Supporting Information

Lan et al. 10.1073/pnas.0801062105

SI Text

() <

CT-S₀ Conical Intersection Geometry and g-h Vector. Tables S1 and S2 give the Cartesian coordinates of the equilibrium configuration of the S_0 state and the conical intersection, respectively. Fig. S1 a and b show the g (gradient difference) and h (derivative coupling) vectors, respectively.

Diabatic Potential-Energy Surfaces. The diabatic potential-energy surfaces, V_{11} and V_{22} , are modeled as a function of the hydrogentransfer coordinate R and as harmonic functions of the 19 tuning coordinates $Q_{t,i}$ and the 19 coupling coordinates $Q_{c,i}$

$$V_{11} = v_{11}(R) + \sum_{i} \left[\frac{1}{2} \omega_{t,i} Q_{t,i}^2 + \kappa_i^{(1)}(R) Q_{t,i} \right] + \sum_{j} \frac{1}{2} \omega_{c,j} Q_{c,j}^2, \quad [1]$$

$$V_{22} = v_{22}(R) + \sum_{i} \left[\frac{1}{2} \omega_{t,i} Q_{t,i}^2 + \kappa_i^{(2)}(R) Q_{t,i} \right] + \sum_{j} \frac{1}{2} \omega_{c,j} Q_{c,j}^2, \quad [2]$$

where $\omega_{t,i}$ and $\omega_{c,i}$ are frequencies of the tuning and coupling modes, respectively.

The coupling element in the diabatic representation is approximated as a linear function of $Q_{c,i}$:

$$V_{12} = \sum_{i} \lambda_i Q_{c,i}.$$
 [3]

The coupling constants of the tuning modes are obtained as

$$\kappa_i^{(\kappa)}(R) = \sum_m \frac{\delta V_\kappa^a(R)}{\delta x_m} \frac{\delta x_m}{\delta Q_{t,i}}, (k = 1, 2).$$
 [4]

The transformation between the Cartesian coordinates and the dimensionless normal coordinates, $\frac{\partial X_m}{\partial Q_{1i}}$, is given by the so-called L matrix, which can be obtained with the Gaussian package. Analytic functions $v_{11}(R)$, $v_{22}(R)$, $\kappa_i^{(1)}(R)$ and $\kappa_i^{(2)}(R)$ are

obtained by fitting the data to a fourth-order polynomial in R

$$v_{11}(R) = A_1 R^4 + B_1 R^3 + C_1 R^2 + D_1 R + E_1,$$
 [5]

$$v_{22}(R) = A_2 R^4 + B_2 R^3 + C_2 R^2 + D_2 R + E_2,$$
 [6]

$$\kappa_i^{(1)}(R) = a_i^{(1)}R^4 + b_i^{(1)}R^3 + c_i^{(1)}R^2 + d_i^{(1)}R + e_i^{(1)}, \qquad [7]$$

$$\kappa_i^{(2)}(R) = a_i^{(2)}R^4 + b_i^{(2)}R^3 + c_i^{(2)}R^2 + d_i^{(2)}R + e_i^{(2)}.$$
 [8]

For illustration, the dependences of $\kappa_i^{(1)}(R)$ and $\kappa_i^{(2)}(R)$ on R are shown in Fig. S2a for the mode ν_{27} ($\omega_{27} = 0.13683$ eV). The two-dimensional diabatic potential energy surfaces of the S_0 and CT states as function R and Q_{27} are shown in Fig. S2b.

The diabatic coupling strengths λ_i are obtained by projecting the nonadiabatic coupling vector (**h**) onto the $Q_{c,i}$.

The parameters of the 39-dimensional potential-energy surfaces are available from the authors upon request.

Spectral-Density Functions. The discrete spectral densities and corresponding continuous functions for the S_0 and CT states are shown in Fig. S3 a and b, respectively.

Fig. S1. The **g** and **h** vectors for the CT $({}^{1}\pi\pi^{*})$ -S₀ conical intersection.

Fig. S2. Intrastate coupling strength and potential-energy surfaces for one typical tuning coordinate. (a) The intrastate coupling strengths for mode v_{27} as functions of *R*: full line: $\kappa_{27}^{(1)}$ and the dashed line: $\kappa_{27}^{(2)}$. (b) Two-dimensional diabatic potential-energy surfaces of the S_0 and CT ($^{1}\pi\pi^{*}$) states as function *R* and Q_{27} .

DNAS

Fig. S3. The spectral density functions for the ground S_0 state (a) and the CT ($^{1}\pi\pi^*$) state (b). The sticks give the discrete spectral density. The envelope has been obtained by convolution with a Lorentz function of 13 meV full-width half-maximum.

Table S1. Cartesian coordinates of the ground-state equilibrium
geometry of the pyridine-pyrrole system at the CASSCF level.

Atoms	<i>x</i> , Å	<i>y</i> , Å	<i>z</i> , Å
с	-2.385012	2.604117	0.000000
N	-0.198534	1.929364	0.000000
С	0.830327	2.826294	0.000000
С	0.302197	4.093008	0.000000
С	-1.118929	3.950483	0.000000
Н	-2.318032	2.079937	0.000000
Н	1.848870	2.497866	0.000000
Н	0.858582	5.008617	0.000000
Н	-1.846051	4.737372	0.000000
С	0.415573	-4.055235	0.000000
С	-0.848478	-3.469111	0.000000
С	-0.938623	-2.077932	0.000000
N	0.126715	-1.276273	0.000000
С	1.334141	-1.841698	0.000000
С	1.532040	-3.221661	0.000000
Н	0.526691	-5.124215	0.000000
Н	-1.741503	-4.065983	0.000000
Н	-1.897711	-1.592420	0.000000
Н	2.172892	-1.169334	0.000000
Н	2.528732	-3.622108	0.000000
Н	-0.098797	0.935324	0.000000

PNAS PNAS

conical intersection seam at the CASSCF level.					
Atoms	<i>x</i> , Å	<i>y</i> , Å	<i>z</i> , Å		
с	-1.341586	2.574648	0.000000		
Ν	-0.190227	1.880509	0.000000		
С	0.794567	2.795696	0.000000		
С	0.263848	4.146684	0.000000		
С	-1.098783	4.005669	0.000000		
Н	-2.293560	2.067723	0.000000		
Н	1.830194	2.494546	0.000000		
Н	0.835440	5.057343	0.000000		
Н	-1.844835	4.779890	0.000000		
С	0.402478	-3.967147	0.000000		
С	-0.875840	-3.355783	0.000000		
С	-0.988913	-1.993904	0.000000		
Ν	0.124447	-1.195237	0.000000		
С	1.374323	-1.756914	0.000000		
С	1.533892	-3.114144	0.000000		
Н	0.508910	-5.028647	0.000000		
Н	-1.767626	-3.948203	0.000000		
Н	-1.929299	-1.492255	0.000000		
Н	2.196329	-1.078466	0.000000		
Н	2.525509	-3.517828	0.000000		
Н	0.025808	-0.207749	0.000000		

PNAS PNAS

Table S2. Cartesian coordinates of the minimum of the $CT-S_0$ conical intersection seam at the CASSCF level.