Supporting Information

Blanc et al. 10.1073/pnas.0802147105

Fig. S1. Grafting of $[W(=NAr)(= CHtBu)(2,5-Me_2NC_4H_2)_2]$, (compound **2**) [Kreickmann T, Arndt S, Schrock RR, Muller P (2007) *Organometallics* 26:5702–5711], on a silica partially dehydroxylated at 700°C, SiO₂₋ (700), monitored by IR spectroscopy. (*A*) SiO₂₋ (700) pellet (55 mg). (*B*) Impregnation of the silica pellet with **2** (28 mg) in benzene (10 ml) (12 h, 25°C) was followed by three washes (30 min, 25°C) in benzene and a drying step under vacuum (1.34 Pa, 2 h, 25°C).

Fig. S2. One-dimensional proton solid state MAS spectra of $[2/SiO_2]$. (A) Single pulse spectrum (eight scans) at a recycle delay of 16 s. (B) Delayed acquisition spectrum (64 scans) acquired with an echo period 2τ of 2 ms. (C) Constant-time proton spectrum (1, 2). This spectrum has been constructed from a 2D spectrum by summing ω_1 traces extracted along ω_2 at the relevant proton frequencies (2, 3). The constant time T was set to 10 ms. A total of 196 t₁ points with 16 scans each were collected. (*Inset*) Magnification of the [10–2 ppm] region.

- 1. Lesage A, Duma L, Sakellariou D, Emsley L (2001) J Am Chem Soc 123:5747-5752.
- 2. Blanc F, et al. (2006) Inorg Chem 45:9587–9592.

3. Fung BM, Khitrin AK, Ermolaev K (2000) J Magn Reson 142:97-101.

Fig. S3. ¹³C CP solid state NMR spectra of [2/SiO₂] acquired under SPINAL-64 ¹H [Fung BM, Khitrin AK, Ermolaev K (2000) *J Magn Reson* 142:97–101] decoupling at $\nu_1^{\rm H}$ = 83 kHz. The contact time for CP and the recycle delay were 1 s and 1 ms, respectively. A total of 105,000 scans were collected. An exponential line broadening of 80 Hz was applied before Fourier transform. Asterisks indicate spinning side bands.

Fig. S4. 2D ¹H-¹³C HETCOR solid state NMR spectra of [2*/SiO₂] acquired under SPINAL-64 ¹H [Fung BM, Khitrin AK, Ermolaev K (2000) *J Magn Reson* 142:97–101] decoupling at $\nu_1^{\rm H} = 83$ kHz. The contact time for CP and the recycle delay were 1 ms and 1 s, respectively. A total of 32 t₁ points with 512 scans each were collected. Asterisks indicate spinning side bands of the alkylidene resonance. Above the graph is indicated the ¹³C CP MAS spectrum (10,240 scans) recorded with a CP step of 1 ms and a recycle delay of 2 s. To the left of the graph is indicated the ¹H single pulse spectrum (eight scans). Green and yellow correlations correspond to the alkylidene [W] = *CHt*Bu and methylene [W]-*CH*₂tBu moieties, respectively.

Fig. S5. Activity in the metathesis of propene in a flow reactor with [2/SiO₂]. (A) Turn over numbers vs. time (■). (B) Selectivity in metathesis products vs. time using the following conventions: ethene (♦), *cis*-2-butene (▲) and *trans*-2-butene (●).

Fig. S6. Comparison of the metathesis activity, expressed in Turn over numbers vs. time, in the metathesis of propene in a flow reactor with $[2/SiO_2]$ {[(\Longrightarrow SiO)W(\Longrightarrow NAr)(= CH2Bu)(2,5-Me_2NC_4H_2)] (compound 1)} (**I**) vs. the mixture of tungsten methylidene [(\Longrightarrow SiO)W(\Longrightarrow NAr)(= CH2Bu)(2,5-Me_2NC_4H_2)] (compound 4) and metallacyclobutane [(\Longrightarrow SiO)W(\Longrightarrow NAr)(CH2CH2CH2)(2,5-Me_2NC_4H_2)] (compound 5) (\Box) (products obtained by contacting [2/SiO_2] with ethylene).

Table S1. Discernable 13 C NMR signals of [(=SiO)W(=NAr)(=CHtBu)(2,5-Me_2NC_4H_2)] (compound 1) and [(=SiO)W(=NAr)(CH_2tBu)(2,5-Me_2NC_4H_2)_2] (compound 3) in the 13 C CP MAS solid-state NMR data

Complexes	¹³ C NMR, ppm	Assignement
1 + 3	15	2.5- <i>Me</i> ₂ C ₄ H ₂
	22	CH₃, <i>i</i> Pr
	29	$C(CH_3)_3$
	29	CH, <i>i</i> Pr
	55	$=CHC(CH_3)_3$
	69†	CH ₂ tBu
	107	Cortho(2.5-Me ₂ C ₄ H ₂)
	125	$C_{meta}(2.5-Me_2C_4H_2)$
	122–153	ArC
	260 [±]	=CH <i>t</i> Bu

 $^{t}\text{This}$ signal belongs to $[(=SiO)W(=NAr)(CH_{2}tBu)(2,5\text{-}Me_{2}NC_{4}H_{2})_{2}]$ (compound 3).

⁺Only observed when using 33% ¹³C-labeled on the α carbons [(=SiO)W(=NAr)(=*CHtBu)(2,5-Me_2NC_4H_2)] (compound 1*).

PNAS PNAS