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Supporting Information

Details of the mutational process

Since random mutations could have a bias towards increasing the requirement K, we

assume that with probability )exp()1()( , KjiKKijK KbbKP σ−−+=+ , Kji’ is sampled uniformly

from ],[ jiKji KaK  and with probability +− KP1  from ],/[ jiKji KaK . Here 1>Ka , 0>Kσ , and

10 ≤≤ Kb  parameterize the magnitude of mutations, the range of typical values, and the

bias in favor of degrading mutations, respectively. Similarly, with probability +
CP , Cji' is

sampled uniformly from ],[ jiCji CaC  and with probability +− CP1  from ],/[ jiCji CaC . The

probability to increase the resource consumption parameters is chosen to be log-normal,

( )22
00 2/))/(log(exp2/)( CjijijiC CCCCcP σ−⋅=+ . The parameters here are 1>Ca , the amplitude

of mutations, 00 >C , the value towards which mutations typically tend, and 0>Cσ , which

determines how far from 0C  values of jiC  can stray. Drawing the mutations in this way

prevents runaway in parameter space towards extreme values. This is both technically

convenient, but also reflects the reality of physiological constraints that bound the range

of possible organisms.

Sensitivity to parameter values

Different values of the six parameters of the mutational process can give rise to many

processes – from highly constrained mutations of small amplitude to large and essentially

random mutations. To determine the effect of the particular choice of the mutational
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process on the evolution of biodiversity, we randomly sampled 100 combinations of

mutational parameters and simulated evolution in an environment with 20 resources. In

all the cases, the main results, as represented by Fig. 2, were reproduced (Fig. S1). For

the rest of the numerical simulations, consisting of realizations with many more values of

the number of resources, and 20 repetitions in each environment, were done with one

choice of the mutational parameters such that
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Analytical test for existence of ecological equilibrium for a given set

of species parameters (Supporting Information for Fig. 3)

In this section we derive the conditions for n species competing for k resources to exist in

equilibrium. This test, applied to all the subsets of species that include the new mutant

lineage, is used to calculate the distribution and maximum possible species number in

Fig. 3 of the main text.

Conditions for stability of a fixed point in this model were previously derived for 3

species and 3 resources (1). Here we extend these results to any number of species and

resources.

Let nikjKC jiji ,,1,,,1,, …… == be species parameters

governing the system of differential equations

(1)

( )

( )

( ) .minmin,,

,...,1,,,)(

,...,1),,,(

1

1
1

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
==

=−−=

=−=

∑
=

jji

j

jjijki

n

i
ikijijj

j

kii
i

RK
rR

RR

kjNRRCRSD
dt

dR

nimRRN
dt

dN

μμ

μ

μ

…

…

…

The parameters Kji are called the resource requirement parameters, and Cji the resource

consumption. Sj are parameters for the supply of resources in the environment.

Fixed point conditions
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A fixed point is defined as a point ),,,,( **
1

**
1 kn RRNN ……  at which the time derivatives of

all variables are zero. The fixed point requirement for the abundance of species i is given

by
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If j is the index of the resource which limits the growth (saturates the minimum growth

rate) of species i in equilibrium, then
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Thus the equilibrium concentration of a limiting resource is determined by the parameters

of the species it is limiting. It follows that for two or more species to be limited by the

same resource it is necessary that they have exactly the same requirement parameter for

this resource, which we assume is never the case. Since each species must be limited by a

separate resource, the number of species that can coexist in equilibrium cannot exceed the

number of resources.

The condition that j is the limiting resource for species i means that the growth rate of

this species with respect to any other resource is greater:
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For any other species i’ that is limited by a resource j’, eq. (3) can be used to rewrite this

condition as

(6) ,
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or

(7) '''' iiKK ijij ≠∀< .

This means that for a resource j’ which is limiting species i’ in equilibrium, Kj’i’ is the

largest element in the j’-th row of {Kji}. In other words, if a resource is a limiting resource

for a species, then that species must be the one which has the largest requirement for the

resource.

For each resource j, we denote by σ(j) the index of the largest element in the row:

(8) jiijj KKj max:)( )( =σσ .

A necessary condition for equilibrium with n species is that there are n resources that are

each limiting one of the species. A subset of resources },,,{ 21 njjj …  can be the set of

limiting resources in equilibrium only if each of the species is represented:

(9) },...,1{)}(,),(),({ 21 njjj n =σσσ … .

 In particular, a necessary condition for the existence of such an equilibrium is that

)}(,),2(),1({},...,1{ kn σσσ …⊆ .
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Listing all possible equilibrium solutions with n species thus begins by finding all subsets

of resources that satisfy eq. (9).

Given a subset of resources that satisfies eq. (9), we can relabel the resources so that,

WLOG, the i-th species is limited in equilibrium by the i-th resource. The n equations in

(2) are satisfied by setting

(10) niKR jjj ,...,1,* ==α .

The rest fixed-point equations are
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For j=1,…,n, substituting the solutions (10) yields
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It is convenient at this point to introduce the following vector and matrix notation:
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Using this notation (and denoting fixed point variables with an asterix), eq. (12) can be

solved by setting
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(14) )(1* KSCN α−= −

m
D .

The remaining k-n equations of (11) are

(15) ** ~)~~(0 NCRS mD −−= ,

from which we obtain

(16) )(~~~~~ 1** KSCCSNCSR α−−=−= −

D
m .

Equations (10), ((14) and ((16) give the values of the variables at a fixed point in terms of

the species parameters (Kji, Cji, r, and m) and the parameters of the environment (S and

D), provided that the limiting resources satisfy eq. (9) (before the index relabeling), and

that the inequality (5) holds for j’=n+1,…,k. The conditions on the resources guarantee

that they are all positive, but the positivity of the species abundances need to be checked

for a biologically relevant solution.

Stability conditions

A point of equilibrium, or stable fixed point, is a fixed point that has the property that the

system returns to it after a small perturbation. The precise formulation begins by writing

the system of differential equations for a small perturbation around the fixed point and

keeping only terms that are linear in the perturbation. Writing

(17) ,~~~  and ,, *** RRRRRRNNN δδδ +=+=+=

the linearized equations of motion take the form
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with the Jacobian given by
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nn×I  and )()( nknk −×−I  are identity matrices, and ijδ  is the Kronecker symbol which is equal

to 1 when i=j and zero otherwise.

The stability condition is that the (real part of the) eigenvalues of J are all negative. The

eigenvalues of the Jacobian are solutions of the equation

(21)
.

~)(~~
)(det

)det(0 )()(

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−−
−+−−

−
=

−= +×+

IFC
0FIC
0AI

IJ

λ
λ

λ

λ

Dm
Dm

knkn

We use the following identity for the determinant of a matrix in terms of its blocks:
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Applied to eq. (21), this gives
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The first factor of the right hand side of this equations shows that k-n degenerate

solutions of this equation are D−=λ , which is negative and therefore automatically

satisfies the requirements of equilibrium. For any other solution, it is possible to divide

by the first factor. The second factor can be simplified using an identity similar to eq.

(22):
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This identity can be applied only if X11 is non singular, which here means for λ≠0. For

λ=0 to satisfy eq. (23) it must hold that
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which can happen only if the species parameters are tuned very precisely. For general

parameter values we can assume that this is not the case, and can therefore use eq. (23) to

get
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Since λ≠0 it is possible to divide by the first factor, and realizing that FAC = , the

equation further simplifies to
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If D=m (as it actually is in our simulations) then λ=-m is a possible solution to this

equation, and it satisfies the stability condition. For any other solution, or when D≠m, eq.

(27) can be divided by nm)1(
λ

−−  to give
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The last equation is the eigenvalue equation for the matrix F ,
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Solving eq. (30) for λ gives:
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From (32) and (34) it follows that all the eigenvalues of the Jacobian are negative, λ<0, if

and only if all the eigenvalues of F , with matrix elements ,
)1(

*

2
ii

iji
ji K

NCrF
α+

=

i,j=1,…,n, are all positive.
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Community size is determined by species properties and not by

dynamical constraints imposed by initial conditions

Fig. S2 shows data from 100 realizations of evolution in an environment with 20 essential

resources (Data from one such realization is presented in Fig. 3).  At each step in the

course of evolution, after a beneficial mutation was drawn, we used the values of the

species parameters to calculate the size of the largest subset of stably coexisting species

that contains the new mutant lineage. For this, we used an exact analytic solution for

equilibria of the ecological equations of motion. In addition, we recorded the number of

species that actually remained after the system had settled to a new equilibrium. The

shade of each square reflects the frequency of states with a given actual number of

species (ordinate) normalized by the total number of instances sharing the same

maximum possible number of species (abscissa). When the system exhibits persistent

fluctuations, the actual number of species can exceed the maximal number possible at

equilibrium.
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Depletion of limiting resources during evolution

In this section we provide an analytical explanation for the effect demonstrated in Fig. 4c:

limiting resources are depleting faster than non-limiting resource.

Without loss of generality, assume that species 1 is limited by resource 1 in equilibrium.

Eq. (10) provides the equilibrium value of the concentration of resource 1 as:

(35) 11
*

1 KR α= .

So long as resource 1 is the limiting resource for this species, its equilibrium

concentration does not change. If, however, a mutation arises (denoted with index m)

which is also limited by this resource (this will most likely be a mutation of species 1

itself), the requirement of the mutant species for resource 1 must be smaller that that of

species 1:

(36) 111 KK m < .

Otherwise, the concentration of resource 1, given by eq. (35), will be below the minimum

needed to sustain the mutant species, indicating that the mutation was not a beneficial

one. Subsequently,  the mutation will spread, and it will keep spreading until the resource

concentration settle on a new, lower, value:

(37) 111
*

1 KKR m αα <= .

(At this point species 1 can no longer persist and it becomes extinct.)

We conclude that the concentration of a limiting resource is reduced each time a new

beneficial mutation appears which is limited by this resource.
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Consider now the ratio of the equilibrium abundances of a resource which is limiting a

species undergoing adaptation ( *
1R ) and a resource which is not limiting any existing

species ( *
1

~
+nR ). From eqns. (16) and (35) we have
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Where A and Bi are functions of the supply parameters as well as the C’s. Since the

fitness of a species does not depend on the Cs at any time we can assume that due to drift

these parameters are randomly fluctuating around some constant value. It follows that as

the set of limiting resources is repeatedly depleted according to the result derived above

and the denominator approaches zero, the numerator is bounded below and remains

finite. In the limit that Kii<<A/Bi as well as K11<<A we have

(39) .1~ 11
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1 <<≈
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Depletion of limiting resources decreases the probability of

speciation and increases the chance of extinction

While the actual growth rate of a given species is determined by the resource for which it

grows most slowly, the ranking of its growth rates on other resources ( jiμ  in eq. (1)) has

consequences both for predicting the likely properties of a mutant formed from this

species, and for the likelihood that the species goes extinct following a reduction in the

concentration of a non-limiting resource. This can be seen by considering the normalized

resource concentrations defined by the ratios Rj/Kji for species i and resource j. Since the

growth rates jiμ  are monotonically increasing functions of these ratios, the rank order of

the former and the latter among resources (for a fixed species) is the same. We have

already seen that at equilibrium the normalized concentration of the limiting resources is

equal to α, and all other ratios must be larger.

Assume now that species 1 is limited by resource 1 etc., and consider the double ratio:

(40)
42

*
4

12
*
1

KR
KR .

This is an example of the relation between growth rates of a species (here species 2) with

respect to limiting vs. non-limiting resources (1 and 4). K12 and K42 are under no selection

and their ratio should approach a constant of order 1. On the other hand, since R1 is the

limiting resource for species 1 while R4 does not limit any of the species, the conclusion

eq. (39) can be applied. Putting these facts together we get

(41)
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This argument demonstrates why the normalized concentration (and therefore the growth

rate) of a limiting resource is expected to be smaller than that of a non-limiting one.

If we represent each of the ratios as a small circle on a vertical line, and use different

lines for different species, a hypothetical situation for 3 species competing for 5 resources

is shown in Fig. S3. The numbers inside the circles are the indices of the resources and

the blue circles indicate resources which are most limiting for one of the present species.

The accumulation of the blue circles in the lower positions of each line is a consequence

of the argument made above.

At the instant of its occurrence, a mutation has a modified set of the normalized resource

concentrations Rj/Kji, compared to its ancestor, due to the change in the resource

requirements. The resource for which the resource/requirement ratio is lowest is the

limiting resource for the mutant, and the corresponding normalized resource

concentration has to be larger than α for the mutation to be beneficial (=able to expand).

Two examples of mutations on species 1 are shown in Figs. S4 and S5.

In Fig. S4 the mutant is limited by resource 1, the same as its ancestor. With the

normalized resource concentrations as shown, the mutation is beneficial, and the mutant

population starts out growing at a rate faster than m, the mortality rate. As it grows it

causes the concentration of resource 1 to drop until it is at the equilibrium value for the

mutant species. As resource 1 is being depleted in this way, the ratios R1/K11, R1/K13 and

R1/K13 are decreasing as well (orange arrows). For species 1 this immediately brings the

ratio below the minimal value of α which is necessary to sustain it and it is driven to

extinction. This is the common process whereby a mutant substitutes its ancestor.
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However species 1 is not the only species affected by the spread of the mutant lineage.

Due to the relatively low initial concentration of resource 1 normalized by the

requirement of species 3, the new equilibrium concentration of resource 1 will be too low

for it as well and it will be driven to extinction along with species 1. This demonstrates

how the low normalized resource concentrations for limiting resources, coupled with the

fact that such resources are under selective pressure, can cause a spreading mutation to

drive several other species to extinction.

The example in Fig. S5 is of a new mutation that can spread without eliminating other

species. For a speciation event of this type to occur, the mutant species must be limited

by a resource that is not limiting any of the pre-existing species. The accumulation of

normalized concentrations of limiting resources at the bottom of the scales imply that a

mutation of the type shown in the illustration must be “large” in the sense that it involves

a significant rise in the requirement (and therefore a significant drop in the normalized

concentration) for a non-limiting resource (4 in this case). There is also some fine-tuning

involved to ensure that the requirement for the resource limiting the ancestor (1) drops

sufficiently to prevent it from remaining most limiting. These considerations, which are

based on the intensified depletion of limiting resource compared to non-limiting ones,

suggest that the probability of speciation events, such as the one shown above, is small.*

                                                
* This reasoning assumes that mutations are small in the sense that the properties of the mutant are
correlated with the properties of the ancestor. When this is not the case, it has already been shown2 that it is
unlikely that the parameters of a random collection of species satisfy the conditions for a stable
equilibrium.
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Speciation and extinction – comparison with a naïve niche-model

It is illuminating to contrast the balance between extinction and speciation in the

complete model to expectations based on a simple model. We consider an intuitive,

niche-based model, motivated by the work of MacArthur and Levins (2), that posits k

resources accommodating k single-species niches. At each adaptive step the new

spreading species either invades a previously occupied niche (replacement) with

probability kn /  (where n is the number of species present before mutation) or fills an

unoccupied niche (speciation) with probability knnpspe /1)( −=  for kn ≤ . Fig. S6 shows,

for this model as well as for the full model (for species competing for 100 resources), the

dependence of the change in the number of species over an adaptive step, nΔ , on n itself.

Such curves show the evolutionary stable number of species through their intercept with

the horizontal axis, as well as provide insight into dynamical behavior away from these

points. The line of )(nnΔ  coincides with that of )(npspe when there are only replacements

and speciations ( 1or  0=Δn ), as in the simplified model (dashed line). In that model, the

evolutionary stable number of species is reached when all the niches are occupied and the

probability of finding an unoccupied one vanishes. In the full model, the effect of a

similar exhaustion of environmental opportunities can be seen by separating from )(nnΔ

the contribution of )(npspe  (solid lines). Comparison to the simple model confirms the

expectation that in the full model the probability of speciation is reduced. It is also clear,

however, that the diminished speciation accounts for only part of the gap in the number

of species between the simple and full models. Extinction makes up the difference.
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The importance of extinctions in determining the number of species that are sustained in

an environment is underscored by the shape of the distribution of nΔ  (Fig. S6, inset).

While replacement events are most common, and speciation ( 1+=Δn ) and double

extinction ( 1−=Δn ) nearly cancel each other, the balance is tipped by the more negative

values. This example illustrates the importance of mass extinctions: it is not uncommon

for more than half the species to be eliminated by the spread of a single new mutant

lineage. In contrast with the naïve model, when species compete for essential resources,

the evolutionarily stable number of coexisting species is regulated not only by saturation

of the environmental niches and the decrease in the probability of speciation but also by

the increased probability of catastrophe.

The role of superspecies

A superspecies is a species that is more adapted to the environment than all other present

species and therefore drives all its competitors to extinction (3). A partial superspecies is

superior to some of its competitors, driving only those species to extinction. We examine

extinctions that follow the spread of a mutant lineage and ask whether the mutant species

is a (partial) superspecies. The mutant species is considered superior to another species if

in a one-on-one competition the mutant species is the only survivor. Considering such

competitions between the mutant species and each of the species it drives to extinction, a

degree of superiority can be defined as the fraction of head-to-head competitions won by

the mutant species. Shown in Fig. S7 is the average degree of superiority as the number

of resources changes from 2 to 100.  We observe that while extinctions are largely

triggered by superspecies when the number of resources is low, this is not the case at
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higher dimensions, where the probability of a mutant species to be superior to one of the

species it drives to extinction approaches 1/2.

Inclusion of explicit trade-offs

Trade-offs in resource utilization have been suggested as important in enabling multiple

species to coexist. Their presence prevents the occurrence of superspecies that are

superior to other species in all respects (3, 4). Our analysis suggests that, in the model

discussed here, the triggering of extinctions by superspecies is not the primary

mechanism that keeps biodiversity low during the course of evolution. We therefore

expect that the introduction of explicit trade-offs between the requirements for different

resources will not considerably affect the number of species sustained over evolutionary

times. The results of simulations confirming this expectation are shown in Tab. 1.

Trade-offs were implemented by requiring that the mean over j of Kji be constant (5). For

each of the environments considered for Tab. 1, ten realizations of evolution were

simulated, each consisting of 1500 steps. In each realization no explicit constraint were

imposed on the Ks for the first 1000 steps, and trade-offs were implemented for the last

500 steps. The number of species for the dynamics without constraints was averaged over

500 steps, from 501 to 1000, from all ten runs, while for the dynamics in the presence of

trade-offs averages were calculated from the steps 1001 to 1500.

It should be noted that even without explicit constraints, the mutational process that we

used contains a bias towards degradation of resource requirements which can be tuned by

the parameter bK, and that can effectively introduce trade-off: while the requirement for at

least one of the resources must decrease for a beneficial mutation, the bias towards

degradation (especially for values of bK close to 1) causes the requirement for all other
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resources to increase. The bK panel of Fig. S1 indicates that, like the explicit trade-offs,

the implicit constraints implied by the mutation bias have little effect on the biodiversity

sustained by evolution.
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