Enantioselective Total Synthesis of (+)-Gliocladin C

Larry E. Overman* and Youseung Shin

Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025

Supporting Information

(34 pages)

Table of Contents

A. Experimental Procedures	S1–S8
B. Tabulated ¹ H and ¹³ C NMR spectra of natural and synthetic (+)-gliocladin C	S9–S10
C. Copies of ¹ H and ¹³ C NMR spectra of new compounds	S11-S33
D. X-ray model of the C3 acetate analog of 13	S34

A. Experimental Procedures

General Details. Reactions were performed in oven-dried glassware fitted with rubber septa under an argon atmosphere. CH_2Cl_2 and THF were dried by passage through a bed of activated alumina. Commercial reagents were used without further purification. Thin-layer chromatography was performed on Merck 60 F_{254} precoated silica gel plate, which were visualized by exposure to UV (254 nm) or stained by submersion in *p*-anisaldehyde solution or ethanolic phosphomolybdic acid solution followed by heating on a hot plate. Flash column chromatography was performed in silica gel (230-400 mesh, Merck KGA). ¹H NMR spectra were recorded at 500 or 600 MHz and ¹³C NMR spectra at 125 MHz or 150 MHz with Brucker Avance spectrometers. Infrared spectra were recorded using an ASI ReactIRTM 1000 spectrometer. Mass spectra were measured with a Micromass LCT spectrometer. Optical rotations were measured with a Jasco P-1010 polarimeter.

1,3-Dioxane 7. A methanol solution of HCl (3 M, 30 mL, prepared from AcCl and MeOH) was added at room temperature to Mukaiyama aldol product 6^1 (2.57 g, 3.91 mmol). After the reaction was completed (usually 1.5 h, monitored by TLC), the solvent was removed on a rotary evaporator under reduced pressure keeping the bath temperature below 30 °C to suppress retroaldol reaction. Dichloromethane (20 mL) was added to the residue and this solution was concentrated under reduced pressure; this

¹ Adhikari, S.; Caille, S.; Hanbauer, M.; Ngo, V. X.; Overman, L. E. Org. Lett. 2005, 7, 2795–2798.

procedure was repeated two times to remove all residual HCl–MeOH, which if present effects the next step. Diagnostic data for the amino diol intermedate: ¹H NMR (500 MHz, CDCl₃) δ 7.90 (br s, 1H), 7.45 (m, 1H), 7.41-7.28 (m, 4H), 7.25-7.01 (m, 10H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.86 (m, 1H), 6.81 (m, 1H), 6.76 (br d, *J* = 7.1 Hz, 1H), 6.51-5.74 (br, 2H), 5.37 (d, *J* = 3.7 Hz, 1H), 5.33 (m, 1H), 5.14 (d, *J* = 15.5 Hz, 1H), 5.08 (br s, 2H), 5.01 (d, *J* = 15.5 Hz, 1H), 4.97 (br s, 1H), 4.64 (br s, 1H), 3.84 (br s, 1H), 3.73 (br s, 1H).

A solution of this residue, 2,2-dimethoxypropane (15 mL), camphorsulfonic acid (0.45 g) and benzene (15 mL) was heated at 50 °C for 3 h. After the reaction was completed, the reaction mixture was cooled to room temperature, and treated with saturated aqueous NaHCO₃ (5 mL). The phases were separated and the aqueous phase was extracted with EtOAc (10 mL). The combined organic layers were washed with brine, dried, and concentrated. Flash column chromatography (MeOH : $CH_2Cl_2 = 1 : 9$) of the crude residue yielded 1.85 g (85%) of **7** as a colorless foam: IR (film) 3382, 3054, 2939, 1713, 1611, 1466, 1366, 1181 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.30-8.25 (m, 1H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.32-7.14 (m, 12H), 7.10 (dt, *J* = 1.0, 7.5 Hz, 1H), 7.03-6.98 (m, 2H), 6.92 (s, 1H), 6.69 (d, *J* = 7.3 Hz, 1H), 5.29 (d, *J* = 16.1 Hz, 1H), 5.23 (s, 2H), 5.16 (d, *J* = 8.3 Hz, 1H), 4.48 (d, *J* = 16.1 Hz, 1H), 3.81-3.73 (m, 1H), 3.52-3.46 (m, 2H), 1.57 (s, 3H), 1.35-1.02 (s, 2H), 1.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 144.1, 137.8, 137.3, 136.0, 128.9, 128.5, 127.9, 127.7, 127.4, 127.2, 126.6, 126.5, 125.9, 123.5, 122.7, 121.9, 120.2, 111.4, 110.5, 109.6, 99.5, 78.0, 65.9, 60.5, 56.9, 50.1, 48.5, 43.7, 28.1, 20.3; HRMS (CI) calcd for C₃₆H₃₅O₃N₃ 557.2678, found 557.2657; [α]²³_D -122.8 (*c* 5.0, CH₂Cl₂).

Pyrrolidinoindoline 8. A solution of aminodiol **7** (5.21 g, 9.35 mmol) in THF (20 mL) was added dropwise to a stirring suspension of LiAlH₄ (23.3 mL, 23.4 mmol, 1.0 M solution in THF) in THF (100 mL) at room temperature. The reaction mixture was then stirred at room temperature for 2 h, cooled to 0 °C and then carefully treated with H₂O (50 mL). The phases were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried and concentrated. The residue was dissolved in MeOH

(100 mL) and silica gel (10 g) was added to the resultant solution. The mixture was stirred at room temperature open to the air for 4 h, filtered, and the eluent was concentrated. Flash column chromatography (EtOAc : hexane = 1 : 3) of the crude product yielded 4.68 g (93%) of **8** as a colorless oil: IR (film) 3350, 3051, 3031, 2877, 1605, 1488, 1355, 1173, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.44-7.40 (m, 2H), 7.32-7.22 (m, 6H), 7.16-7.12 (m, 3H), 7.09 (dt, *J* = 7.8, 1.3 Hz, 1H), 6.99 (dt, *J* = 6.9, 1.3 Hz, 1H), 6.87 (dd, *J* = 7.3, 0.9 Hz, 1H), 6.73-6.65 (m, 2H), 6.58 (d, *J* = 7.8 Hz, 1H), 6.52 (t, *J* = 7.3 Hz, 1H), 5.41 (s, 1H), 5.23 (s, 2H), 4.64 (d, *J* = 15.5 Hz, 1H), 4.41 (d, *J* = 15.5 Hz, 1H), 4.11-3.99 (m, 2H), 3.79 (t, *J* = 10.3 Hz, 1H), 3.57 (dt, *J* = 10.3, 4.6 Hz, 1H), 2.11 (s, 1H), 1.51 (s, 3H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 138.4, 137.7, 136.7, 133.4, 129.1, 128.9, 128.6, 128.4, 128.0, 127.9, 127.7, 127.3, 124.5, 121.7, 120.6, 119.2, 117.5, 113.7, 109.9, 106.3, 100.8, 87.9, 82.7, 68.2, 60.7, 56.4, 54.7, 50.5, 49.2, 29.9, 19.7; HRMS (CI) calcd for C₃₆H₃₅O₂N₃ 541.2729, found 541.2725; [α]²³_D +137.6 (*c* 3.0, CH₂Cl₂).

Propenyl Ether 9. Following the general procedure of Rychnovsky,² TMSOTf (13.3 mL, 69.2 mmol) and *i*-Pr₂EtN (13.6 mL, 77.9 mmol) were added by syringe to a stirred solution of pyrrolidinoindoline **8** (4.68 g, 8.65 mmol) and CH₂Cl₂ (100 mL). The reaction mixture was stirred at room temperature for 48 h, and saturated aq. NaHCO₃ (40 mL) was added dropwise at a rate that minimized exothermic heating. The phases were separated and the aqueous phase was extracted with Et₂O (100 mL). The combined organic layers

were washed with brine, dried, and concentrated. Flash column chromatography (EtOAc : hexane = 1 : 15) of the crude product yielded 4.83 g (91%) of **9** as a colorless oil: IR (film) 3051, 2956, 1603, 1495, 1355, 1250, 1077, 872, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.1 Hz, 1H), 7.34-7.18 (m, 9H), 7.16-7.12 (m, 1H), 7.09-6.98 (m, 5H), 6.83 (s, 1H), 6.61 (t, *J* = 7.5 Hz, 1H), 6.38 (d, *J* = 7.9 Hz, 1H), 5.46 (s, 1H), 5.18 (s, 2H), 5.10 (s, 1H), 4.50 (s, 2H), 4.24 (s, 1H), 3.83 (s, 1H), 3.66 (t, *J* = 7.8 Hz, 1H), 3.29-3.23 (m, 1H), 2.94 (t, *J* = 9.1 Hz, 1H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 149.3, 139.1, 138.1,137.5, 133.4, 129.0, 128.9, 128.8, 128.2, 127.8, 127.4, 127.0, 126.8, 125.1, 122.1, 121.7, 119.1, 117.9, 117.0, 109.9, 107.2, 88.9, 85.2, 83.3, 67.2, 65.4, 60.8, 50.2, 49.2, 21.4, -0.3; HRMS (CI) calcd for C₃₉H₄₄N₃O₂Si 614.3203 (M + H), found 614.3187; [α]²³_D +126.2 (*c* 2.0, CH₂Cl₂).

Diol 10. Aqueous Na₂CO₃ solution (10%, 20 mL) was added to a stirring solution of amine **9** (5.30 g, 8.64 mmol) in THF (20 mL). After stirring at room temperature for 10 min, Boc₂O (1.89 g, 8.67 mmol) was added. After 2 h, H₂O (50 mL) and Et₂O (50 mL) were added. The phases were separated and the aqueous phase was extracted twice with Et₂O (20 mL). The combined organic layers were washed with brine, dried, and concentrated. Flash column chromatography (EtOAc : hexane = 1 : 5) of the crude residue yielded 6.20 g (quantitative yield) of the Boc

derivative as a colorless oil: IR (film) 3029, 2991, 2931, 1696, 1604, 1467, 1374, 1216 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.38-7.22 (m, 8H), 7.19-7.08 (m, 2H), 7.09-7.03 (m, 4H), 6.83-6.68 (m, 2H), 6.32-6.19 (m, 2H), 5.45 (s, 1H), 5.21 (s, 2H), 5.15 (s, 1H), 4.51 (s, 2H), 4.29 (s, 1H), 3.87 (s, 1H), 3.75-3.67 (m, 1H), 3.25-3.21 (m, 1H), 2.93 (t, *J* = 9.8 Hz, 1H), 1.43 (s, 9H), 1.35 (s, 3H), 0.01 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 159.1, 149.4, 139.0, 138.1, 137.7, 133.2, 129.1, 128.8, 128.7, 128.5, 128.4, 128.1,

^{1. &}lt;sup>2</sup> Rychnovsky, S. D.; Kim, J. Tetrahedron Lett. 1991, 32, 7219.

127.9, 127.5, 126.9, 125.1, 122.3, 119.0, 117.8, 117.2, 109.9, 107.5, 88.7, 85.3, 83.5, 67.1, 65.4, 60.9, 50.5, 49.1, 28.6, 24.7, 21.3, 0.1; HRMS (CI) calcd for $C_{44}H_{52}N_3O_4Si714.3728$ (M + H), found 714.3731; $[\alpha]^{26}_{D}$ +46.8 (*c* 0.26, CHCl₃).

Oxalic acid (0.22 g, 1.75 mmol) was added to a stirred solution of this Bocpyrrolidinoindoline intermediate (6.16 g, 8.64 mmol) in MeOH (48 mL) at room temperature. After stirring for 1 h at room temperature, saturated aqueous NaHCO₃ (10 mL) and EtOAc (50 mL) were added. The phases were separated and the aqueous phase was extracted twice with EtOAc (20 mL). The combined organic layers were washed with brine, dried, and concentrated. Flash column chromatography (EtOAc : hexane = 1 : 2) of the crude material yielded 3.68 g (71%) of diol **10** as a colorless oil: IR (film) 3423, 3028, 2993, 2929, 1697, 1605, 1466, 1374, 1217 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.66 (m, 1H), 7.35-7.12 (m, 12H), 7.12-7.03 (m, 3H), 6.74-6.62 (m, 1H), 6.42-6.28 (m, 1H), 6.15 (s, 1H), 5.14 (s, 2H), 5.03 (s, 1H), 4.93 (t, *J* = 16.0 Hz, 1H), 4.67 (s, 2H), 4.44-4.21 (m, 1H), 3.87-3.64 (m, 1H), 3.11-2.89 (m, 1H), 2.37 (br s, 1H), 1.83 (br s, 1H), 1.43 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 159.1, 149.4, 139.0, 138.1, 137.7, 133.2, 129.1, 128.8, 128.7, 128.5, 128.4, 128.1, 127.9, 127.5, 126.9, 125.1, 122.3, 119.0, 117.8, 117.2, 109.9, 88.7, 83.5, 67.1, 65.4, 60.9, 50.5, 49.1, 28.6, 24.7; HRMS (CI) calcd for C₃₈H₄₀N₃O₄ 602.3020 (M + H), found 602.3024; [α]²⁵_D+109.7 (*c* 0.75, CHCl₃).

TBS Intermediate 16. NaH (60% dispersion in mineral oil, 0.49 g, 12.2 mmol) was added to a stirring solution of diol **10** (3.68 g, 6.11 mmol) in THF (100 mL) at room temperature. After stirring for 10 min, TBSCl (1.0 g, 6.63 mmol) was added and the reaction mixture was stirred for an additional 2 h at room temperature. Brine (50 mL) and Et₂O (100 mL) were added, the phases were separated, and the aqueous phase was extracted twice with Et₂O. The combined organic layers were dried and concentrated. Flash column chromatography (EtOAc

: hexane = 1 : 9) of the residue yielded 4.20 g (96%) of **16** as a colorless oil: IR (film) 3489, 3030, 2957, 2930, 1695, 1606, 1467, 1366, 1254 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.67 (m, 1H), 7.36-7.11 (m, 12H), 7.12-7.04 (m, 3H), 6.76-6.62 (m, 1H), 6.42-6.28 (m, 1H), 6.17 (s, 1H), 5.16 (s, 2H), 5.02 (s, 1H), 4.92 (t, *J* = 15.6 Hz, 1H), 4.65 (s, 2H), 4.47-4.21 (m, 1H), 3.88-3.64 (m, 1H), 3.11-2.87 (m, 1H), 2.34 (br s, 1H), 1.43 (s, 9H), 0.86 (s, 9H), -0.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 159.2, 149.7, 139.2, 138.0, 137.7, 133.4, 129.2, 128.8, 128.7, 128.5, 128.4, 128.0, 127.8, 127.5, 126.7, 125.1, 122.5, 119.1, 117.9, 117.2, 109.8, 88.6, 83.5, 67.2, 65.6, 60.9, 50.7, 49.3, 28.8, 24.6, 14.5, -3.2, -4.9; HRMS (CI) calcd for C₄₄H₅₄N₃O₄Si 716.3884 (M + H), found 716.3891; [α]²⁵_D +99.8 (*c* 1.2, CHCl₃).

Methyl TBS Intermediate 17. NaH (60% dispersion in mineral oil, 36 mg, 0.92 mmol) was added to a stirring solution of alcohol 16 (101 mg, 0.14 mmol) in THF (2.8 mL) at 0 °C. After 10 min, MeI (0.088 mL, 1.4 mmol) was added dropwise and the reaction mixture was warmed to room temperature. After 2 h, the reaction mixture was quenched by adding H₂O (10 mL) and Et₂O (10 mL) was added. The phases were separated and the aqueous phase was extracted

twice with Et₂O (5 mL). The combined organic layers were washed with brine, dried and concentrated. Flash column chromatography (EtOAc : hexane = 1 : 9) of the crude material yielded 79.2 mg (77%) of **17** as a colorless oil: IR (film) 2954, 2929, 2856, 1694, 1603, 1495, 1453, 1389, 1250, 1158, 1096, 835 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.39-7.17 (m, 8H), 7.15-7.10 (m, 2H), 6.99 (s, 1H), 6.77 (m, 3H), 6.31 (d, *J* = 7.7 Hz, 1H), 6.17 (s, 1H), 5.35-5.20 (m, 3H), 4.75-4.68 (m, 3H), 4.55 (m, 1H), 3.79 (m, 1H), 3.30 (s, 3H), 3.03 (m, 1H), 1.52-1.39 (m, 9H), 0.95-0.93 (m, 9H), 0.05-0.01 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 148.7, 139.2, 137.7, 137.5, 131.9, 128.8, 128.5, 128.3, 127.7, 127.5, 127.3, 126.9, 126.6, 126.0, 126.3, 124.8, 122.0, 121.6, 119.1, 117.8, 115.6, 109.9, 107.2, 88.5, 87.8, 80.7, 66.2, 62.4, 60.6, 57.7, 50.1, 29.8, 28.5, 28.3, 25.9, -5.4; HRMS (CI) calcd for C₄₅H₅₅N₃O₄Si 752.3860 (M + Na), found 752.3864; [α]²⁴ + 36.4 (*c* 0.11, CHCl₃).

Alcohol Intermediate 11. TBAF (1.0 M solution in THF, 0.11 mL) was added dropwise to a stirred solution of TBSprotected alcohol 17 (79.2 mg, 0.11 mmol) in THF (5 mL) at room temperature. After 12 h at room temperature, the reaction was concentrated and the residue was purified by flash chromatography (EtOAc : hexane = 3 : 7) to yield 61.2 mg (92%) of alcohol 11 as a colorless foam: IR (film) 2981, 2954, 1677, 1603, 1391, 1368, 1266, 1177, 1138, 1096, 908, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (s, 1H), 7.38-

7.28 (m, 9H), 7.22 (m, 2H), 7.15 (m, 3H), 7.08 (m, 1H), 6.77 (t, J = 7.3 Hz, 1H), 6.44 (m, 1H), 6.15 (m, 1H), 5.37 (m, 2H), 4.80-4.63 (m, 2H), 4.57 (m, 1H), 4.28 (m, 1H), 3.83-3.60 (m, 3H), 3.41 (s, 3H), 1.48-1.32 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 148.9, 138.9, 137.7, 137.1, 128.8, 128.7, 128.3, 127.6, 126.9, 126.6, 124.8, 121.7, 121.5, 119.2, 118.2, 112.6, 110.0, 108.0, 90.5, 89.8, 81.7, 67.3, 65.7, 58.8, 51.0, 50.2, 28.1, 21.1; HRMS (CI) calcd for C₃₉H₄₁N₃O₄Na 638.2995 (M + Na), found 638.2996; [α]²⁴_D +57.4 (*c* 0.2, CHCl₃).

Boc-Protected Carboxamide 12. Dess-Martin periodinane³ (0.25 g, 0.60 mmol) and pyridine (0.097 mL) were added to a solution of alcohol **11** (61.2 mg, 0.10 mmol) and CH_2Cl_2 (2 mL) at room temperature. After 1 h, the mixture was quenched with saturated aqueous NaHCO₃ (10 mL) and saturated aqueous Na₂S₂O₃ (10 mL). The resulting mixture was extracted with ethyl ether (10 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration provided the crude aldehyde intermediate as a

pale yellow oil, which was used immediately in the next reaction without further purification.

Following the general procedure of Pinnick,⁴ a 2 M solution of 2-methyl-2-butene in THF (0.28 mL, 0.57 mmol), NaH₂PO₄•H₂O (0.041 g, 0.30 mmol), and NaClO₂ (0.24 g, 0.30 mmol) were added successively at room temperature to a stirring mixture of this crude aldehyde, THF (0.5 mL) and H₂O (0.5 mL). The reaction mixture was then stirred for an

³ (a) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155–4156. (b) Meyer, S. D.; Schreiber, S. L. J. Org. Chem. **1994**, 59, 7549–7552.

⁴ Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron, **1981**, 37, 2091.

additional 2 h at room temperature, diluted with H_2O (10 mL), and extracted with EtOAc (2 x 10 mL). The combined organic layers were dried over MgSO₄, concentrated, and the residual crude acid was used for the next reaction without further purification.

Benzotriazole-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP, 48 mg, 0.11 mmol), MeNH₃Cl (7.4 mg, 0.11 mmol), and Et₃N (0.021 mL, 0.15 mmol) were added successively at room temperature to a stirring solution of the crude acid in CH₂Cl₂ (1 mL). After 3h, the reaction was completed and the reaction was concentrated. The residue was purified by flash chromatography (hexane : EtOAc = 3 : 2) to yield 38.1 mg (60% for three steps) of amide product **12** as a pale yellow oil: IR (film) 3054, 2987, 1673, 1441, 1370,1266, 1144, 895 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 1H), 7.49-7.42 (m, 4H), 7.34-7.29 (m, 3H), 7.28-7.23 (m, 3H), 7.19-7.14 (m, 2H), 7.09-7.07 (m, 3H), 6.73 (m, 1H), 6.22 (s, 1H), 5.87 (br s, 1H), 5.24 (d, *J* = 16.4 Hz, 1H), 5.21(d, *J* = 16.3 Hz, 1H), 4.91 (m, 1H), 4.70 (m, 2H), 3.41 (m, 3H), 3.09 (d, *J* = 5.0 Hz, 3H), 2.37 (d, *J* = 4.9 Hz, 3H), 1.49 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 155.4, 148.7, 142.4, 139.9, 137.5, 131.2, 129.0, 128.7, 128.6, 128.33, 128.25, 127.5, 127.2, 126.6, 121.7, 119.3, 118.7, 110.0, 92.5, 68.2, 51.1, 50.1, 29.8, 28.3, 26.9, 26.0 ; HRMS (CI) calcd for C₄₀H₄₂N₄O₄Na 665.3104 (M + Na), found 665.3103; [α]²⁵_D +52.1 (*c* 0.25, CHCl₃).

Aminocarboxamide 13. Following the general procedure Danishefsky,⁵ Boc-protected amide 12 (49.8 mg, 77.5 μ mol) was dissolved in dry MeCN (1.5 mL) and this solution was cooled to 0 °C under argon. TMSI (0.066 mL, 0.47 mmol) was then added dropwise over 10 min. After 30 min, the reaction mixture was poured into sat. aqueous NaHCO₃ (20 mL) and extracted with EtOAc (2 x 10 mL). The combined organic layers were washed with brine, dried, filtered, and concentrated. Flash column chromatography (EtOAc : hexane

= 1 : 1) of the crude residue yielded 27.3 mg (65%) of aminocarboxamide **13** as a colorless oil: IR (film) 3369, 2925, 1733, 1665, 1603, 1530, 1482, 1453, 1353, 1245, 1092 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 1H), 7.42-7.39 (m, 2H), 7.37-7.31 (m, 7H), 7.27 (d, J = 8.2 Hz, 1H), 7.21-7.16 (m, 3H), 7.13-7.10 (m, 1H), 7.08 (dt, J = 1.1, 7.6 Hz, 1H), 6.94 (m, 1H), 6.69 (t, J = 7.5 Hz, 1H), 6.49 (d, J = 7.8 Hz, 1H), 5.42 (s, 1H), 5.26 (s, 2H), 4.94 (d, J = 2.0 Hz, 1H), 4.60 (d, J = 14.7 Hz, 1H), 4.48 (d, J = 14.6 Hz, 1H), 4.08 (s, 1H), 3.44 (s, 3H), 2.39 (d, J = 5.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 148.8, 138.1, 137.4, 137.2, 132.4, 128.77, 128.75, 128.67, 128.0, 127.6, 127.4, 127.1, 126.3, 125.0, 121.6, 121.0, 119.1, 118.5, 114.6, 109.9, 107.2, 90.7, 89.0, 67.6, 59.7, 58.1, 50.1, 49.9, 29.8, 25.5; HRMS (CI) calcd for C₃₅H₃₄O₂N₄Na 565.2579, found 565.2580; [α]²⁶_D +66.3 (*c* 0.10, CHCl₃).

⁵ Depew, K. M.; Marsden, S.P.; Zatorska, D.; Zatorski, A.; Bornmann, W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953.

Triamine Carboxamide 14. Freshed cut Na (30 mg, 1.3 mmol) was added to a liquid ammonia (1.6 mL) in a 10 mL two-necked flask cooled to -78 °C. After 5 min, a solution of *t*-BuOH (0.061 mL) in THF (0.5 mL) was added to the blue ammonia solution, followed by a solution of amide **13** (17.3 mg, 31.9 µmol) in THF (1 mL). The reaction mixture was stirred at -78 °C for 30 min at which the blue color had disappeared. The reaction mixture then was quenched with solid NH₄Cl (0.2 g), and ammonia was allowed to evaporate

by replacing the cooling bath with a water bath. The residue was dissolved in CH₂Cl₂ (4 mL) and filtered through a cotton-plugged pippet. After concentration of the filtrate, flash column chromatography (MeOH: CH₂Cl₂ = 1 : 9) of the crude residue yielded 10.0 mg (87%) of amine **14** as a colorless oil: IR (film) 3330, 2927, 1648, 1605,1538, 1484, 1461, 1410, 1241,1100, 1081, 1025 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (br s, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.30 (dd, *J* = 10.4, 8.1 Hz, 1H), 7.16-7.12 (m, 3H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.13-7.10 (m, 2H), 7.02 (dt, *J* = 1.0, 7.6 Hz, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 5.62 (s, 1H), 4.89 (s, 1H), 4.02 (s, 1H), 3.37 (s, 3H), 2.32 (d, *J* = 5.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 148.0, 137.0, 131.4, 128.8, 126.5, 125.4, 122.5, 121.8, 121.1, 119.6, 119.4, 115.9, 111.4, 109.8, 90.7, 84.5, 68.3, 61.4, 57.8, 25.4; HRMS (CI) calcd for C₂₁H₂₂O₂N₄Na 385.1640, found 385.1641; [α]²³_D +23.5 (*c* 0.19, CHCl₃).

Oxalyl Amide 15. Ethyl chlorooxoacetate (5.0 µL, 44 µmol) and Et₃N (6 µL, 44 µmol) were added at room temperature to a solution of triamine amide **14** (10.7 mg, 30.0 µmol) in dry CH₂Cl₂ (0.6 mL). After 30 min, the solvent was evaporated under reduced pressure, and the resulting residue was subjected to a flash column chromatography (EtOAc : hexane = 7 : 3) to give 11.8 mg (87%) of **15** as a colorless oil: IR (film) 3357, 2927, 1737, 1656, 1542, 1466, 1414, 1250, 1218, 1162, 1102, 1015 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (br s, 1H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.19 (m, 1H), 7.15-7.07 (m, 2H), 7.03 (s, 1H), 6.79-6.76 (m, 1H), 6.68 (d, *J* =

7.6 Hz, 1H), 6.14 (s, 1H), 5.55 (s, 1H), 5.03 (s, 1H), 4.90 (s, 1H), 4.25 (m, 2H), 3.38 (s, 3H), 2.34 (d, J = 4.9 Hz, 3H), 1.43 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 162.0, 160.5, 146.8, 136.9, 129.9, 129.5, 126.2, 125.7, 123.1, 122.2, 121.0, 120.0, 119.7, 114.2, 111.5, 109.5, 87.8, 83.4, 67.6, 63.4, 61.4, 58.0, 26.1, 14.0; HRMS (CI) calcd for C₂₅H₂₆O₅N₄Na 485.1801, found 485.1788; [α]²³_D +63.0 (*c* 0.26, CHCl₃).

(+)-Gliocladin C (1). Following the general procedure of Mulliez,⁶ 1,1,1,3,3,3-hexamethyldisilasane (1 mL) was added to caroxamide ester ester 15 (2.8 mg) in sealed tube and the reaction mixture was placed in a 140 °C oil bath. After 20 min, the tube was removed from the bath, allowed to cool to room temperature, and volatile components were removed under high vacuum. Flash column chromatography (EtOAc : hexane = 1 : 1) of the crude residue yielded 1.7 mg (73%) of (+)-gliocladin C (1) as a yellow powder: IR (film) 3351, 1679, 1470, 1318 cm⁻¹; ¹H NMR (600 MHz, Acetone-d₆) δ 10.33 (br s, 1H), 7.43 (br d *J* = 8.2 Hz, 1H), 7.33 (dd, *J* = 0.7, 8.2 Hz, 1H), 7.23 (d, *J* = 2.6

Hz, 1H), 7.18 (br d, J = 7.4 Hz, 1H), 7.13 (ddd, J = 8.7, 7.5, 1.1 Hz, 1H), 7.11 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 6.96 (s, 1H), 6.90 (ddd, J = 8.0, 7.1, 0.8 Hz, 1H), 6.86 (br d, J = 7.9 Hz, 1H), 6.72 (ddd, J = 7.4, 7.3, 1.0 Hz, 1H), 6.61 (br d, J = 1.9 Hz, 1H), 6.24 (d, J = 2.6 Hz, 1H), 3.26 (s, 3H); ¹³C NMR (125 MHz, acetone-d₆) δ 158.62, 158.01, 150.70, 149.93, 138.47, 133.08, 131.11, 129.68, 126.94, 126.29, 125.47, 123.70, 122.76, 120.13, 120.11, 119.65, 116.66, 112.63, 110.58, 84.69, 60.97, 27.09; HRMS (CI) calcd for C₂₂H₁₆N₄O₃Na 407.1120 (M + Na), found 407.1118; [α]²⁷_D +116.4 (*c* 0.02, CHCl₃), reported⁷ [α]_D +131.4 (*c* 0.07, CHCl₃).

⁶ Mulliez, M.; Royer, J. *Tetrahedron* **1984**, *40*, 5143–5151.

⁷ Usami, Y.; Yamaguchi, J.; Numata, A. *Heterocycles* **2004**, *63*, 1123–1129.

B. Tabulated ¹H and ¹³C NMR spectra of natural and synthetic (+)-gliocladin C

LITERATURE (500 MHz, acetone-d₆)

SYNTHETIC (600 MHz, acetone-d₆)

1	
3	
4 59	6 24 (d. 3 2)
5a 6	6.24 (0, 0.2)
7	6.86 (br d, 8.2)
8	7 13 (br dd 82 7 6)
9	672 (dddd 76731611)
10	7.18 (br d. 7.3)
10a	
10b	
11a	6.96 (s)
11b	
12	
13	3.25 (s)
1'	10.3 (brd, 1.6)
1a'	
2'	7.23 (d, 1.6)
3a'	7.00 (br.d. 0.0)
4' 5'	7.33 (DF 0, 8.2) 6.00 (ddd 8.0, 7.1, 0.0)
ວ 6'	0.30 (uuu, $0.0, 7.1, 0.3)7 10 (ddd 9 9 7 1 1 1)$
0 7'	7.10 (uuu, 0.2, 7.1, 1.1) 7.42 (br.d. 9.2)
1	7.40 (D) U, $0.2)$

Source : Heterocycles 2004, 63, 1123

1	
3	
4	
5a	6.24 (d, 2.6)
6	6.61 (br d, 1.9)
7	6.86 (br d, 7.9)
8	7.13 (ddd, 8.7, 7.5, 1.1)
9	6.72 (ddd, 7.4, 7.3, 1.0)
10	7.18 (br d, 7.4)
10a	
10b	
11a	6.96 (s)
11b	
12	
13	3.26 (s)
1'	10.33 (br s)
1a'	
2'	7.23 (d, 2.6)
3a'	/
4'	7.33 (dd, 8.2, 0.7)
5'	6.90 (ddd, 8.0, 7.1, 0.8)

7.11 (ddd, 8.1, 7.1, 1.0)

7.43 (br d, 8.2)

6' 7'

LITERATURE (125 MHz, acetone-d₆)

1	158.62	1	158.62
3	158.01	3	158.01
4	150.71	4	150.70
5a	84.72	5a	84.69
6a	149.94	6a	149.93
7	110.59	7	110.58
8	129.68	8	129.68
9	119.66	9	119.65
10	125.47	10	125.47
10a	131.12	10a	131.11
10b	61.00	10b	60.97
11a	126.97	11a	126.94
11b		11b	
12	133.08	12	133.08
13	27.10	13	27.09
1'		1'	
1a'	138.49	1a'	138.47
2'	123.71	2'	123.70
3'	122.75	3'	116.66
3a'	123.55	3a	126.29
4'	119.71	4'	120.11
5'	119.71	5	120.13
6'	120.12	6'	122.76
7'	112.64	/'	112.63

Source : *Heterocycles* 2004, *63*, 1123

confirmed by HMQC, HMBC

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PE NC	N N R N N N N N N N N N N N N N N N N N	F2 - Arqui Data Tiaz Tiaz PHOBHD PULPROG TO PULPROG TO SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT	Current D USER NAME EXPND
ot parameter 22. 15.0 -502. -500. -500. 253.273	eastrig parae 500.22000 0.	CHWINEL [] =	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	isition Paras 200508; 5 mm CPTCI 17.3 6;775 6;775 6;775 6;775 6;775 6;775 6;799677	ata Paraeter ysshi ysshi
2 K N S & S S S *	8-2-292	2882	88899990	,2030,000881886,	
년 20 12 12 12 12 12 12 12 12 12 12 12 12 12				8 8 8 9	

-

	55 55 55 57 57 57 57 57 57 57 57 57 57 5	NUC1 P1 SF01 SF01 PCP02 PCP02 PCP02 PC22 SF02		SER D
0 2.00 2.00 22.80 cm 22.80 cm 225.000 ppm 28300.59 Hz -15.000 ppm -1886.71 Hz j0.52632 ppm/cm 5324.00439 Hz/cm	cessing parameters 65536 125.7804190 WHz EM 0 1.00 Kz 0	CHANNEL f1	isition Parameters 200600016 17.41 cryo500 5 mm CPTC1 1H- 2gdc30 65418 CDC13 420 4 30303.031 H2 1.0794470 Sec 11585.2 16.500 Usec 298.0 K 0.250000000 Sec 0.001500000 Sec	ata Parameters ysshin yss081606 3 1

	ት <u>ት</u> ያ ት በ ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	SF01		F2 - Acq Date_ 1,300 f,300 f,300 f,300 FULPRDG FULPRDG	Current USER NAME EXPND
lot parameters 22.00 5.00 11.000 -500.22 0.52532 253.27350	cessing paramete 500.2200000 EM 0.30 0.30 0.30	CHANNEL 11 14 8.00 5.50 500.2235015	COC13 8012.820 0.098043 5.0999398 5.00 6.00 6.00 0.10000000 0.01500000	uisition Parahet 20060817 13.02 6ryo500 5 mm CPTCI IH- 2930 81728	oata Parmeters Ysshin Ysshin Ysshin
	~ 높 ~				

		SF02 9L2 9L2 9L2 9L2 9L2 9L2 9L2 9L2 9L2 9L		Serrent D SERRO SAME
ot parameters 22.80 15,65 28300.59 -1886.71 10.52632 1324.00439	essing paramet 65536 125.7804190 EM 0 1.00 1.00 2.00	CHANNEL f1 130 -1.00 125.7942548 HANNEL f2 Waltz16 100.00 23.54 500.2225011	<pre>stion Parame 20050817 20050817 20050817 11.05 cryn500 5 mm CPTCI 1H- 2gdc30 65536 ccCl3 683 1.0814105 11585.2 1585.2 15.500 6.00 298.0 6.00 298.0 6.00 298.0 0.25000000 0.25000000 0.030000000 0.015000000 0.0150000000</pre>	ata Parameters ysshin yss081706 2
C 3 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0				

1

.

PPNCN F2 PPNCN F2 PPNCN	ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	PLI SF01	PULPROG PULPROG TO SOLVENT SOLVENT SOLVENT SOLVENT AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ	Current USER NAME EXPRO
olot parameters 22.80 cm 3.00 cm 31.000 ppm 5502.42 H2 -1.000 ppm -500.22 H2 0.52632 ppm/c 263.27368 Hz/cm	00.2200000 MHz 5000.2200000 MHz 6 0 0 0.30 Hz 0 4.00	- CHANNEL 11 3H 8 00 usec 1.60 dB 500 2235015 MHz	quisition Parameters 20060821 10.36 10.36 5 mm CPTCI 1H- 2930 61728 81728 8012.820 82 93098774 5 6012.820 42 6012.820 42 6012.820 42 61728 8 6012.820 42 6012.820 42 61728 8 600 998774 5.0998774 5 62.400 48 6.00 48 62.400 48 62.400 48 62.400 48 62.400 48 62.400 58 61.00 48 62.400 58 61.00 48 62.400 58 61.00 58 61.00 58 61.00 58 61.00 58 61.00 58 61.00 58 61.00 58 61.00 58	Data Parameters ysshin yssbin

100

<u>ଅ</u>-

 $\circ -$

J

	PGB B SS II SS III	CPDPAG2 PCPD2 PL12 PL12 SF02	SFD1	Current USER NAME NAME NAME NAME NAME NAME NAME NAME
plot parameters 22.80 cm 50.00 cm 225.000 ppm 28300.59 Hz -15.000 ppm -1886.71 Hz 10.52632 ppm/cm 1324.00439 Hz/cm	ocessing parameters 65536 125.7004190 MHz EM 0 1.00 Hz 0 2.00	- CHANNEL f2 Haltzi6 100.00 usec 1.60 d8 23.54 d8 500.22250j1 MHz	- CHANNEL f1 13C 15.00 usec -1.00 dB 125.7942548 NHz	Date Parameters ysshin ysso082106 3 20060821 5 am CPTCI 1H- 2gdc30 65410 CDC13 1024 4 30303.031 H2 0.463222 H2 1.0794635 sec 13004 16.500 usec 0.03000000 sec 0.03000000 sec 0.03000000 sec

	P 88 E8 88 99 97 97 97 97 97 97 97 97 97 97 97 97	SF01	FIDRES ACCREST	Current USER NAME EXPNO
plot parameters 22,80 cm 5.00 cm 11.000 ppm 5502.42 Hz -1.000 ppm -500.22 Hz 0.52632 ppm/c 263.27368 Hz/cm	ocessing parameters 65536 500.2200000 MHz EM 0.30 Hz 0 4.00	- CHANNEL f1	Aulsition Parameters 20060821 17.45 Cryo500 5 mm CPTC1 1H- 2930 81728 CDC13 8 0.098043 Hz 5.0999398 Sec 5.0999398 Sec 5.00 298.0 K 0.10000000 Sec 0.01500000 Sec	Data Parameters ysso@2106 4

ppm	SUPPORTING INFORMATION Overman and Shin	
200		
		Ae ∪
150		
_		

•

•

-- .

•

.........

, OMe

.

ZB

-172.59

13

CPOPAG2 NUC2 PCPD2 PL2 PL12 SF02 NUC1 PL1 SF01 Current USER NAME EXPNO PROCNO - Processing parameters 65536 125.7804190 MHz EN 0 1.00 Hz 0 2.00 p]ct - CHANNEL f2 ------waltz16 1H 100.00 usec 1.60 dB 23.54 dB 23.54 dB 500.2225011 MHz CHANNEL f1 ------13C. 15.00 usec -1.00 d8 125.7942548 MHz Data parameters 22.80 cm 15.65 cm 28300.59 Hz -15.000 ppm -1886.71 Hz 10.52632 ppm/cm 1324.00439 Hz/cm 30303.031 Hz 0.463222 Hz 1 0794635 sec 13004 15.500 Usec 5.00 Usec 0.25000000 sec 0.03000000 sec 0.03000000 sec 0.01500000 sec U Parameters Yss002106 6 5 tion Paramet 20060821 18.19 cryo500 cryo500 55418 55418 CDC13 1159 513

J

.

Τ spectrum

582355555 58235555	PC 55 10 10 10 10 10 10 10 10 10 10 10 10 10	260 261 MJC				
	- - 	a		е - Асс е - Асс е - Асс е - Асс е - Асс		
0)c1)C e 5 5	CHA			Data	
25. 	667 0.0	499 -	ലംവല മെളംം ്റത	191 - 191 191 - 191	ج جد ۲	
ne re 22 11 15 12 12 12 12 12 12 12 12 12	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5766 E (; ,	012 0930 0949 62 2990 20000 15100	2000 2000 2000 2000 2000 2000 2000 200	s380. 1985	
653±375666°		1997 F	- <u>2000</u> - 2000 - 2000-2000-2000-2000-2000-2000-2		40 1 6 1 1 1 5	·
	4 ¥ 5	4 85	5 6 6 7 6 6 5 7 1 1 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	i e c		

- 103 81
90.70
B4, 45
77.33
77.08
76.63
68 31
61 4Z
57.00
25 42

100

>--

4

ភ្<u>ន</u>–

F2 - Acquis Date_ Time INSTRUM PROBHD 5 PULPHOG TD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT CPOPR62 PCP02 PL2 PL12 SF02 NUC1 P1 P1.1 SF01 Current USER NAME EXPNO PROCNO - Processing parameters 65536 125.7074980 MHz EM 0 1.00 Hz 0 2 00 plat Data CHANNEL CHANNEL ST . ŵ parameters 22 80 cm 15.65 cm 225 000 ppm 28284.19 Hz -15.000 ppm -1885.61 Hz 10.52632 ppm/cm 1323.23582 Hz/cm sition Paramet 20060804 17.40 9n500 mm broadband 2gdc30 65536 CDC13 207 0an MANNEL 11 ********* 13C 7.00 vsec 0.00 dB 125 7213258 MMz 4 30303.031 Hz 0.462388 Hz 1.0814105 sec 6502 15.500 usec 4.50 usec 0.03000000 sec 0.03000000 sec 0.035000000 sec - Parameters yss080406 2 1 tens

•

1H spectrum

10 NMP 01 F2 F2 F	PC SSB SSB SSB SSB SSB SSB SSB SSB SSB SS	F2 - Acqu Time Time PADBHO PADBHO PADBHO SOLVENT AS SOLVENT AS AD PAG PAG PAG PAG PAG PAG PAG PAG PAG PAG	Current D USER NAME EXPND PROCND
ot paramet 550 -50 263.2	CHANNEL 11 SOD 223 SOD 223 500.220	0.0000 0.00000 0.00000 0.00000 0.000000	ete Parene ys DB
		ССССССССССССССССССССССССССССССССССССС	12205 1

 F2
 Acquisition Parameters

 Date_
 200600822

 Time
 16.53

 INSTRUM
 Crya500

 PROBHO
 5 em

 SOLVENT
 20303

 SOLVENT
 30303

 SOLVENT
 1.0794470

 AO
 1.0794470

 DE
 5.00
 usec

 DE
 16.500
 usec

 TE
 298.0
 K.*

 OL
 0.030000000
 sec

 MCREST
 0.0000000
 sec

 MCREST
 0.0000000
 sec

 MCREST
 0.0000000
 sec

 MCREST
 0.0000000
 sec

CPOPAG2 NUC2 PCPO2 PC2 PL12 SFO2 NUC 1 PL 1 SF01 Current USER NAME EXPNO PROCNO - Processing parameters 65536 125.7604190 MHz 6M 1.00 Mz 0 2.00 2.00 t Data Parameters ysshin yss082206 - CHANNEL [2 ------Ha]t:16 100 00 usec 1 60 dB 23.54 dB 500.2225011 MHz Iot CHANNEL ANNEL F1 ******** 130 15.00 usec -1.00 dB 125.7942548 MH2 30303 031 Hz 0 463222 Hz 1.0794470 sec 11585.2 16.500 usec 6.00 usec 298 0 K * 0.25000000 sec 0.03000000 sec 0.03500000 sec parameters 22.80 cm 15.65 cm 28300.59 Hz -15.000 ppm -1886.71 Hz 10.52632 ppm/cm 1324 00439 Hz/cm Ð പപ

.

•

·

 F2 - Acquisition Parameters

 Date_
 20060818

 Imme
 13.11

 INSTRUM
 avb00

 PRDEHD
 5 am T81 1H/13

 PULPROG
 2,930

 ID
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 PD
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 PS
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 NS
 9793A

 SOLVENT
 Acetone

 NS
 9793A

 SOLVENT
 Acetone

 PS
 9793A

 SOLVENT
 Solog28253

 Solog28253
 Sec

 AD
 52.000
 Usec

 DE
 52.000
 usec

 DE
 298 n
 K

 DI
 0.10000000
 Sec</td Current Data I USEP NAME EXPNO PROCNO PL1 PL1 SF01 - Processing parameters 65536 600.1300134 MHz EM CHANNEL 11 ------JH 8.00 usec -1.00 d8 600 1342009 HHz ot parameters 22 80 cm 15.00 cm 10.965 ppm 6500.30 Hz 2 856 ppm 1713.97 Hz 0.35555 ppm/cm 213.43910 Hz/cm -9615.385 Hz 0.0928259 Sec 456 52.000 USec 6.00 USec 298 n K 298 n K 10000000 Sec 1 Par ameters g(an)s yss449 2 1 0.30 0.30 12 C

--{

S24 gl toc lad yn c

S25

0

 10
 NeAT
 D lot
 parameters

 11
 NeAT
 D lot
 parameters

 12
 22
 B0
 cm

 14
 223
 D lot
 parameters

 15
 200
 D lot
 parameters

 14
 233
 D lot
 parameters

 15
 200
 D lot
 parameters

 16
 235
 000
 D lot

 17
 233
 D lot
 D lot

 18
 200
 D lot
 D lot

 19
 235
 000
 D lot

 19
 235
 D lot
 D lot

 19
 235
 D lot
 D lot

 19
 235
 D lot
 D lot

 19
 1324
 D lot
 D lot

 F2 Processing privaters

 S1
 125.7803105

 S8
 0

 LB
 100

 H2
 100

 PC
 2.00

 PC
 2.00

 CONSTRUCT
 CHANNEL
 12
 CONSTRUCT
 CHANNEL
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 <th12</th>
 <th12</th>
 12
 MCC1 13C P1 15.00 usec P(1 -1.00 dB SF01 125.7942548 Mt Current Data Parameters USEA ysshin NAME yss081506 EXPAN 3 PROCNO 3

S28

S29

under under Reconour Re 8 6 8 8 9 4 8 2 1 58668**2**48 (4) [bt: parameters 15.00 cm 15.00 cm 15.00 cm 15.00 cm 15.00 cm 1.22 6m parameters 122 6m parameters 123 5m parameters 123 5m parameters 123 5m parameters 124 5m parameters 125 00 cm 125 00 cm 125 00 cm 126 5m parameters 126 5m parameters 126 5m parameters 126 5m parameters 127 5m parameters 128 SING 100 SIN SIN SINO 532 532 3.185608 Hz 240.895 ppm ata Pere yssnin S051505 DSINE 8.00 usec 16.00 usec 1.60 d8 1.535015 MHz 2,00 5,00 Hz

