Supporting Information

Origins of Femtomolar Protein-Ligand Binding: Hydrogen Bond Cooperativity and Desolvation Energetics in the Biotin-(Strept)Avidin Binding-Site

Jason DeChancie and K.N. Houk*

Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095-1569

Computational Details

DFT and *ab inito.* All calculations were carried out using the Gaussian 03 suite of programs. The hybrid density functional Becke3LYP¹ with the 6-31+G(d,p) basis set was used to optimize all reported structures. MPWB1K, developed by Truhlar and coworkers,² based on the modified Perdew and Wang 1991 functional (MPW)³ and Becke's 1995 meta correlation functional⁴ was used for select structures (noted below). MP2 single point energies⁵ were carried out on each DFT optimized structure using the 6-31+G(d,p) basis set. Correction for basis set superposition error (BSSE) was performed using the coutnerpoise method of Boys and Bernardi at MP2/6-31+G(d,p) level.⁶

CPCM-SCRF. All calculations utilized the UAKS cavity size at the HF/6-31+G(p,d) level.⁷ Single point calculations were carried out on the biotin-residue or biotin-water complexes stationary points for calculation of solvation energies. Free energies of solvation energy were then added to MP2/6-31+G(d,p) electronic energies. A dielectric constant of 4.33 and 78.39 was used to simulate a hydrophobic protein environment and water, respectively.

^{(1) (}a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098-3100. (B) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785-789. (C) Becke, A. D. *J. Chem. Phys.* 1993, *98*, 5648-5652.

⁽²⁾ Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908-6918.

⁽³⁾ Perdew, J. P. In *Electronic Structure of Solids*; Ziesche, P., Eschig, H., Eds.; Akademie Verlag: Berlin, 1991, p 11.

⁽⁴⁾ Becke, A. D. J. Chem. Phys. 1996, 104, 1040-1046.

⁽⁵⁾ Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.

^{(6) (}a) Duijneveldt, F. B. v.; Duijneveldt-van de Rijdt, J. G. C. M. v.; Lenthe, J. H. v. Chem. Rev. 1994, 94, 1873-1885. (b) Gutowski, M.; Duijneveldt-van de Rijdt, J. G. C. M. v. J. Chem. Phys. 1993, 98, 4728-4737. (c) Frisch, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer, H. F. J. Chem. Phys. 1986, 84, 2279-2289. (d) Schwenke, D. W.; Truhlar, D. G. J. Chem. Phys. 1985, 82, 2418-2426. (e) Szalewicz, K.; Cole, S. J.; Kolos, W.; Bartlett, R. J. J. Chem. Phys. 1988, 89, 3662-3673.

^{(7) (}a) Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans 2 1993, 799-805. (b) Andzelm, J.; Kölmel, C.; Klamt, A. J. Chem. Phys. 1995, 103, 9312-9320. (c) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001. (d) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669-681.

QM/MM/MC. All QM/MM were carried out using BOSS 4.6.⁸ The solute was treated with PDDG/PM3 method.⁹ The solvent molecules were represented by the TIP4P water model.¹⁰ The Metropolis Monte Carlo (MC) simulations were performed in a periodic box of 750 (minus the number of non-hydrogen atoms of the solute) TIP4P water molecules at 25 °C and 1 atm in the NPT ensemble.¹¹ Each simulation consisted 3.2M configurations of equilibration and 20 million configurations of averaging. Partial charges were obtained from the CM3 charge model.¹²

⁽⁸⁾ Jorgensen, W. L.; Tirado-Rives, J. J. Comput. Chem. 2005, 26, 1689-1700.

^{(9) (}a) Repasky, M. P.; Chandrasekhar, J.; Jorgensen, W. L. J. Comput. Chem. 2002, 23, 1601-1622. (b) Tubert-Brohman, I.; Guimarães, C. R. W.; Repasky, M. P.; Jorgensen, W. L.; Brauman, J. I. J. Am. Chem. Soc. 2003, 25, 138-150.

⁽¹⁰⁾ Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, W.; Klein, M. L. J. Chem. Phys. **1983**, 79, 926-935.

⁽¹¹⁾ Jorgensen, W. L. In *Encyclopedia of Computational Chemistry*; Schleyer, P. v. R., Ed.; Wiley: New York, 1998; Vol. 3, p 1754-1763.

⁽¹²⁾ Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Comput. Chem. 2003, 24, 1291-1304.

MD. Preparation of the systems, starting from the apo-protein crystal structures, included addition of hydrogen atoms and a cubic box of TIP3P¹³ water molecules extending 10Å from the solute using the xLEaP module of AMBER 8.¹⁴ The Duan et al. (ff03) force field¹⁵ was employed to describe the proteins and general Amber force field (gaff) for biotin.¹⁶ Long-range electrostatic forces were treated using the particle mesh Ewald (PME) method¹⁷ using default parameters assigned by AMBER. Trajectories were integrated with a 1 fs time step. All simulations were carried out under constant temperature (300 K) and pressure (1 atm). The avidin system was equilibrated for 70 ps and the streptavidin for 133 ps. The SHAKE algorithm¹⁸ for all hydrogens and a nonbonding pair cutoff of 9 Å was used. Average structures were generated using the PTRAJ utility for the unligaded avidin over 60–70 ps and for unligaded streptavidin over 123–133 ps.

⁽¹³⁾ Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, W.; Klein, M. L. J. Chem. Phys. **1983**, 79, 926-935.

⁽¹⁴⁾ Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, J.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.; Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.; Ross, W. S.; Kollman, P. A. University of California, San Francisco, 2004.

⁽¹⁵⁾ Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, R.; Cieplak, P.; Luo, R.; Lee, T. J. Comput. Chem. 2003, 24, 1999-2012.

⁽¹⁶⁾ Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157-1174.

^{(17) (}a) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1995, 103, 8577-8593. (b) van Gusteren, W. F.; Berendesen, H. J. C. Mol. Phys. 1977, 34, 1311.

⁽¹⁸⁾ van Gusteren, W. F.; Berendesen, H. J. C. Mol. Phys. 1977, 34, 1311.

Gaussian 03 Citation

Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Amber 8 Citation

Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, J.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.; Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.; Ross, W. S.; Kollman, P. A. Amber 8, University of California, San Francisco, 2004.

B3LYP Geometries and ab inito and CPCM energies, and BSSE corrections

Cartesian coordinates and distances are reported in Ångstroms. MP2 electronic energies and CPCM solvation energies are reported in Hartrees. BSSE corrections are reported in Hartrees.

Streptavidin Model:

С	-2.130176	-2.096306	0.098852
С	-0.898451	-2.926648	0.621388
Ν	0.120002	-1.902498	0.794044
С	-0.371894	-0.651744	0.541706
Ν	-1.632597	-0.728343	0.105480
0	0.298940	0.416763	0.709791
Н	-2.271664	0.097861	-0.104385
С	-0.522591	-3.991893	-0.429690
Н	-1.062577	-4.925720	-0.231239
Η	0.550370	-4.198576	-0.426644
С	-2.529448	-2.600667	-1.301316
Н	-3.302716	-3.371450	-1.217251
Η	-2.926520	-1.786727	-1.907321
S	-1.018633	-3.319190	-2.064293
Н	-3.003406	-2.171817	0.754359
Н	-1.114669	-3.419502	1.578971
Η	0.968251	-2.036131	1.346648
Η	-0.509815	2.281232	0.156299
Ν	-1.118847	3.054542	-0.094973
Η	-2.091382	2.807032	-0.296445
С	-0.645247	4.309742	-0.166300
0	-1.284895	5.320346	-0.461932
Η	0.435376	4.371329	0.078933
Η	1.926288	0.371130	0.598108
Η	0.306803	0.908912	2.543655
0	2.925739	0.281313	0.637365
0	0.316733	1.051629	3.509407
С	-0.789624	1.873556	3.858043
H	-0./66//6	2.003653	4.944688
H	-0./33680	2.864514	3.38/093
H	-1./49009	1.414852	3.581084
C	3.526682	0.5/356/	-0.549258
C	4.924548	0.484281	-0.618624
C	Z./9394Z	0.959386	-1.003314
	J.JOZ991 6 476642	0.107001	-1.012901
п	2 160510	U.IO/23U 1 252072	-2 971261
U U	J.400JL0 1 712602	1 024000	-2.0/1201
C	1 862034	1 165957	-2 9/7962
ц	6 667009	0 707304	-2.947902
п ц	2 892146	1 551261	-3 742860
и Ц	5 377480	1 396125	-3 875836
0	2 700310	-1 998957	2 258918
Ч Н	3 005247	-1 240894	1 722084
C	2 701755	-1 615271	3 636686
н	3.720843	-1.400198	3.987365
H	2.062497	-0.743578	3.819993

Н	2.315103	-2.465590	4.205961
0	-3.317976	1.290762	-0.403914
С	-4.488428	0.835983	-0.671990
0	-4.802313	-0.374812	-0.712658
С	-5.558462	1.898222	-0.957144
Н	-5.671547	2.550443	-0.083691
Н	-5.238033	2.534009	-1.790013
Н	-6.517747	1.432063	-1.194645
E(MP2)=-1711.4935	5853	

CPCM = -1707.34781

Avidin Model:

С	0.00000	0.000000	0.00000
С	0.00000	0.00000	1.399078
С	1.200561	0.000000	2.110095
С	2.419679	0.001589	1.419337
С	2.429964	0.004284	0.017552
С	1.220591	0.001412	-0.681296
0	3.569717	-0.003787	2.156464
0	5.905465	0.062362	0.842297
С	6.481360	1.180539	0.698840
Ν	6.281174	2.262855	1.498585
С	7.130613	3.3845/2	1.131824
C	7.882663	2.841314	-0.1406/2
N	/.383131	1.480264	-0.254/49
C	6.3431/4	4.653847	0.748121
S	5.901680	4.488723	-1.025387
0	7.540649	3./20110 1.012602	-1.35/250
C	4.734742	1 120015	5.951033
0	J.J90J/0 7 1/1672	-1 274002	2 070161
C	7.141073	-2 /85382	2 737020
0	2 A27372	-2.403302	-2 316467
C	9 686/92	-0.013722	-2.310407
N	10 426475	-0 257865	-3 440766
N	6 176516	-1 852879	-1 553538
C	5 382655	-2 912416	-1 809858
0	5 443511	-3 644263	-2 794176
н	7.716809	0.823511	-0.990200
H	6.964104	5.544627	0.898598
Н	5.432427	4.755488	1.342728
Н	8.296232	4.511521	-1.481216
Н	7.491867	3.139786	-2.275846
Н	8.969950	2.833776	0.002553
Н	7.828702	3.619254	1.945694
Н	5.786646	2.187540	2.392879
Н	6.050500	-1.295164	-0.713556
Н	6.915750	-1.569572	-2.191327
Н	4.628636	-3.078118	-1.013960
Н	4.387350	-0.006849	1.588424
Н	6.714321	-0.913722	2.280081
Н	8.320377	-2.836146	3.636548
Η	7.100200	-3.266133	2.416252
Η	8.550098	-2.339839	1.944252
Η	1.211269	-0.005583	3.195843
Η	3.375664	0.008818	-0.515915
Η	-0.940824	-0.002370	1.943389
Η	1.239304	-0.000024	-1.767559
Η	-0.936185	-0.003077	-0.550169
Η	4.161101	1.184563	3.475833
Η	4.668840	0.838027	5.781855
H	5.954873	0.257565	4.676155
H	6.095903	1.849592	5.468620
H	9.967337	-0.469977	-4.318913
H	11.511192	-0.154863	-3.431942
H	10.279925	0.241213	-1.485772

0	12.806210	-0.101173	-5.627811
С	13.479037	0.054524	-4.585761
0	13.023746	0.053396	-3.384753
С	14.994714	0.292991	-4.708555
Н	15.212428	1.345012	-4.484698
Н	15.536373	-0.313219	-3.974211
Н	15.344683	0.065059	-5.718965

E(MP2) = -1880.93654 CPCM = -1876.307892

Avidin Model with Asp model removed:

С	-4.144421	-2.557362	-2.884832	
С	-5.037077	-1.986658	-1.971046	
С	-4.567129	-1.261244	-0.875886	
С	-3.188857	-1.100108	-0.689139	
С	-2.286221	-1.663811	-1.600452	
С	-2.770706	-2.390801	-2.691156	
0	-2 772346	-0 384688	0 401580	
0	-0 103719	-0 146533	0 832578	
C	0.115256	0.955777	0.566408	
N	-0 172040	2 150015	0.541944	
	-0.172049	2.139013	0.010012	
C	0.729050	3.232422	0.212013	
C	2.110523	2.51/662	0.025132	
Ν	1.759635	1.127966	0.272447	
С	0.362341	3.977642	-1.100352	
S	1.158848	3.043838	-2.464938	
С	2.631070	2.780048	-1.402917	
0	-2.927192	2.278314	1.288903	
С	-3.264405	2.380415	2.679032	
0	-0.849124	-0.059343	3.651992	
С	-0.949968	-1.341480	4.255866	
0	3,954516	-0.928063	-0.042784	
C	4.785096	-1.835978	-0.159317	
N	6 099653	-1 620132	-0 369577	
N	1 528143	-2 685099	0 444308	
C	1 806680	-1 002280	0.146038	
0	2 014522	-4.002200	0.202027	
0	2.914555	-4.403001	0.203027	
H	2.426541	0.366634	0.227090	
H	0.738380	5.006658	-1.083523	
H	-0./18309	4.002273	-1.256486	
Н	3.266445	3.672910	-1.414364	
Н	3.209758	1.934607	-1.781817	
Н	2.854073	2.858484	0.756030	
Н	0.764617	3.977354	1.034082	
Н	-1.151376	2.280440	0.832689	
Н	0.619748	-2.304160	0.671825	
Н	2.269940	-2.018618	0.242174	
Н	0.938804	-4.641517	0.687316	
Н	-1.785561	-0.358775	0.479814	
Н	-0.577138	-0.167318	2.723766	
Н	-1.249853	-1.187367	5.295950	
Н	-1.708827	-1,969529	3,767619	
н	0 010007	-1 877392	4 250969	
н	-5 252027	-0 819876	-0 158467	
н	-1 217933	-1 528009	-1 458396	
и Ц	-6 107952	-2 107582	-2 109072	
11 11	-2 064601	-2 024701	-2 202720	
п	-2.004091	-2.024/91	-3.333720	
п	-4.514657	-3.122101	-3./34012	
H	-3.141448	1.3/8U6/	0.9/3/4/	
H 	-4.342848	2.246527	2.070044	
Н	-2./10/89	1.649011	3.2/8844	
Н	-2.994158	3.389812	2.999568	
Н	6.454728	-0.676006	-0.434164	
Н	6.741452	-2.393654	-0.455042	
Н	4.493071	-2.897425	-0.096700	
E(MP2	2) = -1652.9	68828 CPCM =	-1648.96215 (displacement convergence criteria not	t meet)

Ureido (-NH) hydrogen bonded to Acetate:

С	0.441235	-0.430554	0.267043
Н	-0.366854	-0.861160	0.869905
С	1.043201	-1.544047	-0.623458
Н	0.595360	-1.526362	-1.618543
Η	0.872845	-2.528490	-0.174788
S	2.856979	-1.246825	-0.770941
С	2.887961	-0.568864	0.935916
Η	2.947093	-1.389752	1.661434
Η	3.768128	0.068899	1.053602
С	1.579875	0.220978	1.128638
Н	1.314941	0.219994	2.197028
Ν	1.639435	1.573638	0.596436
Н	1.944742	2.333977	1.187036
С	0.505973	1.866849	-0.191900
0	0.198588	3.006653	-0.537063
Ν	-0.107302	0.686959	-0.485383
Η	-1.120073	0.622301	-0.744845
0	-2.826604	0.248838	-0.910584
С	-3.247000	-0.447686	0.066792
0	-2.557477	-1.003545	0.963271
С	-4.782786	-0.596205	0.159883
Η	-5.207415	0.345464	0.530661
Η	-5.210366	-0.776856	-0.832347
Η	-5.061795	-1.401385	0.846074
E (ME	(2) = -1004.60	01169	
CPCN	I = -1002.6819	948	

BSSE = 0.005925955024

Ureido (-NH) hydrogen bonded to methanol:

С	0.00000	0.00000	0.00000
Н	0.00000	0.00000	1.098978
Н	1.034348	0.00000	-0.363643
Н	-0.497642	0.911661	-0.343290
0	-0.747976	-1.104437	-0.516028
Н	-0.302045	-1.934401	-0.254818
Н	-0.646460	-1.467111	-2.406424
Ν	-0.463417	-1.772977	-3.360643
С	-1.290906	-1.490129	-4.514734
Н	-1.224351	-0.428686	-4.786587
С	0.467493	-2.760123	-3.567683
0	1.266515	-3.196595	-2.744070
Ν	0.335591	-3.168598	-4.883704
С	-0.645946	-2.401661	-5.630642
Н	-0.167210	-1.794644	-6.411050
Н	1.091169	-3.673364	-5.320059
С	-1.751892	-3.272247	-6.259105
S	-2.979315	-3.597495	-4.936666
С	-2.782359	-1.868388	-4.351292
Н	-3.103670	-1.799483	-3.309528
Н	-3.409281	-1.201116	-4.953442
Н	-2.228606	-2.741565	-7.091547
Н	-1.357791	-4.221338	-6.630054
E(MP	2) = -892.057	6987	
CPCM	= -890.39906	8	
BSSE	= 0.00361434	7540	

S11

Ureido (O=) hydrogen bonded to methanol:

Н	0.00000	0.00000	0.00000
С	0.00000	0.00000	1.098590
Н	1.038076	0.00000	1.445925
Н	-0.483557	0.924920	1.442467
0	-0.622845	-1.160350	1.634138
Н	-1.558210	-1.169192	1.354458
0	-3.390354	-1.339152	0.967380
С	-4.117207	-2.211693	1.438211
Ν	-4.214720	-3.515833	1.008460
Н	-3.488257	-3.882412	0.412235
Ν	-5.002152	-2.065742	2.478814
Н	-4.972225	-1.228866	3.040023
С	-5.593369	-3.316186	2.925374
Н	-5.270083	-3.555404	3.946507
С	-5.016479	-4.355261	1.886225
Н	-4.390706	-5.107257	2.383610
С	-6.191554	-5.051415	1.170584
С	-7.134547	-3.340428	2.855920
Н	-7.563165	-2.356670	3.059999
Н	-7.534141	-4.054036	3.585162
Н	-6.479238	-5.960973	1.709974
Н	-5.934870	-5.321375	0.143782
S	-7.588351	-3.862448	1.156832
E(MP	2) = -892.056	2451	
CPCM	= -890.40378	7	
BSSE	= 0.0027207	05633	

	Ureido (O:	=) h	vdrogen	bonded	to	formamide
--	------------	------	---------	--------	----	-----------

(0.000000	0.000000	0.00000
C	0.00000	0.000000	1.232012
H	I 0.952615	0.000000	1.801395
N	1 -1.078680	0.002317	2.032876
H	I −2.040352	-0.005849	1.682517
H	I -0.977314	-0.001005	3.043725
C	-0.776124	-0.487682	4.910529
C	-0.736836	-1.689876	5.174890
N	-0.906860	-2.732708	4.296960
H	I -0.948856	-2.559734	3.303760
N	-0.554509	-2.243687	6.418305
H	-0.273024	-1.657349	7.188533
C	-0.411792	-3.690630	6.402155
C	-0.675486	-4.041667	4.885728
H	I -1.563035	-4.675716	4.772701
H	I -1.160668	-4.156489	7.053651
C	0.559653	-4.776712	4.323395
H	I 0.705703	-4.579764	3.258521
H	0.449372	-5.858121	4.461144
S	2.012755	-4.171610	5.265023
C	0.995266	-4.193757	6.790854
H	I 0.934069	-5.214738	7.183979
H	1.461777	-3.561780	7.550699
Ε ((MP2) = -946.1011	164	
CE	PCM = -944.301694		
BS	SE = 0.00296867	3615	

Ureido (O=) hydrogen bonded to phenol:

С	0.00000	0.00000	0.00000
С	0.000000	0.00000	1.398340
С	1.222639	0.00000	-0.680317
Н	1.240703	0.001068	-1.767369
Н	-0.936410	0.000621	-0.550224
Н	-0.940012	-0.000673	1.943487
С	2.427727	0.000964	0.023006
Н	3.381631	0.005172	-0.495912
С	1.198157	-0.000753	2.115451
Н	1.194199	-0.004970	3.201073
С	2.419895	0.000693	1.425407
0	3.618931	0.006448	2.071164
Н	3.520853	0.004785	3.070616
0	3.495579	-0.152480	4.767361
С	4.061579	-1.201234	5.099444
N	5.047991	-1.847533	4.396427
Н	5.173747	-1.633005	3.415728
N	3.859586	-1.899731	6.256493
С	4.698822	-3.079569	6.385852
С	5.435588	-3.118059	4.991393
H	3.278687	-1.523942	6.989090
H	5.411633	-2.961829	7.212002
Н	6.523125	-3.155949	5.119254
С	4.971388	-4.369534	4.207906
H	4.867343	-4.165049	3.139651
Н	5.696755	-5.180312	4.335028
S	3.342729	-4.878970	4.886449
С	3.902806	-4.385827	6.560217
H	3.035884	-4.252982	7.212301
Н	4.544079	-5.162926	6.991609
E(MP2)	= -1083.23	178	
CPCM =	-1080.9332	43	

BSSE = 0.004987026562

Ureido (-NH) hydrogen bonded to formamide-acetate:

-8.204637	-1.104451	0.561382
-7.738168	-0.145784	0.318386
-8.165209	0.252531	-0.609219
-7.960233	0.578320	1.111783
-6.209610	-0.292805	0.172370
-5.596056	0.762355	-0.208406
-5.689206	-1.402973	0.437303
-2.871560	-0.915620	-0.010643
-3.005596	0.055484	-0.264902
-4.012284	0.399038	-0.269107
-2.209709	1.851959	-0.783712
-1.949007	0.809760	-0.527939
-0.752914	0.447030	-0.509217
1.010763	1.158316	-0.435441
1.961238	0.941555	-0.127872
2.971748	1.852249	-0.037890
2.988589	3.014426	-0.432268
4.046470	1.208378	0.592188
3.660567	-0.068188	1.173517
2.209255	-0.284112	0.602315
4.710661	1.809662	1.056457
3.649878	-0.019129	2.271959
1.468901	-0.403323	1.402323
4.555699	-1.241252	0.726484
3.898619	-1.828117	-0.883986
2.184950	-1.552549	-0.277590
1.503692	-1.425435	-1.120138
1.859682	-2.418668	0.309005
4.515828	-2.052613	1.463663
5.595621	-0.929248	0.602351
	-8.204637 -7.738168 -8.165209 -7.960233 -6.209610 -5.596056 -5.689206 -2.871560 -3.005596 -4.012284 -2.209709 -1.949007 -0.752914 1.010763 1.961238 2.971748 2.988589 4.046470 3.660567 2.209255 4.710661 3.649878 1.468901 4.555699 3.898619 2.184950 1.503692 1.859682 4.515828 5.595621	-8.204637 -1.104451 -7.738168 -0.145784 -8.165209 0.252531 -7.960233 0.578320 -6.209610 -0.292805 -5.596056 0.762355 -5.689206 -1.402973 -2.871560 -0.915620 -3.005596 0.055484 -4.012284 0.399038 -2.209709 1.851959 -1.949007 0.809760 -0.752914 0.447030 1.010763 1.158316 1.961238 0.941555 2.971748 1.852249 2.988589 3.014426 4.046470 1.208378 3.660567 -0.068188 2.209255 -0.284112 4.710661 1.809662 3.649878 -0.019129 1.468901 -0.403323 4.555699 -1.241252 3.898619 -1.828117 2.184950 -1.552549 1.503692 -1.425435 1.859682 -2.418668 4.515828 -2.052613 5.595621 -0.929248

MP2 = -1174.059644 CPCM = -1171.648135 BSSE = 0.003232258776

Ureido (-NH) hydrogen bonded to formamide:

NT	0 00000	0 00000	0 000000
IN	0.000000	0.000000	0.000000
Н	0.000000	0.000000	1.008735
Н	0.882593	0.000000	-0.492598
С	-1.159498	0.012358	-0.688668
Н	-2.069396	0.018180	-0.065835
0	-1.219982	0.017068	-1.923201
Н	-3.122810	-0.033015	-2.357613
Ν	-4.026243	-0.116877	-2.818528
С	-4.216057	-0.055333	-4.250426
Н	-3.690476	0.810648	-4.675151
С	-3.766593	-1.330046	-4.999968
Н	-2.923089	-1.807181	-4.496741
Н	-3.472760	-1.087319	-6.027219
S	-5.177288	-2.507335	-5.014051
С	-6.343385	-1.115768	-5.270463
Н	-7.348710	-1.425649	-4.976905
Н	-6.357298	-0.833336	-6.329834
С	-5.781566	0.105781	-4.341360
Н	-6.052854	1.064345	-4.804100
Ν	-6.182566	0.061836	-2.942824
Н	-7.050989	0.459211	-2.619003
С	-5.179537	0.072966	-2.103674
0	-5.277805	0.213236	-0.887583
E(MP2) = -946.1018	174	
CPCM :	-944.30176		
BSSE :	= 0.00320925	4417	

S16

Ureido conjugate base:

0	0.00000	0.00000	0.00000
С	0.00000	0.000000	1.270458
Ν	1.119492	0.000000	2.040716
С	0.811504	0.081098	3.462713
С	-0.760225	0.041068	3.479379
Ν	-1.089805	0.002308	2.055688
С	1.359181	-1.111040	4.273321
S	0.118276	-2.456745	4.138628
С	-1.230707	-1.209754	4.246799
Н	1.485159	-0.824787	5.323751
Η	2.320116	-1.456598	3.884644
Η	-1.428587	-0.949427	5.290076
Η	-2.145254	-1.621428	3.815949
Η	-1.210193	0.917562	3.953922
Н	1.196442	1.018486	3.884081
Н	2.044206	0.177251	1.641888

Ureido:

0	0.00000	0.00000	0.00000
С	0.000000	0.000000	1.270458
Ν	1.119492	0.000000	2.040716
С	0.811504	0.081098	3.462713
С	-0.760225	0.041068	3.479379
Ν	-1.089805	0.002308	2.055688
С	1.359181	-1.111040	4.273321
S	0.118276	-2.456745	4.138628
С	-1.230707	-1.209754	4.246799
Н	-2.054225	0.076631	1.709766
Н	1.485159	-0.824787	5.323751
Н	2.320116	-1.456598	3.884644
Н	-1.428587	-0.949427	5.290076
Н	-2.145254	-1.621428	3.815949
Н	-1.210193	0.917562	3.953922
Н	1.196442	1.018486	3.884081
Н	2.044206	0.177251	1.641888
E(MP2	2) = -776.650	3501	
CPCM	= -775.34483	7	

S18

Ureido hydrogen bonded to four water molecules:

С	0.043048	0.462023	0.619425
0	0.054285	0.227837	1.854306
Ν	1.139534	0.553680	-0.174931
Ν	-1.065030	0.684869	-0.132390
С	0.809971	0.796650	-1.569259
С	-0.762062	0.897855	-1.538095
С	-1.352318	-0.182320	-2.469800
S	-0.149718	-1.567606	-2.509447
С	1.225428	-0.352046	-2.512309
Н	-2.013467	0.655439	0.250935
Н	2.092349	0.407558	0.168883
Н	1.268102	1.732437	-1.912708
Н	-1.111198	1.886887	-1.859331
Н	2.143195	-0.838225	-2.174030
Н	1.383465	0.028638	-3.527607
Н	-2.316127	-0.545365	-2.106065
Н	-1.490501	0.222294	-3.478768
0	2.295282	-0.726690	3.087820
Н	2.133583	-1.634401	3.370770
Н	1.445663	-0.394330	2.706875
0	-2.196810	0.388076	3.378196
Н	-1.338459	0.354382	2.888075
Н	-2.108653	1.072609	4.051557
0	-3.690828	0.573606	1.122747
Н	-4.309815	-0.161432	1.043109
Н	-3.325480	0.529936	2.038616
0	3.758426	-0.063262	0.904495
Н	3.399386	-0.381311	1.767750
Н	4.474677	0.547219	1.114054
	1001	6610021	

- E(MP2) = -1081.6619831 CPCM = -1079.527191

Apostreptavidin model with four bound water molecules

С	0.00000	0.00000	0.000000
С	4.419417	0.00000	0.00000
С	6.215850	3.288198	0.00000
С	3.401465	5.284082	2.043962
С	3.244726	5.368960	3.432709
С	3.593660	6.535541	4.100553
С	4.117869	7.641734	3.427710
С	4.268429	7.540469	2.033782
С	3.921909	6.375551	1.336762
0	3.063147	4.146291	1.377885
0	5.946935	3.852355	-1.285697
0	5.517690	0.030145	-0.564923
Ν	3.437948	0.832477	-0.392437
0	0.088232	1.272392	0.117445
С	-0.765058	-0.760454	1.081351
0	0.558957	-0.631224	-0.935073
0	1.258816	0.746029	-3.340474
0	0.643257	3.075017	-1.687335
0	3.308697	2.745546	-2.614772
Н	2.961501	2.000427	-3.141572
Н	2.488157	3.103730	-2.216234
Н	0.205703	3.870449	-1.364614
Н	0.453562	2.355067	-1.001063
Н	0.728110	1.537189	-3.157342
Н	1.094385	0.184146	-2.547606
Н	-0.780601	-1.831244	0.867451
Н	-1.789958	-0.379126	1.148224
Н	-0.292634	-0.585591	2.054613
Н	4.170351	-0.686971	0.828460
Н	2.471109	0.690212	-0.120892
Н	3.599634	1.446633	-1.190395
Н	5.184119	3.401362	-1.685732
Н	6.436322	2.216843	-0.067385
Н	5.377335	3.438813	0.690689
Н	7.094047	3.813125	0.390962
Н	2.634531	3.503210	1.957151
Н	2.844982	4.520769	3.984094
Н	3.460596	6.578231	5.179664
Н	4.392071	8.547307	3.958463
Н	4.674656	8.377845	1.471938
Н	4.062211	6.293842	0.263960
E(MP2	2) = -1048.12	40282	
CPCM	= -1045.0567	71	

Apoavi	idin	model with	three l	bound	water molecules
Ċ	0.	000000	0.00	00000	0.00000
С	Ο.	000000	0.00	00000	4.113332
С	3.	306085	0.00	00000	5.674346
С	4.	524906	3.10	66344	3.505842
С	5.	650288	2.60	07047	4.135608
С	6.	637300	3.44	44582	4.654454
С	6.	480752	4.83	33746	4.602645
С	5.	359463	5.38	85074	3.969756
С	4.	381847	4.55	54907	3.411287
0	4.	299238	-0.93	39237	5.246435
0	-0.	301479	1.05	51400	3.574396
Ν	Ο.	895621	-0.84	42564	3.515372
С	-0.	889232	1.24	40584	-0.194635
0	1.	229181	-0.01	18720	-0.231727
Ν	-0.	621319	-1.11	12009	0.389931
0	-3.	224337	-1.47	71251	0.928150
0	-2.	306200	-3.39	95795	1.676327
С	-3.	276158	-2.62	20794	1.483456
С	-4.	667225	-3.09	97521	1.944775
0	3.	583012	2.34	46296	2.969272
0	3.	785024	-0.33	39574	2.590460
0	3.	528284	-1.29	90663	0.067561
Н	2.	660079	-0.83	31782	-0.100784
Н	3.	364552	-2.23	32019	-0.059794
Н	3.	841412	-0.70	04812	1.670701
Н	2.	842623	-0.39	99291	2.829418
Н	3.	895592	1.42	24789	2.827694
Н	5.	748635	1.52	27224	4.198653
Н	7.	512693	3.01	11651	5.131746
Н	7.	240765	5.48	34791	5.026260
H	5.	244248	6.40	64044	3.907796
Н	3.	510583	4.95	59590	2.906180
H	3.	673984	0.4	78807	6.588639
H	3.	111701	0.7	/964/	4.933580
H	2.	359824	-0.50)4729	5.911077
H	4.	307421	-0.9	39445	4.2/2611
H	0.	802621	-0.80	J4688	2.500486
H	0.	905678	-1./2	9/33/	3.861532 5.117100
H	-0.	34/69/	-0.30	72000	5.11/120
H	-0.	/91103	1.5	13968	-1.232258
п	-0.	021640	2.0.	1 5 6 0 0	0.400900
п		931049	1 0	10090	0.035133
п	-0.	092400	-1.9	12007	0.437039
п u	-⊥. _5	365010	-7.17	20702	U.J90/01 1 000070
л u	-0.	063010	-3.00	17306	1.U909/0 2 600105
н	-J.	614427	-2.40	16318	2 360016 2 360016
E (MP2)	ч. =	17472/	(50540	2.500940
- (/					

CPCM =	-1177.	010310
--------	--------	--------

MPWB1K Geometries and ab inito and CPCM energies

Cartesian coordinates and distances are reported in Ångstroms. MP2 electronic energies and CPCM solvation energies are reported in Hartrees.

Streptavidin model:

Frequency analysis gave one small imaginary frequency (-19 cm-1) corresponding to outof-plane bending motion of the phenol-ureido hydrogen bond.

Streptavidin model:

С	-2.127254	-2.097477	0.102437
С	-0.894174	-2.925026	0.626185
Ν	0.123103	-1.899247	0.795824
С	-0.370430	-0.649737	0.540678
Ν	-1.631219	-0.728865	0.105149
0	0.299057	0.420088	0.705914
Н	-2.271715	0.096271	-0.104850
С	-0.517690	-3.992354	-0.422560
Н	-1.056192	-4.926432	-0.221284
Н	0.555562	-4.197518	-0.419895
С	-2.527085	-2.605896	-1.296048
Н	-3.299343	-3.377408	-1.209382
Н	-2.925678	-1.793989	-1.903780
S	-1.016067	-3.324555	-2.058498
Н	-2.999857	-2.172201	0.758857
Н	-1.109187	-3.415910	1.585059
Н	0.972027	-2.030656	1.348004
Н	-0.512023	2.282513	0.150362
Ν	-1.122898	3.054121	-0.101688
Н	-2.095059	2.804192	-0.301975
С	-0.651969	4.310158	-0.176058
0	-1.293959	5.318805	-0.473243
Н	0.428728	4.374487	0.068153

Η	1.926819	0.376615	0.599033
Н	0.304921	0.917618	2.538330
0	2.926365	0.288347	0.639844
0	0.314539	1.062792	3.503720
С	-0.794056	1.882521	3.850510
Н	-0.771322	2.015418	4.936815
Н	-0.740952	2.872419	3.377034
Н	-1.752199	1.420441	3.574897
С	3.528170	0.575443	-0.547650
С	4.926108	0.486211	-0.615479
С	2.798215	0.956105	-1.683941
С	5.585412	0.775887	-1.810596
Н	5.476462	0.193260	0.273630
С	3.471652	1.244652	-2.872663
Н	1.715831	1.020850	-1.630467
С	4.865245	1.157526	-2.947871
Н	6.669480	0.704213	-1.851449
Н	2.895898	1.538794	-3.746044
Н	5.381380	1.383673	-3.876351
0	2.701083	-1.989724	2.263574
Н	3.005446	-1.231706	1.726280
С	2.698489	-1.603968	3.640762
Н	3.716122	-1.384726	3.993068
Н	2.055880	-0.734196	3.821491
Н	2.313828	-2.454835	4.210573
0	-3.320354	1.286756	-0.405398
С	-4.489988	0.829566	-0.673048
0	-4.801812	-0.381797	-0.711975
С	-5.562159	1.889533	-0.958635
Н	-5.685503	2.533322	-0.080264
Н	-5.237951	2.534168	-1.783117
Н	-6.517510	1.421150	-1.207397
	(2) = -1711 48	9104	

E (MP2) = -1711.489104CPCM = -1707.356822 (Displacement convergence criteria not meet) imaginary frequency -19.0 cm⁻¹

Ureido (O=) hydrogen bonded to phenol:

Н	-4.972462	2.374102	-0.752877
С	-4.371233	1.522377	-0.474850
С	-3.238755	1.194861	-1.202153
Н	-2.949742	1.792693	-2.053303
С	-2.460813	0.105500	-0.853741
Н	-1.576380	-0.145891	-1.419231
С	-4.721119	0.740081	0.614386
Н	-5.601616	0.980386	1.192029
С	-3.953489	-0.352246	0.973540
Н	-4.218427	-0.970042	1.817652
С	-2.818884	-0.672751	0.240264
0	-2.097908	-1.741614	0.621774
Н	-1.309279	-1.879867	0.043467
0	0.178302	-2.066711	-0.851195
С	1.170661	-1.472588	-0.462585
N	1.453488	-1.129602	0.817716
Н	0.822598	-1.367787	1.556920
С	2.742887	-0.520283	1.001814
Н	3.383834	-1.141090	1.626793
С	2.653991	0.892427	1.565065
Н	1.885695	0.972654	2.327766
Н	3.606936	1.186976	2.002105
S	2.252665	1.955598	0.170524
С	3.454437	1.042648	-0.806345
Н	4.464255	1.360440	-0.550425
Н	3.294411	1.228111	-1.863986
С	3.261834	-0.432039	-0.457951
Н	4.197833	-0.958062	-0.620852
Ν	2.213023	-1.057861	-1.214884
Н	2.303877	-1.231280	-2.243572
E(MP2)	= -1083.228	3237	

E(MP2) = -1083.22823CPCM = -1080.935923

Imaginary frequency -17.7 cm⁻¹ (bending motion of the residue to form an additon hydrogen bond to adjacent –NH group of ureido)

Ureido (O=) hydrogen bonded to formamide:

0	-4.597535	-1.389281	-0.025149
С	-3.687007	-0.654128	-0.359546
Н	-2.958144	-0.969883	-1.122093
Ν	-3.440905	0.565573	0.108216
Н	-4.009936	1.010694	0.817744
Н	-2.660508	1.100593	-0.235848
0	-0.979238	1.909226	-0.651076
С	-0.022804	1.402779	-0.093632
Ν	-0.055433	0.488694	0.908501
Н	-0.922946	0.086032	1.203279
Ν	1.283697	1.682381	-0.325860
Н	1.538948	2.235949	-1.118118
С	2.193052	0.836136	0.392986
С	1.236350	-0.013938	1.277485
Н	1.425302	0.142643	2.338277
Н	2.877454	1.429049	0.997684
С	1.436270	-1.482508	0.917314
S	1.881807	-1.507485	-0.825911
С	2.975166	-0.114005	-0.508269
Н	3.878296	-0.455331	-0.004743
Н	3.263992	0.357805	-1.442610
Н	2.238948	-1.913292	1.513756
Н	0.536184	-2.066609	1.083021
E(MP2)	= -946.09951	113	
CPCM =	-944.305015		

Imaginary frequency -36.0 cm⁻¹ (bending motion of the residue to form an additon hydrogen bond to adjacent –NH group of ureido)

Ureido (O=) hydrogen bonded to methanol:

С	5.068966	0.312892	0.122141
Н	5.535476	0.053973	-0.829609
Н	4.809767	1.372422	0.096554
Н	5.799727	0.158750	0.912107
0	3.963503	-0.494882	0.406974
Н	3.274623	-0.324777	-0.245831
0	1.690884	0.035727	-1.223156
С	0.697899	0.016932	-0.520598
Ν	0.062842	1.090554	0.010085
Н	0.454583	2.004405	-0.088367
С	-1.002712	0.754109	0.907933
Н	-0.791751	1.112030	1.915194
С	-2.365728	1.260839	0.448297
Η	-2.291242	2.232886	-0.028923
Н	-3.044302	1.342795	1.296056
S	-2.984976	0.043440	-0.722950
С	-2.392460	-1.249330	0.378835
Η	-3.065900	-1.356058	1.227981
Н	-2.347012	-2.196756	-0.148649
С	-1.012984	-0.801303	0.845617
Н	-0.781060	-1.241457	1.815003
Ν	0.018727	-1.084912	-0.110423
Н	0.442754	-1.984343	-0.215852
E(MP2	2) = -892.054	6433	
CPCM	= -890.40594	5	

Imaginary frequency -16.2 cm⁻¹ (bending motion of the residue to form an additon hydrogen bond to adjacent –NH group of ureido)

Ureido (-NH) hydrogen bonded to methanol:

С	4.011267	-0.387425	0.269266
Н	3.765624	0.672387	0.216210
Н	5.002076	-0.547117	-0.158865
Н	4.042442	-0.684985	1.313553
Н	2.966078	-0.913850	-1.286525
0	3.044477	-1.188906	-0.365302
Н	1.439253	-0.365650	0.293383
Ν	0.663494	0.221290	0.564798
С	0.470531	1.337484	-0.187291
0	1.279829	1.851107	-0.930517
Ν	-0.788749	1.791090	0.087392
С	-1.580549	0.839405	0.813427
С	-0.542885	-0.268535	1.162828
С	-1.024003	-1.582136	0.555326
S	-1.918186	-1.136334	-0.941900
С	-2.689161	0.203882	-0.019549
Н	-3.143899	0.914913	-0.703147
Н	-3.469541	-0.193007	0.628157
Н	-0.194753	-2.240788	0.315639
Н	-1.689152	-2.101558	1.243610
Н	-0.426897	-0.379891	2.240207
Н	-2.002502	1.289380	1.710978
Н	-1.186610	2.491194	-0.505623
	1004 = 0	0 5 2 2	

E(MP2) = -1004.598532 CPCM = -1002.687172

Ureido (-NH) hydrogen bonded to acetate:

С	0.409030	-0.159308	0.721099
Н	-0.205385	-0.285183	1.607282
С	0.173856	-1.367617	-0.181053
Н	-0.608121	-1.144234	-0.898670
Н	-0.139656	-2.225022	0.408638
S	1.740104	-1.714337	-1.014924
С	2.625818	-1.267085	0.487953
Η	2.573724	-2.080899	1.211753
Η	3.669285	-1.066667	0.260592
С	1.920424	-0.031280	1.030673
Η	2.101907	0.058480	2.104543
Ν	2.284070	1.166257	0.328964
Η	3.063075	1.722457	0.618887
С	1.174271	1.862686	-0.130134
0	1.230883	2.977253	-0.617157
Ν	0.102939	1.086617	0.084913
Н	-0.846883	1.225437	-0.278773
0	-2.532159	0.737136	-0.690044
С	-3.097304	-0.066575	0.090923
0	-2.564222	-0.724275	1.002035
С	-4.597253	-0.244475	-0.128799
Η	-5.093470	0.719496	-0.034335
Η	-4.774774	-0.595755	-1.143589
Η	-5.019495	-0.947829	0.582683

E(MP2) = -1004.599106 CPCM = -1002.686586

Apostreptavidin-7H₂O Complex:

С	-6.134529	1.083653	-1.814417
С	-2.894031	-0.550009	2.728760
С	1.251507	-0.581626	2.634561
С	2.001647	2.182227	-0.086817
Ċ	5 889909	-2 035601	1 362847
0	5 022621	_1 062702	0 21/05/
Ő	0.032031	-1.062703	0.314634
C	3.292553	1.684246	0.1/0108
С	4.355347	2.560202	0.371678
С	4.141824	3.940416	0.343391
С	2.856014	4.437538	0.103346
С	1.780402	3.567357	-0.114112
0	0.987772	1.312157	-0.317285
0	1.724891	-1.743191	1.946272
Ν	-2.576575	-0.490099	1.416409
0	-2 266153	-1 325445	3 459393
Ċ	-5 550831	0 304594	-0 655570
0	6 204705	0.200500	0.0000070
0	-0.304783	-0.209389	0.190133
0	-4.200590	0.1/3902	-0.629878
0	-1.936854	1.0//46/	-1.8/8104
0	-3.373303	-2.366584	-1.276948
0	-0.894379	-1.458650	-2.280525
0	1.314086	-1.283393	-0.862499
0	4.015187	-2.220558	-1.450162
0	6.737679	-2.105899	-2.172480
0	-9.027556	0.093437	0.363670
Н	-9.178120	-0.097071	1.296481
н	-8 051211	-0 016978	0 247295
н	-3 598978	-2 937091	-0 532539
и Ц	-3 770974	_1 /89101	-1 056977
11 TT	1 2/0027	1 206276	-1.030977
п	-1.349037	1.396276	-1.176215
H	-2.815531	0.898683	-1.4668/6
Н	-1.654/33	-1.980418	-1.949159
Η	-1.237326	-0.532552	-2.281380
Η	0.487922	-1.431406	-1.418624
Η	2.094314	-1.540783	-1.380935
Η	4.434597	-1.690894	-0.731616
Η	3.730875	-3.045274	-1.033229
Н	6.996752	-1.620888	-2.964750
Н	5.773535	-2.260132	-2.242362
Н	6.494999	-1.277092	-0.368459
н	5 901454	-3 059843	0 966479
u U	1 991761	_1 001573	1 974058
11 TT	6 770402	1 000726	1 000626
п	6.779495	-1.090720	1.900030
н	5.346154	2.130611	0.561306
Н	4.968553	4.6266/1	0.5058/3
Η	2.683210	5.510419	0.079721
Η	0.781232	3.941281	-0.314494
Η	3.457977	0.612361	0.205902
Η	1.279508	0.380209	-0.480865
Η	1.455997	-1.679043	1.012157
Η	1.631223	-0.644528	3.658825
Н	1.621666	0.345751	2.181732
Н	0.157362	-0.555705	2.682867
Н	-3.705623	0.113770	3.065887

Н	-1.903504	-1.177941	1.105960
Η	-3.253281	-0.131402	0.728196
Н	-5.577781	2.013270	-1.969726
Н	-7.192923	1.301042	-1.657100
Н	-6.025614	0.489204	-2.729296

Apoavidin-2H₂O Complex:

С	0.00000	0.00000	0.00000
С	0.00000	0.00000	5.742845
С	3.423608	0.00000	4.266140
С	5.594571	2.361263	6.449167
С	5.283385	0.117698	9.834019
С	5.847000	5.200299	10.187795
0	4.533629	5.388004	9.646551
C	6 000454	1 266361	10 199319
C	7 122395	1 162922	11 013635
C	7 559039	-0 079331	11 482193
C	6 815196	-1 220608	11 148814
C	5 690625	-1 132415	10 318735
0	4 214959	0 217934	9 005427
0	4 685972	3 454171	6 640797
N	3 243459	-0 157306	5 602652
0	3 536753	1 126714	3 790055
C	-0 786672	0 007184	1 319056
0	-1 739062	0.810858	1 480727
0	-0 469610	-0 839285	2 232116
N	-0 001585	0.615074	4 564662
0	0.001000	0.657477	6 794743
0	2 122665	2 091932	7 883925
0	2.422003	3 93/917	10 017871
U Ц	1 /19350	J 544614	10.017071
и П	2 975087	1 180637	10.032689
и П	2 147340	2 733230	8 569905
и П	1 608310	1 632156	7 569919
п u	-0 201628	-1 079959	5 732801
и П	0.201020	1 613844	1 553995
и П	-0 2/3787	0 105572	3 675518
и П	-0 173187	0.100072	-0 737689
и П	0.067843	-1 022117	-0.389862
п u	1 02/698	-1.022117	-0.309002
п ц	3 467610	-0 931/32	3 678218
и П	3 070901	0.559788	6 171173
н	3 040010	-1 057156	6 011317
и П	5 399507	1 857044	5 196117
и П	6 602458	2 786696	6 123969
и П	5 542059	1 629396	7 261878
и П	3 798482	3 077651	6 785125
и П	3 823959	1 101040	8 858835
и П	5 119691	-2 01 4771	10 047648
п u	7 120753	-2.014//1	11 519677
н	8 437667	-0 156050	12 115022
п u	7 672911	2 062917	11 278079
п u	5 666051	2.UU231/ 0.000705	11.2/00/9 0 02100c
п u	J.0009JI A 560/00	Z.ZJU/JJ 5 170100	8 600263 3.031000
п ц	4.JU0492 5 7/7030	J.I./UIZJ 5 101000	11 275396
п ц	5.141959 6 509971	J.IJIZZO 6 025432	4 806515
и П	6 288700	0.02J4J2 1 251512	0 86U326 9.090313
ΤT	0.200/09	コ・ムノヨノヨム	2.0000000

Streptavidin Model Residue	MP2 Energy ^a	CPCM Energy ^a	$BSSE^{b}$
Tyr 43	-1404.89149 (-1404.888018)	-1401.75532 (-1401.763007)	0.010601785501
Ser 27	-1596.07986 (-1596.075887)	-1592.29470 (-1592.302265)	0.006194657776
Asn 23	-1542.02426 (-1542.020687)	-1538.38667 (-1538.393814)	0.005580260928
Asp 128	-1596.07265 (-1596.069185)	-1592.29012 (-1592.298713)	0.007347631835
Ser 45	-1483.49764 (-1483.496347)	-1483.49764 (-1480.00271)	0.008415489126
Asp 128 – Asn 23 complex	-397.3705319 (-397.3680946)	-421.962358 (-396.3050523)	0.001761967181
Tyr 43 – Ser 45 complex	-421.96236 (-421.9614592)	-420.64124 (-420.644975)	0.003387867152

S1. Residue Deletion Energies for the Streptavidin Model

^a Open, using the MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory. CPCM energy using a dielectric of ether (4.33). Parentheses, using the MP2/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level. ^b Counterpoise corrections applied to MP2 and CPCM energies.

SEI Itesiaae Beienen E					
Avidin Model Residue	MP2 Energy ^a	CPCM Energy ^a	$BSSE^{b}$		
Tyr 33	-1574.337828	-1570.716716	0.010258098729		
Ser 16	-1765.525333	-1761.253985	0.005653311415		
Asn 12	-1711.474889	-1707.348392	0.005562748910		
Thr 35	-1765.514124	-1761.250144	0.007666781469		
Asn 118-Asp 13 Pair	-1483.503307	-1479.998475	0.006362899888		
Asn 118-Asp 13 – Asn 12 complex	-566.8365753	-565.260084	0.001436317000		
Tyr 33 – Thr 35 complex	-421.9630673	-420.64199	0.003404387665		

S2. Residue Deletion Energies for the Avidin Model

^a Open, using the MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory. Parentheses, using the MP2/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level. ^b Counterpoise corrections applied to MP2 and CPCM energies.

		· · · · · · · · · · · · · · · · · · ·	
Avidin Model (no Asp)	MP2 Energy ^a	CPCM Energy ^a	BSSE⁰
Desidue	25	25	
Residue			
Tvr 33	-1346.37407	-1343.371602	0.009599490141
5			
Sor 16	1527 560075	1522 008804	0.005407106255
3ei 10	-1557.500075	-1555.908804	0.005407100255
Asn 12	-1483.508681	-1480.004137	0.005663986160
Thr 35	-1537 545472	-1533 903801	0.004812375913
	10071010172	15551565661	0.001012070710
110	1492 502292	1 470 000755	0.004010275012
Asn 118	-1483.503382	-14/9.998/55	0.004812375913
Asn 118 – Asn 12	-338.8883409	-337.917906	0.002413303678
complex			
	100 (10500	121 0625620	0.000005170770
Tyr 33 – Thr 35	-420.642538	-421.9635639	0.003285178778
complex			

S3. Residue Deletion Energies for the Avidin Model (Asp Removed)

^a Open, using the MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory. CPCM energy using a dielectric of ether (4.33).Parentheses, using the MP2/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level. ^b Counterpoise corrections applied to MP2 and CPCM energies.

S4. Water Biotin Interaction Energies

	6		
	MP2 Energy ^a	CPCM Energy ^a	BSSE ^b
Biotin (CO)-water	-1005.4007796	-1003.481918	0.005729721401
Biotin (NH)-water	-1005.4020336	-1003.485110	0.006056650322
Water-dimer	-152.4740698	-152.082446	0.003006652568

^a Open, using the MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory. CPCM energy using dielectric of water (78.39). ^b Counterpoise corrections applied to MP2 and CPCM energies.

S5. Residue Model energies

55. Residue Model energies			
Residue Mimic	MP2 Energy ^a	CPCM Energy ^a	
Tyrosine 33/43	-306.5608022	-305.58626	-
(Phenol)	(-227.9039438)	(-305.589031)	
Serine 27/45	-115.39195	-115.05571	
Threonine 35	(-115.3931775)	(-115.057069)	
(Methanol)			
Asparte 128/13	-227.90543	-227.33998	
(Acetate)	(-227.9039438)	(-227.341906)	
Asparagine 23/118	-169.43544	-168.95678	
(Formamide)	(-169.4349842)	(-168.958812)	

^a Open, using the MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) level of theory. CPCM energy using a dielectric of ether (4.33). Parentheses, using the MP2/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level.

Streptavidin Residues	$\Delta\Delta E_{coop(vac)}^{a}$	$\Delta\Delta E_{coop(CPCM)}^{b}$	$\Delta\Delta E_{coop(CPCM)} + CP^{c}$
Tyr 43	-7.0 (-8.8)	-4.9 (-5.9)	-4.5
Ser 27	-4.9 (-4.8)	+0.6 (-0.4)	+2.2
Asn 23	+6.9 (+6.8)	-0.2 (-1.1)	+0.3
Asp 128	-9.7 (-26.8)	-7.0 (-6.4)	-6.6
Ser 45	-2.5 (-7.3)	-2.2 (-3.0)	-2.0
TOTAL	-17.2 (-41.2)	-13.7 (-16.2)	-10.6

S6. Cooperative Hydrogen-Bonding Energies (IRBE - BSRBE) in kcal/mol for Streptavidin Residues

^a MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p). MP2/6-31+G(d,p)//MPWB1K/6-31+G(d,p) in parentheses. ^b CPCM/HF/6-31+G(d,p) level corrections to MP2 energies using the dielectric of ether ($\epsilon = 4.33$). ^c MP2 and CPCM energies plus CP correction.

S7. Cooperative Hydrogen-Bonding Energy (IRBE - BSRBE) in kcal/mol for Avidin and Avidin with Asp 13 Removed Models

Protein Residues	$\Delta\Delta E_{coop(vac)}^{a}$	$\Delta\Delta E_{coop(CPCM)}^{b}$	$\Delta\Delta E_{\text{coop}(\text{CPCM})} + \text{CP}^{c}$
	Avid	in	
Tyr 33	-5.2	-4.1	-2.9
Ser 16	-3.3	+1.5	+3.3
Asn 12	+4.7	-0.4	+0.3
Asn 118–Asp 13 pair	-3.8	-5.4	-4.3
Thr 35	-4.2	-2.5	-2.2
TOTAL	-11.8	-10.9	-5.8
	Avidin (Asp 1)	3 removed)	
Tyr 33	-2.4	-2.8	-1.9
Ser 16	-1.8	+2.0	+1.5
Asn 12	+1.3	+1.3	+1.4
Asn 118	+4.6	-0.9	-1.4
Thr 35	-4.6	-3.2	-2.7
TOTAL	-2.9	-3.6	-3.1

^a MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p). ^b CPCM/HF/6-31+G(d,p) level corrections to MP2 energies using the dielectric of ether ($\epsilon = 4.33$).^c MP2 and CPCM energies plus CP correction.

S8. unliganded-(Strept)Avidin			
	MP2 Energy	CPCM energy $(\varepsilon = 4.33)$	CPCM energy $(\varepsilon = 78.39)$
Streptavidin- 7H ₂ O	-1468.544343	-1464.278510	-1464.307466
Avidin-2H ₂ O	-1256.712862	-1253.022856	-1253.061563
Streptavidin- 7H2O Scaffold	-1010.988107	-1008.017594	-1008.063688
Avidin Scaffold	-1100.919481	-1104.181153	-1100.967635
6bound waters (streptavidin)	-457.4336995	-456.217913	-456.241193
2bound waters (avidin)	-152.4739558	-152.074499	-152.083672
1 water	-76.233097	-76.036526	-76.042035

CO 1: 1.1 (64 A) A 1:

Average structures from MD simulations: (Top) unliganded streptavidin with seven waters interacting with the hydrogen bonding residues in subunit B and D and (Bottom) unliganded avidin with two binding site waters.

Solute-solvent energy pair distributions for different structures of D(+)-biotin. Details are as in *Figure 11*.

Solute-solvent energy pair distributions have been computed (Figure 7), and notably in the energy ranges of -16 to -12 and -10 to -6 kcal/mol the intramolecular hydrogen bond conformer clearly provides the least favorable interactions compared to the other three conformers.