Supporting Information for

Preferential DNA Cleavage under Anaerobic Conditions by a DNA Binding Ruthenium Dimer

Thamara K. Janaratne and Frederick M. MacDonnell* Department of Chemistry and Biochemistry , The University of Texas at Arlington, Arlington TX 76019.

Table of Contents:

pUC18 DNA Cleavage Assay	S 2
Synthesis of $[(phen)_2Ru(tatpp^-)Ru(phen)_2][Cl]_3([\mathbf{P}]Cl_3)$	S 2
Synthesis of $[(phen)_2Ru(H_2tatpp)Ru(phen)_2][Cl]_4([H_2P]Cl_4)$	S 2
Visible Absorption Spectra of $[\mathbf{P}][\mathbf{PF}_6]_4$, $[\mathbf{P}][\mathbf{PF}_6]_3$ and $[\mathbf{H}_2\mathbf{P}][\mathbf{PF}_6]_4$ in MeCN	S 3

Plasmid DNA Cleavage Assay

Cleavage reactions were carried out in a total volume of 20 μ L in 0.5 mL Eppendorf tubes in a 7 mM Na₃PO₄ buffer medium (pH 7) containing 2 μ L of supercoiled pUC18 DNA (1 μ g/1 μ L). Samples were prepared by first dissolving the DNA in 13 μ L buffer and then adding the GSH in 3 μ L and finally by adding [**P**]Cl₄ in 2 μ L. Final concentrations are indicated in the figure legends. In case of Figure 2, the same concentration of **P**⁴⁺(0.0128 mM) and Fe-Blm (0.0128 mM) were used with respect to the [DNA]. After incubation (times given in the figure captions), the DNA was precipitated by adding 2 μ L sodium acetate (pH 5.2) and 80 μ L ethanol followed by cooling overnight at -20 °C. The precipitated DNA was then dried for about 30 minutes and resuspended in 40 μ L of a storage buffer (e.g., 40 mM Tris-Cl, 1 mM EDTA at pH 8.0), 65 μ L deionized water and 12 μ L of a loading buffer (e.g., 30% glycerol in water with 0.1% w/v bromophenol blue). Samples were loaded on 1% agarose gel containing ethidium bromide (0.2 μ L/1 mL) and electrophoresed at 80 V for 90 minutes using TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8).

Anaerobic experiments were conducted in a glove box under a nitrogen atmosphere. All reagents and solutions, including pUC18 DNA, were subject to five freeze-pump-thaw cycles under N_2 prior to introduction to the glove box. Incubations were stopped by precipitating the DNA using 2 µL of degassed sodium acetate at pH 5.2 and 80 µL degassed ethanol under N_2 after which the samples were removed from the glove box and treated as the aerobic samples for further work-up. Control experiments established that no aerobic cleavage reactions are observed after the ethanol precipitation step.

Synthesis of [(phen)₂Ru(tatpp⁻)Ru(phen)₂][Cl]₃([P]Cl₃)

Complex $[\mathbf{P}](\mathrm{PF}_6)_4^1$ (200 mg, 0.1 mmol) was dissolved in 100 mL of degassed acetonitrile under nitrogen inside the glove box. 19 mg (0.1 mmol) of cobaltocene (Alfa) dissolved in 3 mL of degassed acetonitrile was added and the solution stirred for 30 minutes. Slow addition of ~ 200mL of diethylether precipitated the product. The solid was filtered, washed with ether and dried under nitrogen. Yield 110 mg (60 %). The complex, $[\mathbf{P}](\mathbf{PF}_6)_3$, was converted to the chloride salt by dissolving in a minimum amount of acetone and then slow addition of a saturated solution of tetrabutylammonium chloride in acetone. The chloride salt cleanly precipitates and is filtered, washed with acetone and dried. The complex $[\mathbf{P}](\mathbf{PF}_6)_3$ was characterized by preparing a dilute solution (26 µM) in degassed acetonitrile in an airtight 1 cm glass cuvette. The absorption spectrum was identical to that reported previously.²(See Supporting figure S1)

Synthesis of [(phen)₂Ru(H₂tatpp)Ru(phen)₂][Cl]₄([H₂P]Cl₄)

Complex $[\mathbf{P}]Cl_4^{-1}$ (0.2 g, 0.13 mmol) was dissolved in 100 mL of degassed water under nitrogen inside the glove box. 0.198 g of glutathione (0.645 mmol) was dissolved separately in 50 mL of degassed water. Both were mixed and stirred for 2 hours under nitrogen. Yield 0.18 g (90%). The identity of the complex was established by obtaining the absorption spectrum of $[\mathbf{H}_2\mathbf{P}](\mathbf{PF}_6)_4$ (26 μ M) in degassed acetonitrile. The spectra shown in Figure S1 is the same as previously reported for $[\mathbf{H}_2\mathbf{P}](\mathbf{PF}_6)_4$ generated in situ.² The complex was converted to chloride salt with tetrabutylammonium chloride in acetone as described for $[\mathbf{P}]Cl_3$.

Figure S1: Absorption Spectra of complex P^{4+} , P^{3+} and H_2P^{4+} in MeCN (PF_6^- salts). Concentration for all species is 26 μ M.

REFERENCES

- 1) Kim, M.-J.; Konduri, R.; Ye, H.; MacDonnell, F. M.; Puntoriero, F.; Serroni, S.; Campagna, S.; Holder, T.; Kinsel, G.; Rajeshwar, R. *Inorg. Chem.* **2002**, *41*, 2471-2476.
- 2) Konduri, R.; de Tacconi, N. R.; Rajeshwar, K.; MacDonnell, F. M. J. Am. Chem. Soc. **2004**, *126*, 11621-11629.