SUPPLEMENTARY DATA

The proof reading exonuclease subunit ϵ of $\it Escherichia\ coli$ DNA polymerase III is tethered

to the polymerase subunit $\boldsymbol{\alpha}$ via a flexible linker

Kiyoshi Ozawa, Slobodan Jergic, Ah Young Park, Nicholas E. Dixon and Gottfried Otting

Table S1. PCR primers used in this study¹

975 ²	5'-TTTGAATTCTTATGCTCGCCAGAGGCAAC-3' (29-mer)
974 ³	5'-TTTTTTTTCATATGAGCACTGCAATTACACG-3' (31-mer)
1131	5'-PO ₄ -TTAGCTGGTCGATCCCGCGAAATTAATACG-3' (30-mer)
1132	5'-PO ₄ -CCAGCTAACAAAAAACCCCTCAAGACCCG-3' (29-mer)
1133	5'-PO ₄ -TCGATCCCGCGAAATTAATACG-3' (22-mer)
1134	5'-PO ₄ -CAAAAAACCCCTCAAGACCCG-3' (21-mer)
1145 ²	5'-TTTTTTTCATATG <u>GCTTCT</u> GCAATTACACGCCAG-3' (35-mer)
1164 ³	5'-TTTGAATTCTTACGCAAAAACAACGCGTAAC-3' (31-mer)
1167 ⁴	5'-GGAAGGAGAG <u>GCA</u> CAACAGCAAC-3' (23-mer)
1168 ⁴	5'-GTTGCTGTTG <u>TGC</u> CTCTCCTTCC-3' (23-mer)
1169 ⁵	5'-GGTGAAGCA <u>GCA</u> ATTCAGCGC-3' (21-mer)
1170 ⁵	5'-GCGCTGAAT <u>TGC</u> TGCTTCACC-3' (21-mer)
1179 ⁶	5'-CAAACGTCGATGGGTTTTGCGATGG-3' (25-mer)
1180 ⁶	5'-CCATCGCAAAAACCCATCGACGTTTG-3' (25-mer)
1181 ⁷	5'-GATGGCTTTT <u>GGG</u> ATGGAAGGAGAG-3' (25-mer)
1182^{7}	5'-CTCTCCTTCCAT <u>CCC</u> AAAAGCCATC-3' (25-mer)
1183 ⁸	5'-CAAGGTGAAGGAACAATTCAGCGC-3' (24-mer)
1184 ⁸	5'-GCGCTGAATTGT <u>TCC</u> TTCACCTTG-3' (24-mer)
1185 ⁹	5'-CTCTGGCGA <u>GGA</u> TAAATACCTGTG-3' (24-mer)
1186 ⁹	5'-CACAGGTATTTA <u>TCC</u> TCGCCAGAG-3' (24-mer)

¹ Codons of mutated amino acids are underlined. Mutated bases are shown in bold.

 2 Forward and reverse primers to generate the S2A/T3S double mutant of $\epsilon.$

³ Forward and reverse primers to generate the C-terminal deletion mutant $\varepsilon 217$.

⁴ Forward and reverse primers to generate the T193A mutant of ε .

⁵ Forward and reverse primers to generate the T201A mutant of ε .

 6 Forward and reverse primers to generate the A186G mutant of $\epsilon.$

 7 Forward and reverse primers to generate the A188G mutant of $\epsilon.$

 8 Forward and reverse primers to generate the A200G mutant of $\epsilon.$

 9 Forward and reverse primers to generate the A243G mutant of $\epsilon.$

Preparation of C-terminally truncated α subunit of the *E. coli* DNA polymerase III

A construct of C-terminally truncated (after residue 917) subunit α with an N-terminal His₆ tag (α 917) was prepared by insertion of the corresponding part of the *dnaE* gene as a PCR-generated NdeI-EcoRI fragment between the corresponding sites in the T7 promoter vector pETMCSI (S1), to generate the plasmid pKO1342 that encodes α 917.

E. coli cells (BL21:: λ DE3/plysS) harboring pKO1342 were grown aerobically for two days at room temperature in an auto-induction medium (S2); 2 litres of cell culture yielded about 14 g of cells. The French press lysate was loaded onto a 5 ml column of Ni-NTA resin (Pharmacia) in a buffer of 50 mM Hepes-KOH, pH 7.5, 300 mM NaCl, 5% glycerol, and 20 mM imidazole, Bound α 917 was eluted with an gradient of 20–500 mM imidazole in the same buffer. The elute was dialyzed and subjected to chromatography on a DEAE-Toyopearl column (2.6 × 3.5 cm) in a buffer of 20 mM Tris.HCl, pH 7.6, 1 mM EDTA, 1 mM dithiothreitol, and 5% glycerol. The bound α 917 was eluted with a gradient of 0–1M NaCl, yielding about 11 mg of pure α 917. Its concentrations was determined spectrophotometrically at 280 nm, using the calculated ε_{280} value of 73820 M⁻¹cm⁻¹ (S3).

References

- S1. Neylon, C., Brown, S.E., Kralicek, A.V., Miles, C.S., Love, C.A. and Dixon, N.E. (2000) Interaction of the *Escherichia coli* replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. *Biochemistry*, **39**, 11989–11999.
- Studier, F.W. (2005) Protein production by auto-induction in high-density shaking cultures. *Protein Express. Purif.*, 41, 207–234.
- Gill,S.C. and von Hippel,P.H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. *Anal. Biochem.*, 182, 319–326.

Figure S1. Cell-free synthesis of $\varepsilon 217$ in the absence and presence of θ and $\alpha 917$. $\varepsilon 217$ was synthesized at 30°C from PCR-amplified DNA as described in the main text. The gels were stained with Coomassie brilliant blue. P and S denote the insoluble (pellet) and soluble (supernatant) fractions, respectively. (A) $\varepsilon 217$ synthesized in the absence of θ and $\alpha 917$ is insoluble. (B) $\varepsilon 217$ synthesized in the presence of 0.5 mg/ml θ and 5 mg/ml $\alpha 917$ results in co-precipitation of $\alpha 917$ with $\varepsilon 217$ (lane 1) but also in $\varepsilon 217$ in the soluble fraction (presumably in the $\varepsilon 217:\theta$ or $\alpha 917:\varepsilon 217:\theta$ complex). The co-precipitation demonstrates binding of $\varepsilon 217$ to $\alpha 917$. Whereas the $\alpha 917:\varepsilon:\theta$ complex prepared in the same way could be purified by Ni-NTA chromatography, the $\alpha 917:\varepsilon 217:\theta$ complex could not, indicating limited stability (data not shown).