Using lagged unsmoothed fiscal year tobacco 
control program expenditures did not 
significantly change the results of any of the 
equations. Conversion of all variables to 
calendar year had no material effect on the 
results.  

 
 
State Residential Personal Health Care 
Expenditures 

 
The current analysis used all-payer 

expenditure data for each state.  Corresponding 
data for payments to state residents are available 
from the Centers for Medicare and Medicaid 
Services only for the years 1991 to 1998.  The 
resident data series are not long enough to re-
estimate the model reliability, therefore, a 
correlation analysis was used to determine how 
well the all-payer data represented the resident 
data for the available data.  The pairwise 
Pearson correlation coefficients and canonical 
correlations were used to measure agreement 
between  the resident and  all-payer expenditure 
series.  If these correlations are high, an analysis 
with resident data (were it available) should 
confirm that using all-payer data.  Because of 
the small sample size, the correlations should be 

considered summary statistics.  The resident and 
all-payer data series differed by less than 1%. 
All correlations between the resident and all-
payer series in levels and first differences were 
greater than 0.93. The canonical correlations 
between the all-payer and resident data were 
greater than 0.96 in levels and first differences. 
The available data indicate that the all-payer 
data can be used to represent the resident data 
for California and the 38 control state 
populations. 
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