Supporting Information

Hay et al. 10.1073/pnas.0806522105

DNAS

Fig. S1. AW promotes down-regulation of Brachyury in differentiating hESCs. The hESC differentiation protocol is shown at top. hESCs (*A*) exhibited a drastic change in cellular morphology in response to the different media. AW-differentiated cells rapidly formed a confluent monolayer (*D*–*F*) of cells exhibiting similar morphology. In contrast, AB-differentiated cells took longer to reach confluence (*J*–*L*). Consistent with different morphology, Brachyury gene expression was differently regulated in both conditions. hESCs did not express Brachyury (*B*). In contrast, cells differentiated with AW showed high levels of Brachyury at day 1, which decreased by day 3 (*G*–*I*). Cells treated with AB exhibited high-level Brachyury expression throughout the 72-h period (*M*–*O*). Specificity of staining was assessed using an IgG control (*C*). Phase images were recorded using a Nikon TE300/U, immunostaining was recorded using a Leica DMIRB. Scale bar = 100 μ M. HGF, hepatocyte growth factor; OSM, Oncostatin M. Results are presented as a mean of 4 fields of view ± SE.

Fig. S2. AW treatment promotes accelerated progression of cells through the PS. hESC-directed mesoderm and endoderm differentiation was monitored by qPCR to *Brachyury, SOX17*, and *HNF3*β. Cells differentiated with AW proceeded through mesoendoderm differentiation more rapidly than cells differentiated with AB. AW treatment exhibited rapid down-regulation of the mesoderm marker Brachyury (*A*, AW1–3 and AB1–3) and more rapid progression through the PS (*SOX17, HNF3*β) than cells exposed to AB (*B* and *C*, AW1–3 and AB1–3). (*D*) Nodal levels decreased over the 3-day time course in both models (AW1–3 and AB1–3). (*E*) *CRIPTO* levels were maximally expressed at day 3 in both protocols, indicating cellular transition to the endoderm. (*F*) Down-regulation of the hESC marker *OCT4* was observed in both protocols over the 3-day period and absent in the – RT control, C. qPCR amplicons were measured using an ABI Prism 7900.

Table S1. Primer sequences and RT-PCR conditions

PNAS PNAS

	Annealing						
Gene	Primer Sequence	temperature, °C	Cycles	Size, bp			
AFP	For-AGAACCTGTCACAAGCTGTG	55	30	675			
	Rev-GACAGCAAGCTGAGGATGTC						
ALB	For-CCTTTGGCACAATGAAGTGGGTAACC	55	30	354			
	Rev-CAGCAGTCAGCCATTTCACCATAGG						
AAT	For-AGACCCTTTGAAGTCAAGCGACC	55	30	358			
	Rev-CCATTGCTGAAGACCTTAGTGATGC						
ТО	For-GGCAGCGAAGAAGACAAATC	55	30	218			
	Rev-TCGAACAGAATCCAACTCCC						
HNF4α	For-CTGCTCGGAGCCACCAAGAGATCCATG	55	30	370			
	Rev-ATCATCTGCCACGTGATGCTCTGCA						
OCT4	For-GACAACAATGAAAATCTTCAGGAGA	55	30	218			
	Rev-TTCTGGCGCCGGTTACAGAACCA						
CYP3A4	For-CCTTACATATACACACCCTTTG	50	35	169			
	Rev-GGTTGAAGAAGTCCTCCTAAGCT						
ΤΑΤ	For-ACTGTGTTTGGAAACCTGCC	55	30	188			
	Rev-GCAGCCACTTGTCAGAATGA						
APOF	For-GGAAGCGATCAAACCTACCA	58	35	347			
	Rev-ATCAGCCTGACAACCAGCTT						
CYP7A1	For- CTGCCAATCCTCTTGAGTTCC	57	35	387			
	Rev- ACTCGGTAGCAGAAAGAATACATC						
β-ΑCTIN	For-TCACCACCACGGCCGAGCG	58	25	350			
	Rev-TCTCCTTCTGCATCCTGTCG						

[A]**AFP*, *α* fetoprotein; *ALB*, albumin; *TO*, tryptophan dioxygenase; *HNF4α*, hepatocyte nuclear factor 4*α*; *OCT4*, Octamer 3/4; *CYP3A4*, cytochrome p450 3A4; *TAT*, tyrosine amino transferase; *APOF*, apolipoprotein F; *CYP7A1*, cytochrome p450 7A1; *β*-*ACTIN*, *β* actin.

Table S2. qPCR primer sequences and conditions

Gene Primer/probe sequence		
BRACHYURY	Applied Biosystems - hs00610079-ml	
HNF3β	Applied Biosystems - hs00936490-ml	
SOX17	Applied Biosystems - hs00751752-sl	
NODAL	Applied Biosystems - hs01080749-ml	
CRIPTO	Applied Biosystems - hs00414425-ml	
ALBUMIN	Applied Biosystems - hs 00910225-m1	
	For-TCCTCGCTGGCTACCCAAT	
WNT3	Rev-CGGCAGAAGCGCAGTTG	
	Probe-CCAGGGCCAGGGACCACCAA	
	For-GCCCGCTCAGCCATGA	
$WNT3\alpha$	Rev-CCGTGGCACTTGCACTTGA	
	Probe-CAGGCCATCGCCAGCCACATG	
	For-ACTTCTGCATGAAGAATGAGAAGGT	
WNT11	Rev-TCGCTTCCGTTGGATGTCTT	
	Probe-CCCACGGGACACAAGACAGGCAG	
	For-GAGTATGCCTGCCGTGTG	
b2M	Rev-AATCCAAATGCGGCATCT	
	Probe-CCTCCATGATGCTGCTTACATGTCTC	

WNT, wingless; HNF3 β , hepatocyte nuclear factor 3 β ; SOX17, SRY (sexdetermining region Y)-box 17; β -2M, β 2 microglobulin.

PNAS PNAS

	~ ~					
ISBIO		Immunoctoining	• prim pri	n and c	acondany	antihodioc
lable	33.	mmunostammu	. Driilarv	anu se	econuary	anupules

Antigen	Туре	Source	Dilution
Wnt3a	Mo mono	R&D Systems	1/20
DPPIV	Go poly	R&D Systems	1/1000
Brachyury	Go poly	R&D Systems	1/100
Albumin	Mo mono	Sigma	1/500
Albumin	Rb poly	AbCam	1/600
CK18	Mo mono	DAKO	1/50
CK19	Mo mono	DAKO	1/50
hKi67	Mo mono	DAKO	1/400
Anti-Mo 488	Rb anti-Mo	Molecular Probes	1/500
Anti-Go488	Do anti-Go	Molecular Probes	1/500
Anti-Mo HRP	Rb anti-Mo	DAKO	1/100
Anti-Go HRP	Rb anti-Go	DAKO	1/100

Mo mono, mouse monoclonal antibody; Go poly, goat polyclonal antibody; Rb anti-Mo, rabbit antimouse; Rb-anti-Go, rabbit antigoat; Do anti-Go, donkey antigoat.

PNAS PNAS