1 SUPPLEMENTAL FIGURE LEGENDS AND TABLES I-III

2

3 Supplementary Figure 1: Alignment of Farnesyltransferases from different

- 4 plant species. Amino acid sequences were aligned using clustalW
- 5 (http://www.ebi.ac.uk/clustalw/) and shaded using boxshade
- 6 (http://www.ch.embnet.org/software/BOX_form.html). Conserved residues are
- 7 shaded in black and similar residues are shaded in grey. The newly predicted
- 8 start codon is indicated with a red *. At_ERA1 Arabidopsis thaliana (accession
- 9 NP_198844); Le_FTaseB Lycopersicon esculentum (tomato, accession
- 10 AB69757); Cr_FTase B: Catharanthus roseus (Madagascar periwinkle,
- 11 accession AAQ02809); Os_FTaseB Oryza sativa japonica cultivar-group (rice,
- 12 accession NP_001044183); Ps_FTaseB: *Pisum sativum* (pea, accession
- 13 Q04903).
- 14

15 Supplementary Figure 2: Response of *era1* alleles to flg22.

- 16 Following procedures described in Gomez-Gomez *et al.*, 1999, seedlings grown
- 17 for ten days on MS agar plates were transferred to liquid MS or liquid MS
- supplemented with 30 µM flg22. The fresh weight of 20 plants from each
- 19 treatment was analyzed 10 days later by weighing. Errar bars represent standard
- 20 deviation, and the experiment was repeated once with similar results. (a) Data
- 21 presented as bar format. (b) Pictures of representing seedlings. In each panel,
- the left two plants are the ones soaked in MS supplemented with flg22, while the
- right two seedlings are the control plants soaked in MS alone.

Supplementary Figure 3: Levels of ABA and its metabolites in leaves of Col and *snc1*.

- 26
- 27 DPA X 0.1, dihydrophaseic acid; PA phaseic acid; n-PA neophaseic acid.
- n=3.The experiment was repeated once with similar results.
- 29

Supplementary Figure 4: Contribution of ABA in *era1*-mediated enhanced pathogen susceptibility.

- 32 (a) Plants were infected with avirulent *P.s.t.* DC3000 carrying *AvrRPM1*.
- 33 (b) Plants were infected with avirulent *P.s.t.* DC3000 carrying *AvrRPS4*.
- 34 (d) Plants were infected with avirulent *H.p.* Cala2 carrying *AvrRPP*2.
- 35 Bacterial growth was determined as colony forming units dpi. Experiments were
- 36 repeated at least once with similar results. Bars represent the average of six
- 37 biological replicates, error bars indicate standard deviation.
- 38

Supplemental Table 1: Allelism test between several era1-alleles and mos8

snc1 npr1-1.

	F ₁	F ₂			
	morphology ²⁾	phenotypic segregation ³⁾			
cross ¹⁾		total	wt-like	snc1-like	<i>era1</i> -like
era1-8 X mos8 snc1 npr1-1	<i>era1</i> -like	197	0	0	197
mos8 snc1 npr1-1 X era1-5	<i>era1</i> -like	150	0	0	150
mos8 snc1 npr1-1 X era1-6	<i>era1</i> -like	125	0	0	125
era1-2 X era1-7	<i>era1</i> -like	205	0	0	205

¹⁾ The crosses are indicated with the female parent first, the male parent second. *era1-4,5,6* are in Ler ecotype, *era1-2,8* are in Col ecotype. ²⁾ F_1 phenotypes were scored for seedlings sown on MS-plates and transferred to soil, based on

7 , 8 9 flowering time and morphology. ³⁾ F_2 phenotypes were scored for seedlings stratified for seven days and sown directly on soil. wt,

wild type.

Supplemental Table 2: Multiple era1 alleles suppress snc1.

	F ₁	F ₂						
	morphology	phenotypic segregation ³⁾						
cross ¹⁾	2)	total	wt-like	s <i>nc1</i> -like	<i>era1</i> -like	hypothesis ⁴⁾	χ²	Р
snc1 X era1-4	wt-like	142	80	28	34	9:3:4	0.1346	0.93
era1-5 X snc1	wt-like	104	61	20	23	9:3:4	0.4658	0.79
snc1 X era1-6	wt-like	168	92	35	41	9:3:4	0.4788	0.79
era1-8 X snc1	wt-like	327	175	66	86	9:3:4	1.0136	0.60
era1-2 X snc1	wt-like	206	118	41	47	9:3:4	0.5782	0.75

¹⁾ The crosses are indicated with the female parent first, the male parent second. *era1-4,5,6* are

in Ler ecotype, era1-2,8 are in Col ecotype.

²⁾ F₁ phenotypes were scored for seedlings sown on MS-plates and transferred to soil, based on flowering time and morphology. wt, wild type.

³⁾ F_2 phenotypes were scored for seedlings stratified for seven days and sown directly on soil. ⁴⁾ The hypothesis for suppression of *snc1* in the F_2 is 9 wild type : 3 *snc1*-like : 4 *era1*-like.

2 Supplemental Table 3: Putative ERA1-targets tested in this study.

Gene ID	Putative function/homology	CAAX ¹⁾	T-DNA lines tested ²⁾	location of T-DNA insert ³⁾
At1g18760	Zinc finger (C3HC4-type RING finger) family protein	CEDQ	SALK_109030	300-UTR5
At1g22790	Expressed protein	CVIM	SALK_141943	300-UTR5
At1g23000	Heavy-metal-associated domain-containing protein	CNIM	SALK_114825	Exon
At1g27850	Similar to En/Spm-like transposon protein	CSIM	SALK_005882	300-UTR3
At1g28550	Putative Ras-related GTP-binding protein	CCSA	SAIL_218_C11	Exon
At1g33480	Zinc finger (C3HC4-type RING finger) family protein	CRMQ	SALK_108072	300-UTR3
At1g49420	Heavy-metal-associated domain-containing protein	CSIM	SALK_042250	Intron
At1g51580	Protein with KH domain/RNA binding protein	CGQS	SAIL_1285_H03	Exon
At1g67830	alpha-fucosidase 1	CKRQ	SALK_140323	300-UTR5
At1g74530	EscC (E. coli) Type III secretion system component	CAKS	SALK_110280	Intron
At2g47950	Hypothetical endomembrane protein	CLAS	SALK_142871	Exon
At3g04900	Heavy-metal-associated domain-containing protein	CSIM	SALK_037340	300-UTR5
At3g06300	Prolyl-4 hydroxylase	CKAC	SALK_034891	300-UTR3
At3g07600	Heavy-metal-associated domain-containing protein	CRIM	SAIL_118_F05	Intron
At3g13140	Hydroxyproline-rich glycoprotein family protein	CVIM	SALK_001636	300-UTR5
At3g21490	Copper-binding family protein	CSIS	SALK_101142	Intron
At3g26380	Glycosyl hydrolase family protein 27	CSNA	SALK_016141, SALK_117663	300-UTR5
At3g26980	Ubiquitin domain containing protein	CTIM	SALK_045794	Promoter
At3g44630	Disease resistance protein RPP1-WsB-like	CVSS	SALK_144159	Exon
At3g55260	Glycosyl hydrolase family protein 20	CYAQ	SALK_026094	Exon

3 Homozygous T-DNA insertion lines were tested for disease phenotypes after inoculation with *H. parasitica* and/or *P.s.m.*

4 ES4326 (see Methods). Among all, none showed significant difference in resistance/susceptibility compared to

5 simultaneously inoculated wild type plants.

6

1

continued on next page.

Gene ID	Putative function/homology	CAAX ¹⁾	T-DNA lines tested ²⁾	Location of T-DNA insert ³⁾
At4g32780	Expressed protein	CFLA	SALK_011990	300-UTR5
At5g03380	Heavy-metal-associated domain-containing protein	CSVM	SALK_111020	Exon
At5g08310	Pentatricopeptide (PPR) repeat-containing protein	CFCS	SALK_110420	Exon
At5g17450	Heavy-metal-associated domain-containing protein	CSIM	SALK_092415	Intron
At5g33335	Defensin-like family protein	CYKS	SAIL_667_C08	Exon
At5g42440	Protein kinase	CRFM	SALK_134111	Exon
At5g44880	Hypothetical protein	CRRC	SALK_122906	Exon
At5g52740	Heavy-metal-associated domain-containing protein	CVTS	SALK_082835, SALK_012334	300-UTR3, 300-UTR5
At5g63530	Copper chaperone (CCH)-related	CTVM	SALK_082835	300-UTR3
At5g66110	Heavy-metal-associated domain-containing protein	CTIM	SALK_051332	300-UTR5

Supplemental Table 3 continued.

¹⁾ CAAX-box denoting the farnesyltransferase recognition consensus at the C-terminus of putative targets.

²⁾ T-DNA lines were obtained from ABRC and tested for homozygosity by PCR using a combination of T-DNA and gene
specific primers.

³⁾Location of T-DNA insert. Over 50% of tested Salk-lines carry the T-DNA inside the gene (37.5% in exon, 15.625% in

14 intron), while the remainder remaining lines have the T-DNA in the promoter (3.125%) or untranslated regions (28.125%)

15 5'UTR, 15.625% 3'UTR)