Supporting Information for

Biosynthetic Tailoring of Microcin E492m: Post-Translational Modification Affords an Antibacterial Siderophore-Peptide Conjugate

Elizabeth M. Nolan, Michael A. Fischbach, Alexander Koglin and Christopher T. Walsh*

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115

*Corresponding author: christopher-walsh@hms.harvard.edu

Complete ref. 27:

Welch, R. A.; Burland, V.; Plunkett, G.; Redford, P.; Roesch, D.; Rasko, D.; Buckles, E. L.; Liou, S.-R.; Boutin, A.; Hackett, J.; Stroud, D.; Mayhew, G. F.; Rose, D. J.; Zhou, S.; Schwartz, D. C.; Perna, N. T.; Mobley, H. L. T.; Donnenberg, M. S.; Blattner, F. R. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 17020-17024.

Substrate Preparations.

Preparation of Ent and Glycosylated Ents. Enterobactin was synthesized as described in the literature.¹⁻³ IroB-catalyzed reactions were performed to obtain multi-milligram quantities of MGE and DGE for use in enzymatic assays. ⁴ A 15 mL solution containing Ent (15.6 mg, 23 μmol, dissolved in 500 μL DMSO), UDP-Glc (124 mg, 1.64 mmol), 5 mM MgCl₂, 2.5 mM TCEP and 75 mM Tris-HCl buffered at pH 8 was incubated at room temperature for 3.5 h, quenched by addition of 7 mL of 2.5 N HCl in MeOH, vortexed and filtered through a 0.2 μm membrane. Preparative HPLC using a gradient of 0 to 40% B (solvent A, 0.2% TFA/H₂O; solvent B, MeCN) over 40 min and a flow-rate of 10 mL/min afforded pure MGE (30.9 mg, 37.1 μmol) and DGE (14.3 mg, 14.4 μmol). Product purity was verified by analytical HPLC and identity by co-elution with known standards and MS. LRMS [M+H]⁺ m/z calc 832.2 (MGE), 994.3 (DGE); found, 832. 1, 994.2.

Large-Scale Enzymatic Preparation of lin-Ent. Ent (20 mg, 30 μ mol) was dissolved in 400 μ L of DMSO and diluted with 15 mL of 75 mM Hepes pH 7.5 buffer. A portion (135 μ L of 71 μ M stock) of MceD was added and the solution was mixed and incubated at room temperature for 27 min, and quenched with 5 mL of 2.5 N HCl in MeOH. The mixture was vortexed and filtered through a 0.2 μ m membrane. Preparative HPLC using a solvent gradient of 15 to 60% B (solvent A, 0.1% TFA/H₂O; solvent B, MeCN) allowed for separation of the reaction components. The compounds were collected and lyophilized to dryness, which afforded white powders. The identity of lin-Ent was verified by MS and co-elution with lin-Ent prepared from a IroD-catlayzed reaction.⁵ LRMS: [M+H]⁺ m/z calc, 688.2; found, 688.3.

Preparation of Ferric Ent, MGE and DGE. The ferric complexes of Ent, MGE and DGE were prepared from FeCl₃ and siderophore in the presence of

base by modification of existing protocols.^{5,6} For [Fe(Ent)]³: A 50.3-mL portion of Ent (10.5 mM in DMSO) was diluted with 49.7 μ L of MeOH (5.28 mM final concentration) and aqueous FeCl₃ (5.28 mM, 110 μ L) was added. The solution turned purple and was mixed with a pipette. A 7-mL aliquot of 1 M K₂CO₃ was added and the solution was mixed and turned wine-colored. The reaction was loaded onto a Sephadex LH-20 column packed with MeOH and eluted with MeOH. The [Fe(Ent)]³⁻ containing fractions were concentrated to dryness and the resulting dark-red residue was dissolved in 150 μ L of DMSO. The product identity was verified and stock concentration determined by UV-vis. For [Fe(MGE)]³⁻: As described for [Fe(Ent)]³⁻ except that the 5.28 mM MGE solution was prepared in 1:1 MeOH/H₂O. For [Fe(DGE)]³⁻: As described for [Fe(Ent)]³⁻ except that the DGE solution was prepared in MeOH (1.33 mM) and the FeCl₃ solution was also 1.33 mM.

References

- (1) Ramirez, R. J. A.; Karamanukyan, L.; Ortiz, S.; Guiterrez, C. G. *Tetrahedron Lett.* **1997**, *38*, 749-752.
- (2) Gardner, R. A.; Kinkade, R.; Wang, C.; Phastiel, O. I. *J. Org. Chem.* **2004**, *69*, 3530-3537.
- (3) Deleuze, H.; Maillard, B. J. Organomet. Chem. 1995, 490, C14-C17.
- (4) Fischbach, M. A.; Lin, H.; Liu, D. R.; Walsh, C. T. *Proc. Natl. Acad. Sci. USA* **2005**, *102*, 571-576.
- (5) Lin, H.; Fischbach, M. A.; Liu, D. R.; Walsh, C. T. *J. Am. Chem. Soc.* **2005**, 127, 11075-11084.
- (6) Abergel, R. J.; Warner, J. A.; Shuh, D. K.; Raymond, K. N. *J. Am. Chem. Soc.* **2006**, *128*, 8920-8931.

Table S1. Mass Data (m/z) for Hydrolysis Products from MceD-Catalyzed Reactions

Substrate	Product	Calc	Found	Calc	Found
		$[M+H]^{+}$	$[M+H]^+$	$[M-H]^{-}$	$[M-H]^{-}$
Ent		670.2	670.2		
	lin-Ent	688.2	688.3		
	DHB-Ser Dimer	465.1	465.1		
	DHB-Ser Monomer			240.1	n.d. ^a
MGE		832.2	832.1		
	lin-MGE	850.2	850.1		
	Glc-Dimer	627.2	627.1		
	Glc-Monomer	404.1	n.d.		
	DHB-Ser			240.1	n.d.
DGE		994.3	994.1		
	lin-DGE	1012.3	1012.2		
	Glc-Dimer	627.2	627.3		
	Glc-Monomer	404.1	n.d.		
	DHB-Ser Monomer			240.1	n.d.

^a n.d. = not determined

Table S2. NOE Correlations for C_{10} -C6'-MGE (left) and C_{10} -C4'-MGE (right)

Group Atom Nuc Shift	Group Atom Nuc Shift
C6	C4
Glc H1 1H 3.987	Glc H1 1H 4.077
Glc H2 1H 3.462	Glc H2 1H 3.474
Glc H3 1H 3.575	Glc H3 1H 3.590
Glc H4 1H 3.715	Glc H4 1H 4.960
Glc H5 1H 3.510	Glc H5 1H 3.545
Glc H61 1H 4.454	Glc Q6 1H 3.983
Glc H62 1H 4.244	DHB1 H4 1H 7.033
DHB1 H4 1H 7.021	DHB1 H6 1H 7.184
DHB1 H6 1H 7.156	DHB1 H9 1H 4.999
DHB1 H9 1H 4.957	DHB1 HN 1H 9.027
DHB1 HN 1H 8.945	DHB2 H4 1H 6.933
DHB2 H4 1H 6.912	DHB2 H5 1H 6.647
DHB2 H5 1H 6.612	DHB2 H6 1H 7.000
DHB2 H6 1H 6.970	DHB2 H9 1H 4.890
DHB2 H9 1H 4.898	DHB2 HN 1H 8.805
DHB2 HN 1H 8.692	DHB3 H4 1H 6.933
DHB3 H4 1H 6.908	DHB3 H5 1H 6.645
DHB3 H5 1H 6.610	DHB3 H6 1H 7.002
DHB3 H6 1H 6.956	DHB3 H9 1H 4.915
DHB3 H9 1H 5.041	DHB3 HN 1H 8.778
DHB3 HN 1H 8.733	S1 HA 1H 4.117
S1 HA 1H 4.114	S1 HN 1H 8.410
S1 HN 1H 8.366	S1 QB 1H 3.953
S1 QB 1H 3.853	A2 HA 1H 4.390
A2 HA 1H 4.404	A2 HN 1H 8.713
A2 HN 1H 8.709	A2 QB 1H 1.371
A2 QB 1H 1.369	T3 HA 1H 4.324
T3 HA 1H 4.196	T3 HB 1H 4.188
T3 HB 1H 4.181	T3 QG2 1H 1.142
T3 QG2 1H 1.141	T3 HN 1H 8.154
T3 HN 1H 8.150	S4 HA 1H 4.632
S4 HA 1H 4.317	S4 HN 1H 8.238
S4 HN 1H 8.168	S4 QB 1H 3.968
S4 QB 1H 3.917	S5 HA 1H 4.452
S5 HN 1H 7.796	S5 HN 1H 8.280
S5 QB 1H 3.781	S5 QB 1H 3.804
S6 HN 1H 8.189	S6 HA 1H 4.463
S6 QB 1H 3.938	S6 HB2 1H 3.858
G7 HN 1H 8.324	S6 HB3 1H 3.790
G7 QA 1H 4.373	S6 HN 1H 8.375
S8 HA 1H 4.489	G7 HN 1H 7.132
S8 HN 1H 8.283	S8 HA 1H 4.420
S8 QB 1H 3.960	S8 HN 1H 8.313
G9 HN 1H 8.265	S8 QB 1H 3.825
G9 QA 1H 4.428	G9 HN 1H 8.203
S10 HA 1H 4.470	G9 QA 1H 4.405
S10 HN 1H 7.072	S10 HA 1H 4.001
S10 QB 1H 3.949	S10 HN 1H 7.067
	S10 QB 1H 3.496

Figure S1. C-Glycosylation of Ent by IroB to give MGE, DGE and TGE. (b) Kinetic data for IroB-catalyzed C-glycosylation. Corresponding k_{cat} and K_m values are given in Table 1 of the main text.

Figure S2. HPLC analysis of the MceD-catalyzed hydrolysis of DGE (75 mM Hepes, pH 7.5). The concentration of DGE was 32 μ M and 20 nM MceD was employed. MS values for the products are listed in Table S1.

Figure S3. MceD-catalyzed hydrolysis of $[Fe(Ent)]^3$, $[Fe(MGE)]^3$ and $[Fe(DGE)]^3$ (75 mM Hepes, pH 7.5). The MceD concentration was 20 nM and the substrate concentrations were 32 μ M.

Figure S4. (a) Effect of pH on the migration of C_{10} from the C4′ to the C6′ position of the glucose moiety of MGE. Peak 1 is C_{10} -C4′-MGE. Peak 2 is C_{10} -C6′-MGE. Solutions of 50 μM C_{10} -C6′-MGE were prepared and incubated at room temperature for 30 min in aqueous solution at pH ~5 (H₂O), pH 7 (75 mM Tris-HCl), pH 8 (75 mM Tris-HCl) and pH 9 (10 mM CHES). Migration to the C6′ position is accelerated by the presence of base. Some background hydrolysis of the ester bond between C_{10} and MGE is observed at pH 9. (b) Incubation of 50 μM C_{10} -C6′-MGE at room temperature in pH 8 buffer (75 mM Tris-HCl). Some formation (~10%) of C_{10} -C4′-MGE is observed during this timeframe.

Figure S5. MceIJ-catalyzed attachment of lin-MGE to the C_{10} peptide (2 μ M MceIJ, 100 μ M lin-MGE, 500 μ M C_{10} , 5 mM ATP, 5 mM MgCl₂, 75 mM Tris-HCl pH 8).

Figure S6. (a) MceD-catalyzed hydrolysis of the MGE moiety in C_{10} -C6′-MGE (20 nM MceD, 32 μ M C_{10} -C6′-MGE, 75 mM Hepes pH 7.5). (b) Kinetic traces for the MceD-catalyzed hydrolysis of C_{10} -C6′-MGE, C_{10} -C4′-MGE and MGE. Corresponding kinetic parameters are given in Table 2 of the main text.

Representative NMR Spectra

¹H NMR and HBMC of DGE isolated from MceC-catalyzed glycosylation of Ent.

¹H NMR of MGE isolated from MceC-catalyzed glycosylation of Ent.

¹H NMR of linear MGE isolated from MceD-catalyzed hydrolysis of MGE.

¹H NMR of MGE isolated from MceC-catalyzed glycosylation of Ent.

 $^1\!H$ NMR of linear MGE isolated from MceD-catalyzed hydrolysis of MGE.

¹H NMR of linear DGE from MceD-catalyzed hydrolysis of DGE.

