Supplemental Figure 1. Validation of Nup88 silenced clones. Stable clones expressing pSM2-Nup88 and selected in puromycin media were analyzed for Nup88 protein expression after incubation under hypertonic stress. A representative western blot reveals that clones 3 and 6 demonstrate near complete silencing of Nup88 expression. These clones were selected for further experiments regarding Nup88 silencing. B) QPCR for TonEBP target genes (AR and Hsp70) showing an intermediate expression for both genes in a clone partially silenced for Nup88 expression (clone #4). In contrast, no changes were observed in mRNA levels from a non silenced clone (clone #5) and as compared to totally silenced clone (#3). C, D) Protein analysis for AR (C) and Hsp70 (D) in partially (#4) and non silenced (#5) clones demonstrating intermediate and no change in protein expression, respectively, and as compared to the totally silenced clone (#3) and the empty vector control.

Supplemental Figure 2A. Evaluation of the involvement of CRM1 in TonEBP trafficking in IMCD3 cells under isotonic conditions. IMCD3 cells transfected with the TonEBP-GFP construct were incubated in the presence and absence of 10 ug/ml LMB, a specific inhibitor of CRM1. In the absence of LMB, IMCD3 cells demonstrate substantial TonEBP localization in the cytosol. However, in the presence of the inhibitor LMB, TonEBP is localized mainly in the nucleus, suggesting CRM1 is involved in TonEBP export from the nucleus under isotonic conditions.

Supplemental Figure 2B. Evaluation of the involvement of CRM1 in TonEBP trafficking in IMCD3 cells under hypertonic conditions. The left column demonstrates under hypertonic stress and in the presence of Nup88 (empty vector control cells), TonEBP is localized in the nucleus. Comparatively, when Nup88 expression is silenced (pSM2-Nup88) and cells are incubated under hypertonic stress, TonEBP is found in the cytosol (middle column). However, in the presence of the inhibitor LMB, in cells silenced for Nup88, TonEBP is observed in the cytosol indicating that CRM1 (inactive in this setting) is not responsible for shuttling TonEBP out of the nucleus under hypertonic stress (right column).

Supplemental Table 1. Nucleotide sequence alignment of the N-terminus of TonEBP of human, mouse and IMCD3 cells.

Supplemental Table 2. Protein sequence alignment of the N-terminus of TonEBP of human, mouse and IMCD3 cells. Sequence cloned from IMCD3 cells (*top line*) shares the same N-Terminus sequence than human TonEBP (*middle lane*) including the same Auxiliary Export Domain (AED) and Nuclear Export Signal (NES) (depicted in bold and underlined and surrounded by dotted rectangle). Note that the three sequences share the same Nuclear Localization Signal (NLS) (depicted in bold and italic and surrounded by dotted rectangle).

Supplemental Table 3. Primers and accession number of mRNAs used for QPCR experiments.

Sup Table 1

HUMAN	ATGCCCTCGG	ACTTCATCTC	ATTGCTCAGC	GCGGACCTAG	ACCTGGAATC	GCCCAAGTCC	CTCTACTCGC	GAGA	
MOUSE									
IMCD	ATGCCCTCGG	ACTTCATCTC	ATTGCTCAGC	GCGGACCTAG	ACCTGGAATC	GCCCAAGTCC	CTGTACTCGC	GAGATTCTCT	GAAGTTACAC
HUMAN				AT	CTGTCTATGA	TCTTCTCCCA	AAGGAGTTAC	AGTTACCTCC	AT CT AGAGAA
MOUSE				· · · · · · · · · · · · · · · · · · ·					- <u>-</u>
IMCD	CCATCACAGA	CTTTTCATAG	AGCTGGACTA	TTGGAAGAAT	CTGTCTATGA	TCTTCTCCCA	AAGGAGTTAC	AGTTACCTCC	ACCTAGAGAA
HUMAN	AC AT CT GT AG	CATCAATGAG	TCAGACAAGC	GGTGGTGAGG	CAGGCTCGCC	TCCTCCAGCT	GTTGTTGCTG	CTGATGCTTC	TTCAGCTCCC
MOUSE		ATGAG	TCAGACAAGC	GGTGGTGAGG	CAGGCTCGCC	TCCTCCAGCT	GT AGTT GCT G	CTGATGCTTC	TTCAGCTCCC
IMCD	AC AT CT GT AG	CATCAATGAG	TCAGACAAGC	GGTGGTGAGG	CAGGCTCGCC	TCCTCCAGCT	$\mathbf{GT} \mathbf{A} \mathbf{GTT} \mathbf{G} \mathbf{CT} \mathbf{G}$	CTGATGCTTC	TTCAGCTCCC
HUMAN	TCCTCTTCCT	CCATGGGCGG	TGCTTGCAGC	TCCTTTACCA	CCTCTTCCAG	CCCTACCATT	TATTCTACCT	CAGTCACCGA	CAGCAAGGCT
MOUSE	TCCTCTTCCT	CCATGGGCGG	TGCTTGCAGC	TCCTTTACCA	CCTCTTCCAG	CCCTACCATT	TATTCTACCT	CAGTCACCGA	CAGCAAGGCT
IMCD	TCCTCTTCCT	CCATGGGCGG	TGCTTGCAGC	TCCTTTACCA	CCTCTTCCAG	CCCTACCATT	TATTCTACCT	CAGTCACCGA	CAGCAAGGCT
HUMAN	ATGCAAGTGG	AGAGCTGCTC	CTCAGCCGTG	GGGGTAAGTA	ACAGAGGGGT	AAGTGAAAAG	CAGTTAACC	GT AAC AC AGT	TCAGCAGCAT
MOUSE	ATGCAAGTGG	AGAGCTGCTC	CTCAGCCGTG	GGGGTAAGTA	ACAGAGGGGT	AAGTGAAAAG	CAGTTAACCG	GT AAC AC AGT	TCAGCAGCAT
IMCD	ATGCAAGTGG	AGAGCTGCTC	CTCAGCCGTG	GGGGT AAGT A	ACAGAGGGGT	AAGTGAAAAG	CAGTTAACCG	GT AAC AC AGT	TCAGCAGCAT
HUMAN	CCATCAACAC	CGAAGAGGCA	CACAGTCTTG	TACATCTCAC	CACCACCTGA	GGACTTGCTG	GATAACAGTC	GGATGTCCTG	CCAGGATGAG
MOUSE	CCATCAACCC	CGAAGAGGCA	CACAGTTTTG	TACATCTCAC	CACCACCTGA	GGACTTGCTG	GATAACAGTC	GGATGTCCTG	CCAGGATGAG
IMCD	CCATCAACCC	CGAAGAGGCA	CACAGTTTTG	TACATCTCAC	CACCACCTGA	GGACTTGCTG	GATAACAGTC	GGATGTCCTG	CCAGGATGAG
HUMAN	GGGTGTGGAT	TGGAATCTGA	GCAGAGCTGC	AGTATGTGGA	TGGAGGATTC	CCCCTCCAAC	TTCAGTAACA	TGAGCACCAG	TT CCT AC AAT
MOUSE	GGGTGTGGAT	TGGAATCTGA	GCAGAGCTGC	AGTATGTGGA	TGGAGGATTC	CCCCTCCAAC	TTCAGTAACA	TGAGCACCAG	TTCCTACAAT
IMCD	GGGTGTGGAT	TGGAATCTGA	GCAGAGCTGC	AGTATGTGGA	TGGAGGATTC	CCCCTCCAAC	TTCAGTAACA	TGAGCACCAG	TTCCTACAAT
HUMAN	GAT AAC ACT G	AGGTACCTCG	TAAATCACGA	AAACGAAATC	CAAAGCAGAG	GCCGGGGGGTC	AAACGACGAG	ATTGTGAAGA	AT CT AAT AT G
MOUSE	GATAACACTG	AGGTACCTCG	TAAATCACGA	AAACGAAATC	CAAAGCAGAG	GCCGGGGGGTC	AAACGACGAG	ATTGTGAAGA	AT CT AAT AT G
IMCD	GATAACACTG	AGGTACCTCG	TAAATCACGA	AAACGAAATC	CAAAGCAGAG	GCCGGGGGGTC	AAACGACGAG	ATTGTGAAGA	AT CT AAT AT G
HUMAN	GAT AT ATTT G	ATGCCGACAG	TGCCAAAGCA	CCTCACTATG	TGCTTTCTCA	GCTTACCACG	GACAACAAAG	GCAACTCAAA	AGC
MOUSE	GAT AT ATTT G	ATGCCGACAG	TGCCAAAGCA	CCTCACTATG	TGCTTTCTCA	GCTTACCACG	GACAACAAAG	GCAACTCAAA	AGC
IMCD	GAT AT ATTT G	ATGCCGACAG	TGCCAAAGCA	CCTCACTATG	TGCTTTCTCA	GCTTACCACG	GACAACAAAG	GCAACTCAAA	AGC

Sup Table 2

	<u>NES</u>				AED				
	r							_	
IMCD3	MPSPFISLLS	ADLDLESPKS	LYSRDSLKLH	PSQTFHRAGL	LEESVYDLLP	KELQLPPPRE	TSVASMSQTS	GGEAGSPPPA	VVAADASSAP
HUMAN	MPSDFISLLS	ADLDL ESPKS	LYSR <mark>E</mark>		SVYDLLP	KELQLPP <mark>S</mark> RE	TSVASMSQTS	GGEAGSPPPA	VVAADASSAP
MOUSE							MSQTS	GGEAGSPPPA	VVAADASSAP
						г-			I
IMCD3	SSSSMGGACS	SFTTSSSPTI	YSTSVTDSKA	MQVESCSSAV	GVSNRGVSEK	QLTGNTVQQH	PSTPKRHTVL	YISPPPEDLL	DNSRMSCQDE
HUMAN	SSSSMGGACS	SFTTSSSPTI	YSTSVTDSKA	MQVESCSSAV	GVSNRGVSEK	QLTSNTVQQH	PSTPKRHTVL	YISPPPEDLL	DNSRMSCQDE
MOUSE	SSSSMGGACS	SFTTSSSPTI	YSTSVTDSKA	MQVESCSSAV	GVSNRGVSEK	QLTGNTVQQH	PSTPKRHTVL	YISPPPEDLL	DNSRMSCODE
				r		!			-
IMCD3	GCGLESEQSC	SMWMEDSPSN	FSNMSTSSYN	DNTEVP RKSR	KRNPKQRPGV	KRRDCEESNM	DIFDADSAKA	PHYVLSQLTT	DNKGNSK
HUMAN	GCGLESEQSC	SMWMEDSPSN	FSNMSTSSYN	DNTEVP RKSR	KRNPKQRPGV	KRR DCEESNM	DIFDADSAKA	PHYVLSQLTT	DNKGNSK
MOUSE	GCGLESEQSC	SMWMEDSPSN	FSNMSTSSYN	DNTEVPRKSR	KRNPKQRPGV	KRRDCEESNM	DIFDADSAKA	PHYVLSQLTT	DNKGNSK
	· · · · · · · · · · · · · · · · · · ·								
					<u>NLS</u>				

Sup Table 3

	Accesion number	Forward primer 5'→3'	Reverse primer 5'→3'
Nucleoporin 88 (Nup88)	NM_172394	CCATTACTCTCAGTGCCTACC	AGCCTTCAAGTTATGTTCATTCC
Aldose Reductase (AR)	NM_009658	CTATTTCCCACTGGATGCCTCAG	TTTCACCAAACCTTCATCCACTAG
Sodium-myoinositol transporter (SMIT)	NM_017391	CCTACCGTGCTCCTGAGTGTG	GTGGGAGGTGGTGTGAGAAGAC
Betaine/GABA transporter (BGT1)	NM_133661	AAGGCAAGGACCAGGTGAAGG	CACACTCCCCTGGCTGCTATAC
Taurine transporter (TauT)	NM_009320	CGCATCCATCGTCATTGTGTC	GTGTCCTCCATGCACTGTGG
Heat shock protein 70 (Hsp70)	NM_010479	GGTCTAAACGTGCTGCGGATC	AGTCCTCCCTCCCAGGTG
α₁-subunit Na/K-ATPase	NM_144900	GGATTGTTGGCTCTGATG	CGGAATTGTTACTGGTTAGG
β-Actin	NM_007393	CTCTCCCTCACGCCATCC	GTAACAGTCCGCCTAGAAGC