[Supporting information to accompany] Supramolecular Allosteric Cofacial Porphyrin Complexes

Christopher G. Oliveri[†], Nathan C. Gianneschi[†], SonBinh T. Nguyen^{†*}, Chad A. Mirkin^{†*}, Charlotte L. Stern[†], Zdzislaw Wawrzak[‡] and Maren Pink

 [†] Department of Chemistry and the Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, U.S.A.
[‡] Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3500, U.S.A.
§ Department of Chemistry, Indiana University, Bloomington, Indiana 47405, U.S.A.

Figure S1. X-ray crystal structure of **8c⊂DABCO**.

Figure S2. X-ray crystal structure of 15c⊂DABCO.

Table S1. Crystallographic data for structures 8c⊂DABCO and 15c⊂DABCO.

Figure S3. Uncorrected catalytic data for 2-PC with 14a and 15a.

Figure S4. Background reactions for 2-PC with [Zn(TPP) + 16a] and [Zn(TPP) + 16b].

Figure S5. Uncorrected catalytic data for 3-PC with 14a and 15a.

Figure S6. Background reactions for 3-PC with [Zn(TPP) + 16a] and [Zn(TPP) + 16b].

Figure S7. Uncorrected catalytic data for 4-PC with 14a and 15a.

Figure S8. Background reactions for 4-PC with [Zn(TPP) + 16a] and [Zn(TPP) + 16b].

Crystallographic data in CIF format can be found via the Internet at http://pubs.acs.org.

Figure S1. Graphic representations of the X-ray crystal structure of **8c⊂DABCO** as viewed from the side (A) and from the top (B) containing a molecule of DABCO bridging both Zn atoms. Hydrogen atoms, disordered DABCO carbon atoms, and solvent molecules have been omitted for clarity. Zn-Zn distance: 6.99 Å. Cu-Cu distance: 22.6 Å. Gray = Carbon, Brown = Cu, Red = O, Yellow = Cl, Green = P, Blue = N, Light Blue = Zn.

Figure S2. Graphic representations of the X-ray crystal structure of 15c⊂DABCO as viewed from the side (A) and from the top (B) containing a molecule of DABCO bridging both Zn atoms. Hydrogen atoms, disordered DABCO carbon atoms, and solvent molecules have been omitted for clarity. Zn-Zn distance: 7.05 Å. Cu-Cu distance: 22.3 Å. Gray = C, Brown = Cu, Red = O, Orange = S, Yellow = Cl, Green = P, Dark Blue = N, Light Blue = Zn.

Table 1. X-ray Crystallographic Data for 8c⊂DABCO and 15c⊂DABCO.

	8c⊂DABCO	15c⊂DABCO
Empirical formula	$C_{174}H_{136}Cl_4Cu_2N_{14}O_4P_4Zn_2$	$C_{172}H_{156}Cl_4Cu_2N_{14}P_4S_4Zn_2\\$
Formula weight	3010.46	3094.86
Temperature	153(2) K	153(2) K
Wavelength	0.71000 Å	0.71073 Å
Crystal system, space group	Triclinic, P-1 a = 13, 127(9) Å $a =$	Triclinic, P-1 a = 13 283(3) Å
Unit cell dimensions	$a = 15.127(5) \text{ A} \cdot a =$ 97.501(6)° $b = 16.349(8) \text{ Å} \beta =$ 96.354(14)°	a = 13.265(3) A $\alpha = 89.34(3)$ b = 17.340(4) Å $\beta = 89.58(3) ^{\circ}$
	c = 22.544(12) Å $\gamma = 100.273(10)^{\circ}$	c = 22.330(5) Å $\gamma = 73.30(3)^{\circ}$
Volume	$4675(5) \text{ Å}^3$	4926.0(17) Å ³
Z, Calculated density	1, 1.065 Mg/m ³	1, 1.043 Mg/m ³
Absorption coefficient	0.618 mm^{-1}	0.628 mm^{-1}
F(000)	1550	1608
Crystal size	0.080 x 0.040 x 0.010 mm	0.060 x 0.040 x 0.010 mm
Theta range for data collection Reflections collected / unique	2.06 to 21.93 ° 45189 / 10805 [R(int) = 0.0712]	1.9 to 21.9 ° 33613 / 8598 [R(int) = 0.083]
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	10756 / 0 / 887	10326 / 0 / 909
Goodness-of-fit on F^2	0.984	0.863
Final R indices [I>2sigma(I)]	R1 = 0.1117, wR2 = 0.2676	R1 = 0.0910, $wR2 = 0.2107$
R indices (all data)	R1 = 0.1591, $wR2 = 0.2846$	R1 = 0.1562, wR2 = 0.2311

Figure S3. Formation of 2-(acetoxymethyl)pyridine (2-AMP) plotted as concentration vs. time for **14a** and **15a**. All data are uncorrected for background reactions. Conditions: CH_2Cl_2 , rt, 9 mM 2-pyridylcarbinol (2-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), and 0.3 mM supramolecular catalyst (**14a** or **15a**). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated.

Figure S4. Formation 2-(acetoxymethyl)pyridine (2-AMP) plotted as concentration vs. time for [**Zn(TPP)** + **16a**] and [**Zn(TPP)** + **16b**]. Conditions: CH_2Cl_2 , rt, 9 mM 2-pyridylcarbinol (2-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), 0.6 mM Rh^I-monomer (**16a** or **16b**), and 0.6 mM Zn(TPP). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated.

Figure S5. Formation of 3-(acetoxymethyl)pyridine (3-AMP) plotted as concentration vs. time for **14a** and **15a**. All data are uncorrected for background reactions. Conditions: CH_2Cl_2 , rt, 9 mM 3-pyridylcarbinol (3-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), and 0.3 mM supramolecular catalyst (**14a** or **15a**). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated

Figure S6. Formation 3-(acetoxymethyl)pyridine (3-AMP) plotted as concentration vs. time for [**Zn(TPP)** + **16a**] and [**Zn(TPP)** + **16b**]. Conditions: CH_2Cl_2 , rt, 9 mM 3-pyridylcarbinol (3-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), 0.6 mM Rh¹-monomer (**16a** or **16b**), and 0.6 mM Zn(TPP). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated.

Figure S7. Formation of 4-(acetoxymethyl)pyridine (4-AMP) plotted as concentration vs. time for **14a** and **15a**. All data are uncorrected for background reactions. Conditions: CH_2Cl_2 , rt, 9 mM 4-pyridylcarbinol (4-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), and 0.3 mM supramolecular catalyst (**14a** or **15a**). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated.

Figure S8. Formation 4-(acetoxymethyl)pyridine (4-AMP) plotted as concentration vs. time for [Zn(TPP) + 16a] and [Zn(TPP) + 16b]. Conditions: CH₂Cl₂, rt, 9 mM 4-pyridylcarbinol (4-PC), 6 mM 1-acetylimidazole (AI), 2.5 mM biphenyl (GC reference standard), 0.6 mM Rh¹-monomer (16a or 16b), and 0.6 mM Zn(TPP). CO (1 atm) and appropriate amounts of benzyltriethylammonium chloride when indicated.