
A simulation study 
 
In order to evaluate the efficacy of NetCutter in uniting genes regulated by common 

pathways in the same co-occurrence network community when samples of varying size 

are drawn, a simulation study was conducted. The simulated data set is used to reveal the 

impact of different user defined parameters onto the overall performance of NetCutter 

and to address problems connected with multiple testing. Furthermore, the relationship 

between Poisson-binomial P-values and Z-scores as well as the precision of the bi-

binomial approximation used by NetCutter to calculate P-values is discussed. 

 

Generation of simulated data sets 

The simulated data sets were generated to model the situation that is commonly observed 

during meta-analysis of gene expression data, which can be expressed as a set of 

assumptions. Namely: 

 

1. For each pathway, there are few genes that are strongly regulated and many others 

that respond with weak deviations from the baseline expression level when the 

regulating pathway is activated. 

2. Different pathways differ by the number of strongly regulated targets. 

3. A gene can be regulated by more than one pathway with one pathway providing 

the domineering regulatory input. 

4. A microarray study identifies preferentially the strongly regulated pathway targets 

and may miss many of the weakly regulated targets. The set of regulated genes 

identified in a microarray study is called a signature. 

5. Different microarray studies produce signatures of varying size. 

 

During meta-analysis, the task is to identify common regulatory inputs for sets of genes 

from signatures of varying size based on the assumption that genes with common 

regulatory input will co-occur significantly in different signatures. 
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In the present simulation, 1000 genes are assumed to be regulated by five different 

pathways. Each pathway is modeled by an exponential distribution that describes the 

probability of a gene being identified as differentially regulated in a microarray 

experiment. 

 
xexXP λλλ −== )|(  

 

Here, λ is the rate parameter and x is the gene number between 0 and 999 (counting starts 

at x = 0 for the first gene). This distribution satisfies the first of the above assumptions, 

i.e. that some genes are strongly regulated while most genes vary weakly upon pathway 

activation.  

 

The second assumption (different pathways have different numbers of strongly regulated 

targets) can be accommodated by varying the rate parameter λ for different pathways. 

Here, λ assumes the values λ1 = 0.01, λ2 = 0.009, λ3 = 0.008, λ4 = 0.007, and λ5 = 0.006.  

 

The third assumption (genes are regulated by more than one pathway) is incorporated by 

changing the most strongly regulated target gene form gene 1 (offset x = 0) for λ1, to 

gene 201 (offset x = 200) for λ2, to gene 401 (offset x = 400) for λ3, to gene 601 (offset x 

= 600) for λ4, to gene 801 (offset x = 800) for λ5. In other words, P is calculated as λ * 

exp(-λ*(-offset + x)) for all x >= offset. For the genes preceding this offset (x < offset), P 

is calculated as λ * exp(-λ*(1000 – offset + x)). The result of this calculation is shown in 

Fig. 1. As can be read from this Figure, the genes 1 to 200 are mainly regulated by 

pathways 1 and 5, the genes 201 to 400 are mainly regulated by pathways 2 and 1, the 

genes 401 to 600 are mainly regulated by pathways 3 and 2, the genes 601 to 800 are 

mainly regulated by pathways 4 and 3, and the genes 801 to 1000 are mainly regulated by 

pathways 5 and 4. Each gene receives inputs from all pathways with one pathway 

domineering and the others having influence at quickly decreasing levels. We expect that 

genes with similar regulatory input form separate communities in the co-occurrence 

network. Correctness of community formation can be directly read from the genes names 
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(e.g. genes 1 to 200 should form a separate community and genes 201 to 1000 should be 

absent from this community). 
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Fig. 1 Regulatory input for each gene by pathways 1 to 5. See text for details. 

 

The assumptions 4 and 5 are incorporated in this model by random sampling from this 

distribution separately for each pathway. Genes that are most strongly regulated by a 

pathway will be most likely found in a signature. Finally, samples are of different size 

varying uniformly between 5 and 100 genes. It should be stressed that this model is just a 

computational vehicle to test the performance of NetCutter and does not pretend to reflect 

biological reality in any way. 

 

We generated two different data sets from this model. In the first data set, each pathway 

was sampled 10 times (equivalent to 10 signatures regarding this pathway, 50 signatures 

in total, called “scarce data set”) and in the second data set each pathway was sampled 50 

times (250 signatures in total, called “abundant data set”). The first data set models the 

situation when data are scarce while the second data set reflects abundance of data. The 

number of occurrences for each gene in the two data sets is shown in Fig. 2 and 3. Each 

data set is stored as a set of list (=signature)–entry (=gene) pairs representing a bipartite 

graph. Both data sets are available at http://bio.ifom-ieo-campus.it/NetCutter/. 
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Fig. 2 Number of signatures each gene is found in among 50 signatures. See text for details. 
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Fig. 3 Number of signatures each gene is found in among 250 signatures. See text for details. 
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Analysis of simulated data sets 

Analysis of a data set starts by loading the bipartite graph into NetCutter followed by 

determining the occurrence probabilities using the edge-swapping model. For both data 

sets, 1000 randomized bipartite graphs were analyzed and the number of occurrences of 

each gene in each list was determined. This number divided by 1000 yields an estimate of 

the occurrence probability for each gene in each list.  

 

The next step is to determine whether the data set contains useful information. There are 

three user-defined parameters that can be adjusted such that the number of co-occurrence 

modules in the real bipartite graph is maximized while the number of co-occurrence 

modules in a randomized bipartite graph is minimized. The ratio of these numbers 

provides a signal-to-noise ratio (SNR). When this ratio is significantly greater than 1 for 

some combination of parameters, the data set likely contains useful information. The 

three parameters that can be adjusted are the module size, the support, and the 

significance level. The module size indicates the number of genes that are required to co-

occur in the same signature. This number can vary between 2 (pair-wise co-occurrence) 

and 10. The support parameter indicates in how many lists a combination of genes must 

be present in as a minimum for being considered further. This number can vary from 1 to 

the total number of lists. The significance level is determined by setting cut-off values for 

the Z-score/P-value. NetCutter has a graphical interface plotting the SNRs for any given 

set of parameter combinations in order to help determining the parameter combination 

that optimizes the SNR. 

 

Choosing the support level 

The support parameter is used to keep the combinatorial explosion associated with 

analyzing larger module sizes to an acceptable level. However, choosing the support 

parameter too high is associated with loss of information (see below). Thus, choosing the 

support parameter is an essential step before analysis with larger module sizes is 

performed. A useful level of the support parameter can be estimated by running the 

analysis with module size 2 and support 1 on the real bipartite graph and the randomized 

version of it. The resulting data can be loaded into NetCutter and higher cut-off values for 
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the support can be tested for the associated SNR. An example of this procedure for the 

scarce data set is shown in Table 1. 

 
Table 1 Determining the support parameter. BPG = bipartite graph, SNR = signal-to-noise ratio. Module 

size = 2, Z = 0 (no cut-off determined) 

support modules in real BPG modules in randomized BPG SNR
1 67410 71590 0.94
2 12918 7581 1.70
3 2240 495 4.53
4 312 28 11.14
5 32 2 16
6 1 0 1

.00
.00  

 

From Table 1 we see that the SNR is significantly larger than 1 at support 3, 4, and 5. 

Support 6 is clearly too high because only one module is left in the real bipartite graph. 

At support 2 we will analyze many modules with little gain in information. At support 3 

the SNR starts to assume promising levels. Since the SNR will be increased further by 

analyzing larger module sizes and by setting significance cut-offs accordingly, we choose 

support 3 for further analysis.  

 

Choosing the significance level 

The next question that arises regards the significance cut-off. Since in each NetCutter 

analysis a real bipartite graph is analyzed in conjunction with a randomized version of 

this graph, the significance cut-off can be determined as the value that maximizes the 

SNR. For the scarce data set at support level 3 and module size 2, the SNRs are shown in 

Fig. 4. We see that at Z = 4 the SNR reaches its maximum of about 10. This means that 1 

out of 10 modules would overcome the cut-off by chance alone and thus corresponds to 

an effective P-value of about 0.1. The effective P-value can be estimated also by 

examining the P-value cut-off for a single co-occurrence module. The Z-score cut-off of 

4 corresponds to a P-value cut-off of 0.9992 for a single module. In total, 117855 

modules are being tested at support level 3 (this number can be determined by NetCutter 

when running the analysis) and we would expect (1-0.9992) * 117855 = 94 modules to 

pass this cut-off by chance. As shown in Table 2, in the randomized graph we effectively 

find 41 modules (compared to 440 in the real graph). Thus, NetCutter offers two ways to 

address the multiple testing problem: comparing the SNR in a real and a randomized 
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bipartite graph and the calculation of the number of background modules based on P-

value cut-offs for single modules and the number of modules being tested. However, in 

practice, the first approach is easier because it can be addressed graphically without 

performing calculations. In summary, for module size 2 we choose to run the analysis at 

support level 3 and Z-score cut-off 4. 
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Fig. 4 Signal-to-noise ratio as a function of Z-score cutoff in the scarce data set. Module size 2, support 

level 3. 

 

The impact of module size on classification accuracy 

The next step is to run the analysis at support 3 for module sizes 3 to 10. A real and a 

randomized bipartite graph are analyzed for each module size. The resulting data are 

loaded into NetCutter and the significance cut-off is adjusted such that the SNR reaches 

its optimum. From the significant co-occurrence modules, a co-occurrence network is 

then generated and analyzed for the presence of network communities. In this example, 

edge-betweenness clustering [1] and eigenvector based clustering [2] are used for this 

purpose. The data obtained for the scarce data set are summarized in Table 2. 

 

Table 2 illustrates that the SNR grows dramatically with increasing module size up to 

module size 7. At module sizes larger than 7 signal is lost because the analysis becomes 

too stringent and the SNR decreases accordingly. At module size 5 and larger, the 

significance cut-off that was used to adjust the SNR at module size 4 eliminates all 
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modules in the randomized bipartite graph. Therefore, no further increase of the 

significance cut-off is necessary because it would only result in loss of signal. 
 

Table 2 Summary of scarce data set analysis: M – module size, Z – Z – score cutoff, P – confidence cutoff, 

BPG – bipartite graph, SNR - signal-to-noise ratio, EV – eigenvector clustering, EB - edge-betweenness 

clustering 
M Z P modules in real BPG modules in randomized BPG SNR #clusters EV #clusters EB edges removed
2 4 0.999 440 41 10.7 47 50 25
3 11 0.999999 1260 10 126 7 6 19
4 20 0.999999999 3443 2 1721.5 5 5 36
5 20 0.999999999 10314 0 10314 5 5 48
6 50 0.999999999 12568 0 12568 6 5 30
7 50 0.999999999 12712 0 12712 6 5 25
8 50 0.999999999 10511 0 10511 4 4 7
9 50 0.999999999 7019 0 7019 3 3 0

10 50 0.999999999 3732 0 3732 3 3 0  
 

The resulting co-occurrence networks have been subjected to community identification 

analysis using eigenvectors (EV) of the modularity matrix [2] and edge-betweenness 

(EB) clustering [1]. The number of clusters identified using each approach is listed in 

Table 2. For EB-clustering, the number of removed edges is also given. The clusters 

obtained for module size 2 and 3 by EB-clustering are shown in Fig. 5 and 6. It can be 

seen that at module size 2, the number of clusters identified is roughly 10 times the 

expected number of clusters (5). This is because many isolated pairs or triples of genes 

are identified as separate clusters, which cannot be linked to other genes because of 

lacking edges. The situation improves dramatically for module size 3 (Fig. 6). Here, 

implicit information is used to link genes that have never co-occurred explicitly. The 

number of identified clusters is 6 rather than 5 because one isolated cluster composed of 

3 genes remains. For module sizes 4 and 5, both EV and EB clustering identify the 

correct number of clusters. For module sizes 6 and 7, EV clustering breaks up one cluster 

resulting in 6 identified clusters while EB-clustering still identifies the correct number of 

clusters. For module sizes 8, 9, and 10 clusters are disappearing because the analysis 

becomes too stringent.  
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Fig. 5 Edge-betweenness clustering by removing 25 edges from the co-occurrence network of module size 

2 in the scarce data set. Underlying pathway structure cannot be identified. 

 

 
Fig. 6 Edge-betweenness clustering by removing 19 edges from the co-occurrence network of module size 

3 in the scarce data set. Underlying pathway structure is clearly visible. 
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Next, the accuracy of clustering was examined. By design of this data set, genes from 1 

to 200 should be linked in the same community and similarly for genes 201 – 400, 401-

600, 601-800, and 801-1000.  

 

The accuracy was estimated as follows: For each group of pathway targets the number of 

genes available for classification was determined. These are the genes that have been 

found part of significant co-occurrence modules. The genes available for classification 

can belong to different clusters. The largest cluster in each group of pathway targets was 

taken as the correct cluster. Genes that were part of any other cluster were taken as false 

negatives (FN), even when the entire cluster was composed of target genes of the same 

pathway. Furthermore, genes in the largest (correct) cluster that are targets of a different 

pathway as the majority of genes in this cluster were taken as false positives (FP). Thus, 

there are four classes of genes: not classified, classified correctly, false positives, and 

false negatives. False positives can be understood as “wrong genes in the right cluster” 

and false negatives as “right genes in the wrong cluster”. The four classes of genes were 

determined for every group of pathway targets. The results for all five pathways were 

added and are displayed in Fig. 7 and 8. Fig. 7 shows the results for EB-clustering and 

Fig. 8 shows the results for EV-clustering.  

 
EB-clustering

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2

3

4

5

6

7

8

9

10

m
od

ul
e 

si
ze

%genes

correct
FP
FN
not classified

 
Fig. 7 Accuracy of EB-clustering (edge-betweenness clustering) for scarce data set. FP-false positive, FN-

false negative. 
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EV-clustering
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Fig. 8 Accuracy of EV-clustering (eigenvector clustering) for scarce data set. FP-false positive, FN-false 

negative. 

 

The data in Figure 7 and 8 illustrate that the accuracy of clustering increases sharply with 

module size 3 without increasing the number of genes that cannot be classified 

significantly. Considering also the results from Fig. 5 and 6, it is apparent that the large 

number of misclassified genes with module size 2 is mainly due to many FN errors. 

These errors can be eliminated by using implicit information obtained at higher module 

sizes. Both types of clustering perform similarly well, with EB-clustering being slightly 

more accurate but also much slower. EV-clustering tends to split smaller clusters into sub 

clusters, thus producing unnecessary FN errors (e.g. module size 6 and 7).  

 

While FN errors can be reduced efficiently by increasing module size, FP errors are 

largely insensitive to module size. There are at least two possible explanations for the 

origin of these errors. Either the clustering algorithms do not perform well or the genes 

that are misclassified as false positives are under-sampled such that there isn’t sufficient 

information to classify them correctly. In the following, we will consider these 

hypotheses in turn. 

 

Regarding the first hypothesis, we need to evaluate the way the co-occurrence network is 

constructed. For module sizes larger than 2 the co-occurrence network is built by drawing 

an edge between each pair-wise combination of genes in a co-occurrence module. This 

procedure leads to an ordinary undirected graph. EB and EV clustering have been 

developed to find communities in such graphs. However, one might wonder whether 

creating an ordinary undirected graph from co-occurrence modules containing more than 
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two genes is the correct approach. Indeed, one might consider each module a hyperedge 

and could therefore create a hypergraph by combining all co-occurrence modules. While 

an ordinary edge is a pair of vertices, a hyperedge is a combination of more than two 

vertices and a hypergraph is a graph containing hyperedges. Algorithms have been 

developed to partition hypergraphs. A popular representative of such algorithms is hmetis 

(http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview). Thus, we compared the 

efficacy of EB-clustering to the efficacy of hmetis downloaded from 

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download.  

 

The parameters used during hmetis analysis are shown in Table 3. hmetis is designed to 

partition hypergraphs into partitions of roughly equal size and the number of partitions is 

a user provided parameter. To allow for imbalances in the size of the partitions, an 

unbalance (UB) factor must be provided by the user. Choosing this parameter is critical 

for the performance of hmetis. Therefore, UB factors between 5 and 15 were tested and 

the results for the UB factors providing the best performance of hmetis are reported. It 

was found that UB factors lower than 7 and larger than 13 led to strong increases in the 

error rates while UB factors between 7 and 13 yielded identical results. Only the results 

for hypergraphs of rank 3 and 4 (corresponding to module size 3 and 4) are reported. The 

reason is that at higher module sizes the imbalance in the partitions becomes problematic 

and error rates increase sharply (not shown). 

 
Table 3 Parameters used for hmetis analysis 

HGraphFile filename
Nparts 5 (#clusters)

UBfactor 5 to 15
Nruns 10
CType 1
RType 1
Vcycle 3

Reconst 0
dbglvl 24  

 

The results of the comparison of EB clustering and hypergraph clustering are shown in 

Table 4. Since hmetis forces all genes into one out of five partitions, false negative results 

cannot be observed. Therefore, only the total number of misclassified genes for hmetis 
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and EB-clustering is reported. As can be seen from Table 4, the error rates of both 

clustering approaches are similar. At module size 3, hmetis classifies one more gene 

correctly as compared to EB. However, 11 genes remain misclassified as compared to 12 

genes for EB-clustering. At module size 4, hmetis makes 10 errors as compared to 6 

errors by EB-clustering. Interestingly, however, the misclassified genes are strongly 

overlapping. This observation argues in favor of the hypothesis that these false positive 

errors are mainly caused by sampling effects that make the co-occurrence pattern of 

misclassified genes similar to the corresponding pattern of the genes in the cluster they 

are found in. 

 
Table 4 Hypergraph (hmetis)- and EB-clustering for module size (M) 3 and 4. Misclassified genes are 

shown 

hmetis M3 EB M3 hmetis M4 EB M4
1 33 33
2 178 178 178
3 230
4 244 244 244 244
5 251
6 419 419 419 419
7 422 422 422 422
8 604 604
9 631 631

10 655 655 655 655
11 669 669
12 706 706
13 774 774 774 774
14 807
15 899 899 899  

 

To investigate the second hypothesis, i.e. that better sampling reduces false positive 

errors, we used the data set where each pathway was sampled 50 instead of 10 times (the 

abundant data set). The analysis was performed exactly as described for the scarce data 

set. The results are shown in Fig. 9 and 10.  
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Fig.9 EB clustering of the abundant data set. FP-false positives, FN-false negatives 

 

EV-clustering
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Fig. 10 EV-clustering of the abundant data set. FP-false positives, FN-false negatives 

 

Comparing Fig. 7 and 8 to Fig. 9 and 10, it can be seen that false negative errors, that 

were very abundant at module size 2 in the scarce data set, are strongly reduced by 

deeper sampling of the pathways. Furthermore, false positive errors have virtually 

disappeared. Only two to four genes out of more than 700 are misclassified using module 

size 3. At module sizes larger than 4, false positive errors are completely absent. There 

are some false negative errors at module size 9 and 10 by EV-clustering, which is due to 

the tendency of EV-clustering to split up poorly interconnected communities. In practice, 

module sizes 9 and 10 are rarely used, however, because of their excessive stringency. 

Moreover, the number of genes that are available for classification increases from 300 to 

more than 700. The number of identified clusters in the abundant data set is shown in 

Table 5. Due to the reduced rate of false negatives at module size 2 in the abundant data 

set, 6 and 15 clusters are being identified by EV- and EB-clustering, respectively, 

compared to 47 and 50 in the scarce data set. At module size 3 and 4, the correct number 

of 5 clusters is being identified with marginal rates of FP errors. At higher module sizes, 

clusters can be split or disappear, as in the scarce data set.  

 

 14



Table 5 Number of clusters in the abundant data set as a function of module size 

module size # EV clusters # EB clusters
M2 6 15
M3 5 5
M4 5 5
M5 5 6
M6 4 4
M7 4 4
M8 3 3
M9 4 3

M10 3 2  
 

Impact of analysis stringency on cluster size and number 

The next aspect to be discussed in this simulation study is the impact of analysis 

stringency on cluster size and cluster number. As was briefly mentioned above, the 

support parameter can be used to limit computational complexity associated with 

analyses using large module sizes. However, when the support parameter is chosen too 

high, significant loss of information can result. This is shown in Fig. 11. Here, the 

analysis was performed on the abundant data set at module size 3, Z = 5, P = 0.9999, and 

the support parameter was varied from 5 to 10. It can be seen that the cluster sizes get 

increasingly smaller and clusters start to disappear completely at support 9 and 10. The 

first clusters to disappear are those with smaller rate parameter λ in the exponential 

distribution. A smaller rate parameter means that the exponential distribution decays 

more slowly and that the pathway regulates more target genes with similar strength. As a 

consequence, during the sampling process more genes have a similar opportunity to be 

present in the signature and a specific gene will co-occur less frequently with other genes, 

leading to more insignificant co-occurrence modules and a smaller cluster for that 

pathway. The same argument applies to increases in stringency due to larger module 

sizes. In practice, the number of clusters actually present in the data should be estimated 

by running the analysis at different levels of module size and support. As a rule of thumb, 

module sizes between 3 and 5 should give the correct answer when they reveal the same 

number of clusters at different levels of support. In any case, analysis at module size 2 is 

very likely to over-estimate the number of clusters and analysis at module sizes larger 

than 6 will miss clusters with low rate parameters. 
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Fig. 11 Cluster sizes as a function of support parameter. Module size 3, Z = 5, P = 0,9999. 

 

 

Precision of the Bi-binomial approximation 

The user of NetCutter might be confused by the use of Z-scores and P-values to adjust the 

significance cut-off. What is the relationship between them? The bi-binomial 

approximation has been developed because Z-scores that are not normally distributed, 

such as binomial and Poisson-binomial Z-scores used here, do not correspond to the same 

P-values for different probabilities of success. Since P-values permit precise 

determination of confidence intervals, they are preferable to Z-scores. However, Poisson-

binomial P-values are difficult to calculate exactly and therefore an approximation is 

needed. The relationship between Z-scores and P-values for Poisson-binomial 

distributions corresponding to sets of Poisson trials of equal size and mean but with 

increasing variability in the probabilities of success from trial to trial is shown in Fig. 12. 

It can be seen that the cumulative distribution function is shifting to the left as the 

variability of success probabilities increases. As a consequence, Z-scores under-estimate 

the significance of large numbers of success and over-estimate the significance of small 

numbers of success as compared to the corresponding binomial distribution (standard 

error 0.5). 
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Fig. 12 Relationship between Poisson-binomial Z-scores and P-values. The cumulative distribution 

function (CDF) of increasingly narrow Poisson-binomial distributions with equal mean is shown as a 

function of corresponding Z-scores. SE – standard error. 

 

This effect becomes less important for large absolute values of Z-scores. In practical 

terms, the use of Z-scores or P-values to adjust the SNR in a NetCutter analysis are 

largely equivalent. However, when the strength of associations between communities of 

genes and gene lists is studied, exact levels of confidence are needed. Here, P-values are 

preferred. Since NetCutter calculates bi-binomial P-values, the question about the 

precision of the bi-binomial approximation of Poisson-binomial P-values arises.  

 

We studied the precision of the bi-binomial approximation for symmetric and asymmetric 

Poisson-binomial distributions for different amounts of variability in the probabilities of 

success and different numbers of Poisson trials. Exact Poisson-binomial P-values were 

calculated using the procedures reported by [3]. The cumulative distribution functions 

were calculated for the Poisson-binomial and the bi-binomial distributions and the 

difference between them was plotted as a function of P-value in each case.  
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Fig. 13 Precision of bi-binomial distribution (BBD) for increasingly narrow symmetric Poisson-binomial 

distributions (PBD). Number of Poisson trials is 50. Mean is 25. SE – standard error. 

 

Fig. 13 shows that BBD exactly reproduces the binomial distribution (SE = 0.5, curve 

coincides with X-axis) but imprecision is observed for increasing variability in the 

probabilities of success, measured here as decreasing standard error (square root of 

Poisson-binomial variance divided by number of trials). The imprecision is largest for 

insignificant P-values and quickly vanishes as P-values approach 0 or 1. For commonly 

used confidence levels of 0.95 or 0.99, the BBD is precise to 4 digits after the comma. 

 

How is the precision influenced by the number of trials? We studied this question for 

symmetric Poisson-binomial distributions with standard error of 0.48 for 50, 100, and 

150 trials. The results are shown in Fig. 14 and show that the precision increases with the 

number of trials. BBD is therefore complementary to the procedures reported by [3], 

which suffer from numeric instability for large numbers of trials. 
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Fig. 13 Precision of bi-binomial distribution (BBD) for symmetric Poisson-binomial distributions (PBD) 

with increasing number of trials. Standard error – 0.48. 
 

During meta-analysis of gene expression data represented as bipartite graphs, the bipartite 

graphs are generally sparse because a specific gene is generally found differentially 

regulated in only a few studies. As a consequence, occurrence probabilities of genes per 

list are much smaller than 0.5, which leads to asymmetric Poisson-binomial distributions. 

We studied the precision of BBD for a set of Poisson trials with average probability of 

success equal to 0.2 for 20, 40, and 80 trials and standard error of 0.4. The results are 

shown in Fig. 14. 
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Fig. 14 Precision of bi-binomial distribution (BBD) for asymmetric Poisson-binomial distributions (PBD) 

with increasing number of trials. Standard error – 0.4. 
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As can be seen from Fig. 14, the imprecision of BBD is smaller for large P-values than 

for small P-values when the average of the trial probabilities is smaller than 0.5 (vice 

versa if the average of the trial probabilities is larger than 0.5, not shown).  

 

The results shown in Fig. 12 to Fig. 14 indicate that the precision of BBD has a number 

of properties that make BBD a useful tool for the analysis of gene expression data: The 

imprecision is largely confined to insignificant P-values, the precision grows for large 

numbers of trials, and the precision for asymmetric Poisson-binomial distributions with 

average trial probabilities smaller than 0.5 are more pronounced for small P-values rather 

than for large P-values, which are used by NetCutter to identify significant co-occurrence 

modules. Furthermore, the imprecision of BBD disappears for large P-values. Indeed, the 

imprecision of BBD for a gene in the PubLiME data set [4] composed of 231 lists, 

average occurrence probability of 0.04, and standard error of 0.18 is found to be 1E-5 for 

P-values of 0.998 and much smaller that that for larger P-values. 

 

Conclusions 

The main conclusion from this simulation study is that co-occurrence analysis at module 

sizes larger than two is much more effective in identifying genes regulated by common 

pathways than pair-wise co-occurrence analysis. The main reason is that at module sizes 

larger than two implicit relationships between co-occurring genes can be exploited to 

classify genes. Module size 3 appears to offer the best compromise between accuracy of 

classification and loss of classifiable genes due to increased stringency of analysis. The 

use of implicit relationships leads to a dramatic reduction in the rate of false negative 

classification errors.  

 

False positive errors, on the other hand, are mainly caused by under-sampling of the data 

set and cannot be eliminated by increases in module size or by using hypergraph 

clustering approaches. While hypergraph clustering may be advantageous in some 

circumstances, it is also more computationally demanding. During hypergraph clustering, 

each significant co-occurrence module represents a separate hyperedge. Since the number 

of significant co-occurrence modules in a typical analysis can be hundreds of thousands, 
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the representation of the co-occurrence data as a conventional undirected graph by 

drawing an edge between each pair-wise combination of genes in a co-occurrence module 

leads to a significant reduction of the number of edges without detectable loss of 

classification accuracy. Indeed, NetCutter identifies the correct number of clusters in the 

scarce data set with surprisingly few false positive errors.  

 

This simulation illustrates the impact of analysis stringency on the number and the size of 

clusters identifiable in a data set. Perhaps somewhat counter-intuitively, pathways that 

regulate more genes with similar strength are more difficult to identify by co-occurrence 

analysis, particularly when data are scarce.  

 

Finally, we have shown that the precision of the bi-binomial approximation of Poisson-

binomial P-values allows reliable determination confidence levels. The precision 

observed for genes in the PubLiME data set is in the order of 1E-5. In practice, the user 

should rely on BBD P-values when the strength of associations between network 

communities and gene lists is analyzed because exact confidence levels cannot be derived 

from Z-scores alone. For the purpose of adjusting the SNR in a NetCutter analysis, Z-

scores and P-values are equally effective with the difference that Z-scores are much faster 

to calculate. The user may choose to shut off P-value calculation for large data sets to 

accelerate co-occurrence analysis. 

 

References 

 
1. Newman ME, Girvan M (2004) Finding and evaluating community structure in 

networks. Phys Rev E Stat Nonlin Soft Matter Phys 69: 026113. 
2. Newman ME (2006) Finding community structure in networks using the eigenvectors 

of matrices. Phys Rev E Stat Nonlin Soft Matter Phys 74: 036104. 
3. Chen SX, Liu JS (1997) Statistical Applications of the Poisson-Binomial and 

Conditional Bernoulli Distributions. Statistica Sinica 7: 875-892. 
4. Finocchiaro G, Mancuso FM, Cittaro D, Muller H (2007) Graph-based identification of 

cancer signaling pathways from published gene expression signatures using 
PubLiME. Nucleic Acids Res 35: 2343-2355. 

 
 


