Supporting Information

Mouysset et al. 10.1073/pnas.0805944105

PNAS

Fig. S1. CDC-48, UFD-1, and NPL-4 form a complex localized in the nucleus of early embryos. DIC and fluorescent images of transgenic wild-type embryos expressing YFP::CDC-48, YFP::UFD-1, and YFP::NPL-4. Representative DIC images correspond to YFP::CDC-48. (Scale bar ,10 μm).

Fig. 52. Downregulation of CDC-48^{UFD-1/NPL-4} does not influence mitosis progression. (*A*) Quantification of mitosis time of P0, AB, and P1 cells in wild-type (WT) or the indicated RNAi embryos. Mitosis corresponds to the time between onset of NEBD and the end of cytokinesis (see cartoon at right). (*B*) Quantification of S phase duration in AB and P1 cells after downregulation of *mdf-1* and/or *ufd-1*. (*C*). Quantification of the time separating initiation of male pronucleus movement from the end of cytokinesis (see cartoon at right) for epistatic analysis of *air-2(RNAi*) with *ufd-1(RNAi*).

Fig. S3. Downregulation of ATM-1 does not suppress the S phase delay caused by UFD-1 depletion. Quantification of S phase duration in P0, AB, and P1 cells after downregulation of *atm-1* and/or *ufd-1*.

DN AS

Fig. S4. Depletion of CDC-48^{UFD-1/NPL-4} does not influence the nuclear envelope integrity. Fluorescent images of transgenic embryos expressing LEM-2::GFP in wild-type (WT) or the indicated RNAi embryos. (Scale bar, 10 μm).

Fig. S5. Delayed chromatin condensation in embryos depleted for UFD-1, NPL-4, and DIV-1. Images of P1 cell nuclei of wild-type (WT), *ufd-1(RNAi)*, *npl-4(RNAi)*, and *div-1(RNAi)* embryos expressing H2B::GFP. Images were taken at two-minute intervals. The first image is taken 10 min after anaphase onset in P0 cells. (Scale bar, 5 μm).

DN A C

Fig. S6. Formation of RAD-51 foci in the germline of *npl-4(RNAi*) hermaphrodite worms. DIC and fluorescence images of gonads of *npl-4(RNAi*) worms. (Scale bar, 10 μm).

DNAS

Fig. 57. Levels of CDT-1 are not regulated by the CDC-48^{UFD-1/NPL-4} complex. Protein extracts of the indicated strains were analyzed by immunoblotting with CDT-1-specific antibodies. Tubulin was used as loading control.

SANG SANG

Fig. S8. Model for a role of CDC-48^{UFD-1/NPL-4} in DNA replication. Independent of its well characterized function in ERAD, the CDC-48^{UFD-1/NPL-4} complex shuttles into the nucleus at the end of M phase to regulate DNA replication. Consequently, replication defects in S phase caused by depletion of CDC-48^{UFD-1/NPL-4} activate the checkpoint kinases ATL-1 and CHK-1 to arrest the cell cycle.

Movie S1. This movie corresponds to experiments shown in Fig. 1*A* and Fig. S1 and illustrates the early division up to the four-cell stage of a *C. elegans* embryo expressing YFP::CDC-48 by DIC and fluorescence microscopy. The localization patterns of YFP::UFD-1 and YFP::NPL-4 are similar to YFP::CDC-48 (QuickTime, 2.4 MB).

Movie S1 (MOV)

SANG SA

Movie S2. This movie corresponds to the experiment shown in Fig. 1*B* and illustrates the early division up to the four-cell stage of a wild-type *C. elegans* embryo by DIC microscopy (QuickTime, 5.0 MB).

Movie S2 (MOV)

SANG SA

Movie S3. This movie corresponds to the experiment shown in Fig. 1*B* and illustrates by the early division up to the four-cell stage of a *cdc-48(RNAi*) *C*. *elegans* embryo DIC microscopy. It clearly reveals an abnormal persistent three-cell stage (QuickTime, 6.8 MB).

Movie S3 (MOV)

Movie S4. This movie corresponds to the experiment shown in Fig. 1*B* and illustrates the early division up to the four-cell stage of a *ufd-1(RNAi) C. elegans* embryo by DIC microscopy. It clearly reveals an abnormal persistent three-cell stage (QuickTime, 3.8 MB).

Movie S4 (MOV)

Movie S5. This movie corresponds to the experiment shown in Fig. 1*B* and illustrates the early division up to the four-cell stage of an *npl-4(RNAi) C. elegans* embryo by DIC microscopy. It clearly reveals an abnormal persistent three-cell stage (QuickTime, 5.3 MB).

Movie S5 (MOV)

DNAS

Movie S6. This movie corresponds to the experiment shown in Fig. 2*A* and illustrates the early division up to the four-cell stage of a *cdc-48/atl-1(RNAi) C. elegans* embryo by DIC microscopy. It displays that the abnormal persistent P1 cell division delay of *cdc-48(RNAi)* embryos is significantly suppressed (QuickTime, 2.5 MB).

Movie S6 (MOV)

DN A C

Movie S7. This movie corresponds to experiments shown in Fig. 3A and Fig. S5 and illustrates the early division up to the four-cell stage of a wild-type C. elegans embryo expressing H2B::GFP by DIC and fluorescence microscopy (QuickTime, 4.1 MB).

Movie S7 (MOV)

AS PNAS

Movie 58. This movie corresponds to the experiment shown in Fig. 3*A* and Fig. 55 and illustrates the early division up to the four-cell stage of a *npl-4(RNAi) C. elegans* embryo expressing H2B::GFP by DIC and fluorescence microscopy. It displays chromosome bridges during mitosis as well as a delay in chromatin condensation, especially in the P1 cell (QuickTime, 4.9 MB).

Movie S8 (MOV)

TAS PNAS

Table S1. Statistical data and analysis

	Genotype		Time duration, min:s	CEM	t test (P value)			
Fig.		n		min:s	WT	ufd-1(RNAi)	npl-4(RNAi)	
		Duratio	on of the cell divis	ion delay betw	een AB and P1 cells			
1C	WT	21	02:02	0:06	_	$1 imes 10^{-16}$	$6 imes 10^{-11}$	
	ubxn-1(RNAi)	8	01:56	0:10	$7 imes10^{-01}$	$2 imes10^{-07}$	n.d.	
	cdc-48(RNAi)	13	14:32	1:08	$8 imes10^{-06}$	$2 imes10^{-01}$	$2 imes 10^{-02}$	
	ufd-1(RNAi)	35	21:27	1:14	$1 imes 10^{-16}$	—	$9 imes10^{-01}$	
	npl-4(RNAi)	19	21:52	2:17	$6 imes 10^{-11}$	$9 imes10^{-01}$	—	
	ufd-1/npl-4(RNAi)	13	22:50	1:06	2×10^{-21}	$5 imes10^{-01}$	$7 imes10^{-01}$	
1 <i>D</i>	sel-1(RNAi)	11	02:12	0:07	$3 imes10^{-01}$	$3 imes10^{-08}$	n.d.	
	ufd-1(RNAi)	8	21:53	2:16	1×10^{-14}	—	n.d.	
	ire-1(RNAi)	10	02:08	0:04	$4 imes10^{-01}$	$9 imes10^{-08}$	n.d.	
	ufd-1/ire-1(RNAi)	11	22:46	1:25	$8 imes10^{-20}$	$7 imes10^{-01}$	n.d.	
4 <i>E</i>	WT	7	01:52	0:06	_	$3 imes10^{-09}$	n.d.	
	ufd-1(RNAi)	7	16:41	0:53	$3 imes10^{-09}$	—	n.d.	
	cdt-1(RNAi)	12	03:00	0:11	$4 imes10^{-04}$	$2 imes 10^{-12}$	n.d.	
	cdc-6(RNAi)	16	06:04	0:15	$5 imes 10^{-10}$	$2 imes 10^{-12}$	n.d.	
		Dur	ation from pronu	clei meeting to	NEBD in P0 cell			
2C	WT	9	05:18	0:15	—	$4 imes10^{-01}$	$3 imes10^{-04}$	
	cdc-48(RNAi)	6	05:53	0:54	$5 imes10^{-01}$	$6 imes10^{-14}$	$6 imes10^{-02}$	
	ufd-1(RNAi)	6	08:25	0:38	$4 imes10^{-04}$	—	$1 imes 10^{-00}$	
	npl-4(RNAi)	6	08:22	0:36	$3 imes10^{-04}$	$1 imes 10^{-20}$	—	
	cdc-48/atl-1(RNAi)	2	03:49	0:18	$4 imes10^{-02}$	$1 imes 10^{-01}$	$9 imes10^{-03}$	
	ufd-1/atl-1(RNAi)	10	03:43	0:07	$3 imes10^{-05}$	$6 imes10^{-14}$	n.d.	
	npl-4/atl-1(RNAi)	5	03:43	0:18	$2 imes10^{-03}$	n.d.	$7 imes10^{-05}$	
	ufd-1/chk-1(RNAi)	6	04:27	0:10	$3 imes 10^{-02}$	$1 imes 10^{-01}$	n.d.	
	npl-4/chk-1(RNAi)	8	05:15	0:23	$9 imes10^{-01}$	n.d.	$1 imes10^{-03}$	
	ufd-1/atl-1/chk-1(RNAi)	2	04:26	0:05	$2 imes 10^{-01}$	$2 imes10^{-01}$	n.d.	
	npl-4/atl-1/chk-1(RNAi)	5	04:37	0:38	$3 imes10^{-01}$	n.d.	$4 imes10^{-03}$	
S3	WT (as in Fig. 2 <i>C</i>)	—	—	—	n.d.	n.d.	n.d.	
	atm-1(RNAi)	11	04:10	0:05	$4 imes10^{-04}$	$4 imes10^{-06}$	n.d.	
	ufd-1(RNAi)	10	08:14	0:37	1 × 10 ⁻⁰³	—	n.d.	
	ufd-1/atm-1(RNAi)	9	07:37	0:36	$4 imes10^{-03}$	$5 imes10^{-01}$	n.d.	
			Duration of t	he interphase ir	n AB cell			
2C	WT	23	10:08	0:15	—	$7 imes10^{-06}$	$5 imes10^{-09}$	
	cdc-48(RNAi)	9	11:49	0:33	$4 imes10^{-03}$	$4 imes10^{-01}$	$1 imes 10^{-02}$	
	ufd-1(RNAi)	22	12:26	0:22	$7 imes 10^{-06}$	—	$1 imes 10^{-02}$	
	npl-4(RNAi)	17	14:05	0:29	$5 imes 10^{-09}$	$1 imes 10^{-02}$	—	
	cdc-48/atl-1(RNAi)	3	09:43	0:23	6 × 10 ⁻⁰¹	$2 imes 10^{-02}$	$2 imes 10^{-03}$	
	ufd-1/atl-1(RNAi)	13	11:09	0:33	7 × 10 ⁻⁰²	$6 imes10^{-02}$	n.d.	
	npl-4/atl-1(RNAi)	9	11:51	0:22	1 × 10 ⁻⁰³	n.d.	$6 imes 10^{-03}$	
	ufd-1/chk-1(RNAi)	12	11:23	0:10	$3 imes 10^{-03}$	$5 imes 10^{-02}$	n.d.	
	npl-4/chk-1(RNAi)	9	11:13	0:22	3 × 10 ⁻⁰²	n.d.	$8 imes 10^{-04}$	
	ufd-1/atl-1/chk-1(RNAi)	10	11:20	0:10	7 × 10 ⁻⁰²	6 × 10 ⁻⁰²	n.d.	
	npl-4/atl-1/chk-1(RNAi)	8	12:16	0:21	2 × 10 ⁻⁰⁴	n.d.	$3 imes 10^{-02}$	
S2 <i>B</i>	WT	29	09:59	0:19	—	1 × 10 ⁻⁰²	n.d.	
	mdf-1(RNAi)	3	10:04	0:22	9 × 10 ⁻⁰¹	$1 imes 10^{-04}$	n.d.	
	ufd-1(RNAi)	3	12:01	0:07	1 × 10 ⁻⁰²	—	n.d.	
	ufd-1/mdf-1(RNAi)	11	11:27	0:14	2×10^{-03}	6×10^{-01}	n.d.	
\$3	WT (as in Fig. 2C)		_		n.d.	n.d.	n.d.	
	atm-1(RNAi)	11	0932	0:18	2×10^{-01}	$2 imes 10^{-02}$	n.d.	
	ufd-1(RNAi)	10	12:51	0:35	3 × 10 ⁻⁰⁵		n.d.	
	utd-1/atm-1(RNAi)	13	12:26	0:26	$4 imes 10^{-05}$	5 × 10 ⁻⁰²	n.d.	

	Genotype		Time duration, min:s	SEM, min:s	t test (P value)			
Fig.		n			WT	ufd-1(RNAi)	npl-4(RNAi)	
			Duration of t	he interphase	in P1 cell			
2C	WT	23	12:15	0:17	_	$8 imes10^{-18}$	$3 imes 10^{-12}$	
	cdc-48(RNAi)	9	26:56	1:54	3 ×10 ⁻¹²	$4 imes10^{-01}$	$5 imes 10^{-03}$	
	ufd-1(RNAi)	22	28:52	1:08	8 ×10 ⁻¹⁸	—	$6 imes10^{-03}$	
	npl-4(RNAi)	17	34:01	1:14	3 ×10 ⁻¹²	$6 imes10^{-03}$	—	
	cdc-48/atl-1(RNAi)	3	13:13	1:10	3 ×10 ⁻⁰¹	$7 imes10^{-05}$	$5 imes 10^{-06}$	
	ufd-1/atl-1(RNAi)	13	18:04	0:54	2 ×10 ⁻⁰⁸	$3 imes10^{-07}$	n.d.	
	npl-4/atl-1(RNAi)	9	19:15	0:49	6 ×10 ⁻¹¹	n.d.	$6 imes10^{-08}$	
	ufd-1/chk-1(RNAi)	12	17:41	0:12	4 ×10 ⁻¹⁴	$6 imes10^{-08}$	n.d.	
	npl-4/chk-1(RNAi)	9	18:22	0:34	3 ×10 ⁻¹¹	n.d.	$1 imes 10^{-08}$	
	ufd-1/atl-1/chk-1(RNAi)	10	15:51	0:28	2 ×10 ⁻⁰⁷	$3 imes10^{-08}$	n.d.	
	npl-4/atl-1/chk-1(RNAi)	8	19:08	0:35	5 ×10 ⁻¹²	n.d.	$1 imes 10^{-07}$	
3D	WT	29	12:09	0:15	_	$2 imes10^{-08}$	$8 imes 10^{-21}$	
	div-1(RNAi)	14	17:11	0:09	4 ×10 ⁻¹⁶	$2 imes 10^{-13}$	5x 10 ⁻¹⁰	
	ufd-1(RNAi)	39	30:48	0:48	2 ×10 ⁻²⁸	—	1x 10 ⁻⁰⁰	
	npl-4(RNAi)	12	30:52	1:25	8 ×10 ⁻²¹	$1 imes 10^{-00}$	—	
	ufd-1/div-1(RNAi)	13	32:45	1:11	2 ×10 ⁻²⁴	$2 imes10^{-01}$	n.d.	
	npl-4/div-1(RNAi)	12	35:53	1:07	6 ×10 ⁻²⁷	n.d.	$2 imes 10^{-02}$	
S2 <i>B</i>	WT (as in Fig. 3 <i>D</i>)	—	—	—	n.d.	n.d.	n.d.	
	mdf-1(RNAi)	3	12:20	0:05	8 ×10 ⁻⁰¹	$2 imes10^{-03}$	n.d.	
	ufd-1(RNAi)	3	26:45	1:28	3 ×10 ⁻¹⁵	—	n.d.	
	ufd-1/mdf-1(RNAi)	11	26:01	1:32	1 ×10 ⁻¹⁵	$8 imes10^{-01}$	n.d.	
S3	WT (as in Fig. 2 <i>C</i>)	—	—	—	n.d.	n.d.	n.d.	
	atm-1(RNAi)	11	11:41	0:24	3 ×10 ⁻⁰¹	$1 imes 10^{-09}$	n.d.	
	ufd-1(RNAi)	10	33:07	1:55	7 ×10 ⁻¹⁶	—	n.d.	
	ufd-1/atm-1(RNAi)	13	31:22	2:11	9 ×10 ⁻¹³	6 × 10 ⁻⁰¹	n.d.	
			Duration of	f the mitosis in	P0 cell			
S2A	WT	22	05:31	0:09	_	$3 imes 10^{-02}$	$2 imes 10^{-01}$	
	cdc-48(RNAi)	9	04:17	0:16	9 ×10 ⁻⁰⁴	$7 imes10^{-02}$	$8 imes 10^{-02}$	
	ufd-1(RNAi)	20	05:01	0:09	3 ×10 ⁻⁰²	—	$6 imes10^{-01}$	
	npl-4(RNAi)	14	05:10	0:07	2 ×10 ⁻⁰¹	$6 imes10^{-01}$	_	
			Duration of	the mitosis in	AB cell			
S2A	WT	23	04:21	0:08	_	2×10^{-02}	$1 imes 10^{-02}$	
	cdc-48(RNAi)	13	04:49	0:14	8 ×10 ⁻⁰²	8×10^{-01}	1×10^{-00}	
	ufd-1(RNAi)	28	04:53	0:09	2 ×10 ⁻⁰²	_	$7 imes 10^{-01}$	
	npl-4(RNAi)	23	04:46	0:07	1 ×10 ⁻⁰²	$7 imes10^{-01}$	_	
			Duration of	f the mitosis in	P1 cell			
S2A	WT	23	04:08	0:09	_	$7 imes10^{-02}$	$9 imes 10^{-03}$	
	cdc-48(RNAi)	13	04:13	0:14	8 ×10 ⁻⁰¹	$2 imes 10^{-01}$	$7 imes 10^{-02}$	
	ufd-1(RNAi)	27	04:50	0:09	7 ×10 ⁻⁰²	_	$7 imes 10^{-01}$	
	npl-4(RNAi)	24	05:01	0:07	9 ×10 ⁻⁰³	$7 imes10^{-01}$	_	
		Duration	rom the male pro	onucleus move	ment to NEBD inP0 cell			
S2C	WT	7	05:30	0:15	_	$1 imes 10^{-02}$	$6 imes 10^{-03}$	
	air-2(RNAi)	10	05:26	0:13	9 ×10 ⁻⁰¹	$3 imes 10^{-03}$	$1 imes 10^{-03}$	
	ufd-1(RNAi)	4	08:48	1:12	1 ×10 ⁻⁰²	_	$7 imes 10^{-01}$	
	npl-4(RNAi)	5	08:14	0:46	6 ×10 ⁻⁰³	$7 imes10^{-01}$	_	
	ufd-1/air-2(RNAi)	11	08:19	0:34	3 ×10 ⁻⁰³	$7 imes10^{-01}$	n.d.	
	npl-4/air-2(RNAi)	10	08:54	0:11	5 ×10 ⁻⁰⁴	n.d.	$5 imes 10^{-01}$	

Two-tailed Student's t test was used to generate p-values compared to wild-type (WT), ufd-1(RNAi), and npl-4(RNAi). Non determined values are indicated by n.d. n represents the number of scored embryos, time durations and SEM are expressed in min:s.

Genotype	n	Percentage value	
Proportion of two-, three-, and four-ce	Il stage embryos with chromosor	ne bridges	
WT	15	0	
ufd-1(RNAi)	37	43	
npl-4(RNAi)	50	68	
Proportion of nuclei with chromosome	bridges in early embryos		
WT	97	0	
ufd-1(RNAi)	98	12	
ufd-1/atl-1/chk-1(RNAi)	98	19	

Table S2. Knockdown of *atl-1* and *chk-1* does not suppress chromosome bridges caused by *ufd-1(RNAi)*

Shown is quantification of DAPI stained nuclei with chromosome bridges by confocal microscopy.

Table S3. Values and statistical analysis of replication assay shown in Fig. 4B

PNAS PNAS

Nuclei per one-celled embryo	Control	cdc-48 (RNAi)	ufd-1 (RNAi)	npl-4 (RNAi)	+ HU 20 mM	mus-101 (RNAi)	atl-1/chk-1 (RNAi)
		0.50	(100.0)	(1000)	20 1111	(100.0)	
3	0.19	0.50	0.46	0.42	0.40	0.46	0.51
4	0.16	0.34	0.18	0.35	0.27	0.18	0.31
5	0.09	0.10	0.16	0.13	0.12	0.16	0.11
6	0.10	0.06	0.16	0.03	0.09	0.16	0.04
7	0.15	—	0.04	0.03	0.03	0.04	0.02
8	0.10	_	_	_	0.08	_	_
9	0.06	_	_	_	_	_	_
10	0.03	_	_	0.03	0.01	_	_
12	0.03	—	—	—	—	—	
13	0.01	—	—	—	—	—	
14	0.03	_	_	_	_	_	_
15	0.01	_	_	_	_	_	_
16	0.01	_	_	_	_	_	_
17	_	_	_	_	_	_	_
18	0.02	_	_	_	_	_	_
21	0.01	_	_	_	_	_	_
Mean	6.67	3.72	4.13	4.06	4.39	4.30	3.76
SD	3.67	0.88	1.27	1.48	1.67	1.51	0.98
SEM	0.36	0.12	0.17	0.27	0.19	0.28	0.15
n	106	50	56	31	75	30	45
99% CI	5.73 to 7.61	3.39 to 4.05	3.67 to 4.58	3.33 to 4.80	388 to 4.90	3.54 to 5.06	3.36 to 4.15
Min.	3	3	3	3	3	3	3
Median	6	3.5	4	4	4	4	3
Max.	21	6	7	10	10	8	7

Shown is the distribution of embryos determined from the number of nuclei per one-celled embryo after cytochalasin B treatment. Mean, standard deviation (SD), standard error of the mean (SEM), number of embryos (*n*), confidence interval (CI) at 99%, minimal value (Min.), median value, and maximal value (Max.) as indicated.