Spontaneous λo_R Mutations Suppress Inhibition of Bacteriophage Growth by Nonimmune Exclusion Phenotype of Defective λ Prophage

SIDNEY HAYES* AND CONNIE HAYES

Department of Microbiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0

Received 5 December 1985/Accepted 10 March 1986

Survivor clones with defects in gene functions that participate in the replicative killing of thermally induced *Escherichia coli* constructs with integrated λN through *P* or *c*III through *P* gene fragments were selected at a frequency of about 10⁻⁶. Among the population of survivors, clones were identified that exhibited normal λ immunity at 30°C, as shown by their ability to prevent the plating of λ wild type and to support the plating of a nearly identical heteroimmune bacteriophage λimm^{434} . However, when placed at 42°C to inactivate the *c*Its857 repressor, these survivor isolates excluded the plating of both λ wild-type and λimm^{434} phages, a phenotype designated nonimmune exclusion (Nie). Spontaneous mutants of λ wild type were isolated that overcame the Nie phenotype and would plaque at 42°C on cell lawns of these isolates. The acquired λse mutations suppressed nonimmune exclusion, prevented lysogenization by interrupting repressor expression from p_{RM} , and made the phage insensitive to replicative inhibition. The *se* mutations were genetically mapped and sequenced within the rightward λ operator site.

The induction of λ prophage replication by thermal derepression of an N^- cIts857 prophage residing within an Escherichia coli chromosome results in extensive cell killing (replicative killing [5]). The viability of cells carrying an integrated, nonexcisable λ DNA fragment encoding the capacity to support initiation of λ replication depends upon the constant repression of λ genes O and P carried on the fragment. The products of these genes participate in the initiation of replication from the λ fragment. Cells that can be killed through the derepression of lambda replication when shifted to 42°C (at which temperature the cIts857-encoded repressor is denatured) are considered herein to have a replicative killing-competent (RK⁺) phenotype. Replicative killing-defective (RK⁻) cells, which are able to grow up as colonies at 42°C on agar plates, arise in RK⁺ cell cultures at frequencies of 10^{-5} or less.

The powerful forward selection for RK⁻ cells has been used to select spontaneous mutations within the rightward λ promoter p_R , distal genes O and P (1, 6, 7, 17), and the λ origin-replicator (19) and for determining the genotoxicity of environmental substances by RK mutatest (10, 11). The latter system replaced the intact N⁻ prophage with an integrated λ fragment comprising genes N through P, deleting prophage genes *int* through *kil*, the open reading frames between *ninC* and gene Q (unpublished data), and the lysis and other late gene functions from Q through the *b* region. The expression of *kil*, the lysis functions, and the suggested overproduction of *ninC* and *ninG ninH* (13) are lethal to the cell (2, 11).

E. coli constructs with integrated N⁺ or N⁻ and cro^+ or $cro^- \lambda$ fragments comprising genes N through P or cIII through P were used to obtain spontaneous RK⁻ survivor cells with mutations in replicative killing functions. One class of survivor clones occurred frequently in each of the six selector strains and had an identifiable trait we termed nonimmune exclusion. This thermally inducible phenotype

In this report we describe the properties of spontaneous se (for suppress nonimmune exclusion) mutations arising within the o_R region of λ wild-type (wt) phage. The λse phage are selected for their ability to form plaques at 42°C on lawns of RK⁻ cells displaying the Nie phenotype.

MATERIALS AND METHODS

Bacterial and bacteriophage strains. The origin and properties of E. coli strains TC600, 594, W3350, and SA431 were previously reported (9). The last strain carries a deletion that includes the prophage genes to the right of P (i.e., Qthrough Jb) and contiguous E. coli genes (including the bio operon through chlA). We prepared the lysogenic derivatives to be used. Starting with SA431, we constructed six sup^o RK⁺ selector strains carrying at $att\lambda$ the integrated λ fragments N cI857 P (Y832) or N cI857 cro27 P (Y834) (leftward endpoint marker bio10, at about base pair [bp] 34,249 [3]), and cIII N cI857 P (Y836) or cIII N cI857 cro27 P (Y838) (leftward endpoint marker bio275, about bp 33,303), each including a cI ind⁻ mutation. The Nam7,53 derivatives of Y832 and Y834 were also prepared (R. Tuer and S. Hayes, unpublished data). The construction techniques used were partially described by Hayes et al. (11), and specific details are available from the authors. The phage used are listed in Table 1.

Isolation of λ se mutations. Dilutions of a λ wt lysate (5 \times 10⁹/ml) were mixed with 0.2 ml of overnight 30°C TB (tryptone broth: 10 g of tryptone [Difco Laboratories], 5 g of NaCl per liter) cultures of RK⁻ survivor clones plus 3 ml of TB top agar (0.65%), overlaid on TB agar (1.1%) plates and incubated at 42°C. (The RK⁻ clones used were designated Ilr100a, Ilr101b, Ilr109b, Ilr109e, Ilr141e, Ilr145c, and

is manifested as an ability of the survivor clones acquiring it to inhibit the plating of λ and λimm^{434} bacteriophages. The nonimmune exclusion (Nie) phenotype is illustrated herein but will be fully described elsewhere. It is not identical to the Hyp phenotype (6) nor to the *rex* (25) or *sie* (23) exclusion system, although it may represent a composite of more than one such system.

^{*} Corresponding author.

TABLE 1. Bacteriophages

Bacteriophage	Source
$\overline{\lambda}$ wt	. W. Szybalski
$\lambda vir (\lambda v 2v 1v 3) \dots$. W. Szybalski
λ <i>c</i> I72	. W. Szybalski
λ <i>c</i> I26	. W. Szybalski
λ <i>c</i> I47	. W. Szybalski
λ <i>c</i> II68	. W. Szybalski
λ <i>c</i> III67	. W. Szybalski
λ <i>cy</i> 42	. D. Wulff
$\lambda bio3h-1\Delta nin5$. W. Szybalski
$\lambda bio 30-7\Delta nin 5$. W. Szybalski
$\lambda biot 124 \Delta nin 5 \dots$. W. Szybalski
λ <i>c</i> IΔKH54pf	. F. Blattner
$\lambda spi173\Delta nin5$.G. Gussin
$\lambda spi275\Delta nin5$.G. Gussin
$\lambda spi113\Delta nin5$.G. Gussin
$\lambda spi274\Delta nin5$.G. Gussin
$\lambda spi156\Delta nin5$.G. Smith
λ <i>c</i> I90 <i>y</i> c17	. W. Szybalski
$\lambda prm116$.G. Gussin
$\lambda c I 857 prm 116 \dots$.G. Gussin
$\lambda c I857(18,12)^{P22} [\lambda hy 106] \dots$. S. Hilliker
$\lambda imm^{434}T$. W. Szybalski
$\lambda imm^{434}cI^{-}$. W. Szybalski
$\lambda imm^{434}cI^{-}ds$.D. Wulff
λimm^{434} cII68	$. \lambda c II68 \times \lambda imm^{434} T$
$\lambda imm^{434}cIII67$	$\lambda c III67 \times \lambda imm^{434} T$

IIr145d, and each exhibited the Nie phenotype at 42°C.) Scattered small plaques appeared on the plates at an efficiency of plating (EOP) of about 10^{-6} . These phage were assumed to carry a spontaneous defect (*se* mutation) which enabled λ wt to escape nonimmune exclusion. Representative, well-isolated plaques were picked from each plate, added to phage buffer (0.01 M Tris [pH 7.6], 0.1 M NaCl), chloroformed, and streaked onto the IIr⁻ (see Results) culture cells from which they were isolated. The λse lysates were prepared on strain W3350 from the individual plaques.

cis-trans effect of se mutations. Selected RK⁻ isolates exhibiting the nonimmune exclusion phenotype at 42°C were grown to stationary phase, pelleted, suspended in TM buffer (0.01 M Tris [pH 7.6], 0.01 M MgCl₂) at 10⁸ cells per ml, starved (suspended cells were held in TM at room temperature for 1 h), mixed with λ wt plus the λ se phage (each at a multiplicity of infection [MOI] of 3), and adsorbed for 10 min at 30°C. After adsorption, the mixture was adjusted to 0.01 M disodium EDTA (pH 8.0), held at 30°C for 6 min, and diluted into 2 ml of TM buffer. The cells were pelleted, washed once in TM buffer, suspended into 10 ml of prewarmed TB at 42°C, incubated for 70 min at 42°C. chloroformed, and repelleted to clarify the lysate. Aliquots of the lysate were plated at 42°C on TC600 for the determination of total yield and plaque type and on their corresponding Ilr⁻ host cells to verify the λse phage burst.

Lysogenization efficiency. Overnight cultures of E. coli 594 were pelleted, suspended in TM buffer at 2×10^8 to 4×10^8 cells per ml, starved, mixed with λ or λse phage, adjusted to 0.01 M Ca-Mg, and incubated (as below). Subsequently, the cells of the infected cultures were pelleted, suspended, diluted, and spread onto TB agar plates, and the resultant clones from the 30°C incubation were replicated to plates seeded with $10^9 \lambda c I72$, and replicate plates were incubated at 30° C. Clones arising were picked and cross-streaked with $\lambda c I^-$ and λvir . Cross-streaked clones that were resistant to lysis by λcI^- and were lysed by λvir were considered lysogenic for λ . In incubation method 1, cells were mixed with phage at an MOI of 20, adsorbed 15 min at 39°C, diluted into 20 ml of TB, and incubated overnight at 30°C. In method 2, cells were mixed with phage at an MOI of 5, held at 4°C for 15 min, diluted 10 times into prewarmed (30°C) TB, and incubated 20 min with shaking at 30°C. Method 3 was the same as method 2, except that incubation at 30°C was for 30 min.

Phage complementation. TB agar plates were overlaid with a mixture containing an overnight culture of *E. coli* W3350 (0.25 ml), λse plus λimm^{λ} or λimm^{434} phage (each diluted to give 2 × 10³ to 3 × 10³ plaques per plate), and 2.5 ml of TB top agar. Parallel plates were incubated at 30 and 39°C. Control plates of each phage were similarly prepared.

Deletion analysis. Phage stocks ($\sim 10^{10}$ phage per ml) were diluted 100-fold into 0.01 M disodium EDTA, (pH 8.5), incubated for 30 min at 37°C, diluted 10-fold into TM buffer to stop the reaction, diluted, and titered on lawns of strain W3350 at 30°C (16).

Deletion mapping. Fresh overnight cells from a TB culture of strain W3350 were pelleted, suspended in TM buffer at 4×10^8 cells per ml, and starved. The cells (8×10^7) were mixed with λse and the $\lambda \Delta$ marker phage (each at an MOI of 5) and adsorbed for 15 min at 39°C. The mixture was diluted into 20 ml of prewarmed (39°C) TB, shaken for 90 min at 39°C, chloroformed, and plated on W3350, with incubation at 42°C.

Replicative inhibition. Sensitivity to replicative inhibition was measured by coinfection of a λ lysogen with homoimmune and heteroimmune phages with identical replication regions. Overnight cultures of host cells were pelleted, suspended in TM buffer to 4×10^8 cells per ml for 1 h, mixed with λimm^{434} plus λimm^{λ} phages (each at an MOI of 3), and adsorbed for 15 min at 39°C. The mixture was transferred into 20 ml of prewarmed TB, shaken (39°C) for 80 min, chloroformed, diluted, and plated on host strains W3350, W3350(λ), and W3350(λimm^{434} T) at 30°C. These hosts score for total burst, λimm^{434} , and λimm^{λ} phages, respectively.

DNA sequencing. DNA was isolated from λ wt and the seven λse isolates (100a, 101b, 109b, 109e, 141e, 145c, 145d) and digested with Bg/III. The fragments were labeled in an end-fill reaction, with the Klenow fragment of DNA polymerase I, by addition of complementary $[\alpha^{-32}P]dGTP$ to 3' OH ends of restriction fragments. The end-labeled fragments were digested with *Hae*III, and the 856-bp *Hae*III-*Bg/III* fragment (λ bases 37,247 through 38,103) was separated and subjected to Maxam and Gilbert (14) G, A (G+A), T (T+C), and C sequencing chemistries. The cleavage products were separated electrophoretically on 8% acrylamide gels.

RESULTS

Functional immunity analysis. Rare RK⁻ survivor colonies arose at 42°C from each of the 6 RK⁺ selector strains. The RK⁻ survivors were subdivided into two broad classes by determining whether λvir could form plaques at 42°C on a cell lawn of each cultured clone. The clones that were incapable of supporting growth of λvir , termed Hd⁻, were not further considered. They presumably had mutations in *E. coli* genes required for λ infectivity, replication, vegetative growth, or mutations within the defective λ fragment which caused them to negatively complement for an essential λ growth function.

The RK⁻ survivor clones that permitted plaque formation by λvir at 42°C were screened for functional λ immunity, i.e., to determine whether the *imm*^{λ} region of the defective λ fragment could be recombined into a heteroimmune phage and allow vegetative growth of the recombinant. This test was carried out by replicating the remaining RK⁻ clones to agar overlay plates containing 6×10^8 W3350(λimm^{434} T) cells plus $10^9 \lambda imm^{434}cI^-$ phage and incubating overnight at 39°C. The appearance of a zone of lysis in the cell lawn surrounding a replicated clone indicated $\lambda imm^{434}cI^-$ could infect and exchange by a double recombination event the imm^{434} region on the infecting phage with the imm^{λ} segment within the chromosome of the replicated clone. Only the resulting imm^{λ} recombinants released from printed cells infected with $\lambda imm^{434}cI^-$ are capable of growing vegetatively and producing a lysis area on the W3350(λimm^{434} T) cells in the overlay.

The RK⁻ survivor clones not giving a lysis spot in the functional immunity test were considered either to have deletions into imm^{λ} , or to carry a mutation within an imm^{λ} target site that was required for expression of the RK⁺ phenotype, e.g., p_R^- . The replicated survivor clones with lysis spots in the functional immunity test were tentatively considered to carry spontaneous mutations outside of imm^{λ} in either known or unknown genes or target sites involved in the initiation of lambda replication. These clones, which were defective in various functions required for the initiation of lambda replication as having an Ilr⁻ phenotype.

Nie phenotype. A variety of phenotypic properties were observed among the Ilr⁻ isolates. One phenotype exhibited by many isolates was nonimmune exclusion (Nie). An initial characterization of the ability of Ilr⁻ clones to complement at 42°C for λ genes N, O, or P, i.e., by determining their ability to support the plaque formation of imm^{434} , imm^{λ} , and imm^{21} phage with amber mutations in these genes, revealed that many of the assaved Ilr⁻ clones appeared to have a pleiotropic mutation that gave them an $N^-O^-P^-$ phenotype, suggesting the production of an inducible inhibitor of λ gene expression or activity. Accordingly, we examined the ability of λ wt and λimm^{434} to plate at 42°C on lawns of randomly selected RK⁻ Ilr⁻ survivors from four RK⁺ strains (Table 2). Some survivor clones were found to support the growth of both phage. Others permitted the plating of λimm^{434} T but not λ wt and could represent clones where the mutation responsible for the RK⁻ phenotype was either a reversion of the cIts857 mutation, a second site mutation that restored repressor activity at 42°C, or one that produced the Hyp phenotype (6). A third type, having the Nie phenotype, prevented the plating of both the imm^{λ} and imm^{434} phages at 42°C. In a detailed analysis of 261 RK⁻ Ilr⁻ survivor clones, the Nie phenotype was exhibited by 31% of 174 RK⁻ clones derived from four N⁺ cro⁺ RK⁺ or N⁺ cro⁻ RK⁺ strains (Table 2) and by 65.5% of 87 RK⁻ clones derived from N⁻

TABLE 2. Exclusion characteristics of RK⁻ I1r⁻ survivors^a

Phage plating 42°C	ability at	Clones from selector strains:		
$\lambda imm^{434}T$ λ wt		$N^+ cro^+ O^+ P^{+c}$	$N^+ cro^- O^+ P^{+d}$	
+	+	69	22	
+	-	11	18	
-	-	10 ^e	44 ^e	

^a All RK⁻ survivor isolates were spontaneously derived.

^b Minus values are indicated where the EOP was <0.001. No clones were observed that enabled plating at 42°C of λ wt but excluded λimm^{434} .

^c 50 RK⁻ isolates from RK⁺ strain Y832 and 40 RK⁻ isolates from Y836.
^d 44 RK⁻ isolates from Y834 and 40 RK⁻ isolates from Y838.

^e Clones with the Nie phenotype.

TABLE 3. Nie phenotypes

	EOP on the following RK ⁻ survivor isolate class ^a :					
Plating		Α	В			
phage	30°C	42°C	30°C	42°C		
λ wt	$<2 \times 10^{-9}$	<2 × 10 ⁻⁹	<2 × 10 ⁻⁹	[°] ≤10 ^{-6b}		
λ <i>imm</i> ⁴³⁴ T	1.0	$<3 \times 10^{-9c,d}$	1.0	$< 10^{-3c,d}$		
λvir	1.0	1.0	1.0	1.0		
λse ^e	$<2 \times 10^{-9}$	1×10 to 5×10^{-7f}	$<2 \times 10^{-9}$	0.4 ⁸		

^a Class A RK⁻ isolates included IIr125d (parent strain, Y832), IIr201a, IIr208a (parent strain, Y836). Class B RK⁻ isolates included IIr100a, IIr101b, IIr109b, IIr109e (parent strain, Y838), IIr141e, IIr145c, IIr145d (parent strain, Y843).

^b The precise EOPs vary because of difficulty counting minute plaques at low dilution: the average on seven class B IIr⁻ isolates was 8.5×10^{-7} .

low dilution; the average on seven class B IIr⁻ isolates was 8.5×10^{-7} . ^c 10 of 12 screened *imm*⁴³⁴ phage plated with EOPs as low as or lower than that of λimm^{434} T.

^d EOPs, which varied for reasons described in footnote b, were $<9 \times 10^{-6}$ on isolates Ilr100a, Ilr109e, Ilr145c, and Ilr145d, 1×10^{-6} on Ilr100b, 9×10^{-4} on Ilr109b, and 5×10^{-5} on Ilr141e.

^c Similar results were obtained with phage containing se mutations 100a, 101b, 109b, 109e, 145c, 145d, 145e.

^f Range in EOPs of seven λse phage on isolate Ilr125d.

⁸ Average for 49 platings (seven λse phage on seven class B isolates) compared with EOPs on hosts TC600 or W3350.

 cro^+ RK⁺ or N⁻ cro^- RK⁺ strains (Hayes and Tuer, unpublished data).

Among the RK⁻ Ilr⁻ clones with a Nie phenotype, two classes were identified (Table 3). Each survivor class exhibited typical λ immunity at 30°C, preventing the plating of λimm^{λ} but not λimm^{434} phage. Neither class A nor class B isolates supported plaque formation by these phage at 42°C. The class B survivors were distinguished because they permitted the formation of rare plaques at a somewhat higher frequency than did type A survivors (rare plaque formers were not observed on A isolates). We chose the class B RK⁻ survivor clones to isolate λ mutations suppressing the Nie phenotype. These class B clones all arose from N⁺ RK⁺ selector strains carrying either the λ fragments cIII cI857cro27 P or N cI857cro27 P. None formed an antiimmune state, indicating that they retained a Cro⁻ phenotype (8). Because of the difficulty of plating on the class A isolates, it is unclear whether they remained cro^+ . The ability of an RK⁻ survivor to express the Nie phenotype appears not to be simply dependent upon its Cro activity, since survivor isolates exhibiting Nie activity were isolated from both cro^+ and cro^- selector strains (Table 2) (see also Discussion).

Lambda mutations suppressing nonimmune exclusion. Phage carrying spontaneous se mutations were obtained from λ wt as described in Methods. Each formed about 1.5-mm cocarde (clear center, turbid ring, clear periphery) plaques at 42°C on strains TC600 and W3350 and on λimm^{434} lysogens of these hosts, but did not plate on TC600(λ). Their EOP at 42°C was about half that obtained when they were plated at 30°C. The results of coinfection of the RK⁻ Ilr⁻ survivor isolates with λ wt plus the corresponding λ se isolate (Table 4), suggested that each of the se mutations was recessive and appeared to be *cis* acting, since the λse phage were unable to help λ wt give a burst at 42°C on Nie⁺ Ilr⁻ clones. Alternatively, examination of the progeny from these coinfections of Ilr⁻ isolates with λse and λ wt revealed that the bursts for the λse phage were reduced about 10-fold (Table 4) when compared with single bursts of λse phage on W3350 (see Table 7), suggesting that the coinfecting λ wt interfered with the process whereby λse phage escape nonimmune exclusion. (The seven individual λse phage

TABLE 4. cis-trans activity of se mutations^a

Coinfected RK ⁻ isolate	λse phage	Ratio of turbid plaques to clear plaques ^b	
Ilr145c	λ <i>se</i> 145c	< 0.0003	
Ilr145c	λ <i>se</i> 145d	< 0.0002	
Ilr145d	λ <i>se</i> 145c	< 0.0005	
Ilr145d	λ <i>se</i> 145d	<0.0001	

^{*a*} Test to determine whether λse phage can help a coinfecting λ wt to grow vegetatively and escape nonimmune exclusion at 42°C in an induced RK⁻ IIr⁻ Nie⁺ survivor isolate. Similar results were obtained for analogous coinfections of IIr⁻ isolates 100a, 101b, 109b, 109e, and 141e with λ wt and each of the other λse phages.

^b The actual ratios of turbid plaques (λ wt) to clear plaques on TC600 were $<1 \times 10^3/3 \times 10^6$, $<1 \times 10^3/5 \times 10^6$, $<1 \times 10^3/2 \times 10^6$, and $<1 \times 10^3/8 \times 10^6$ for the coinfections shown. The bursts of 1 to 2 obtained on the host TC600 for λ se plage from the mixed infections (i.e., clear plaque formers) were reduced about 10-fold compared with those from single infections on IIr⁺ hosts. Confirmation of λ se plage among progeny was determined by plating on IIr⁻ host cells, i.e.; each coinfection was plated to TC600, IIr145c, and IIr145d. The observed PFU from coinfection were somewhat higher on TC600 than on IIr⁻ host strains (see the text).

isolates plated at 42°C on class B Ilr⁻ isolates at about 0.1 or better [average, 0.4 times] their EOP on a permissive host (Table 3). A similar reduction in EOP was observed for λse progeny from the coinfection with λ wt (Table 4) when plaque titers on Ilr⁻ and TC600 hosts were compared.)

The se mutations did not confer a vir phenotype since λse phage were unable to form plaques on imm^{λ} wt or cIts857 lysogens. The formation of clear plaques by the λse isolates on several suppressing and nonsuppressing hosts suggested that the se mutations negatively influenced lysogenization. The ability of these phage to lysogenize E. coli and to complement for λ genes cIII, cI, and cII (Table 5) was examined. None of the λse isolates was capable of lysogenization; whereas, the infecting λ wt phage from which they were derived lysogenized 60 to 70% of infected cells (data not shown). In the complementation assay measuring the ability of two coinfecting phage to establish lysogeny (measured by the appearance of turbid cell growth between two partially overlaying clear plaques), each λse isolate complemented, as λcI^- phage, for defects in genes cII and cIII carried on imm^{λ} but not imm^{434} phages. The lysogenization and complementation results revealed that λse isolates were defective in either the λ repressor gene or

TABLE 5. Complementation by λse for λ markers

Phage marker	λse isolates ^a
cI26, cI47, cI72	_
cII68	++++
cIII67	+++
cy42	-
<i>imm</i> ⁴³⁴ <i>c</i> Ids	-
<i>imm</i> ⁴³⁴ <i>c</i> II68	-
imm ⁴³⁴ cIII67	_

^a The phage were considered to complement for the designated marker (strong positive results indicated by +++ or ++++) if a turbid cell growth line was observed within the overlapping portion of the otherwise clear plaques. No complementation was indicated (-) by the absence of a turbid cell growth line between all overlapping plaques on plate. Negative complementation results were verified by repetitive assays. Identical results were obtained for λse phage with mutations 100a, 101b, 109b, 109e, 141e, 145c, and 145d. In control experiments, λcI^- gave identical results to those shown for λse phage. $\lambda cII68$ complemented λcI^- , $\lambda cIII67$, $\lambda imm^{434}cI^-$, and λimm^{434} cII and $\lambda cII68$.

in target sites (e.g., p_{RM} , o_R , p_{RE}) required for the establishment or maintenance of repressor transcription.

Influence of se mutations on replicative inhibition. Upon coinfection of a λ lysogen with λ wt plus the hybrid phage λimm^{434} (sharing identical replication genes) the heteroimmune *imm*⁴³⁴ phage was observed to predominate by 20-fold or more over the *imm*^{λ} phage in the burst (24). The impaired replication of the homoimmune imm^{λ} phage, described as replicative inhibition, was explained by the assumption that repressor molecules made by the prophage in the coinfected lysogenic cell prevented replication of the homoimmune phage, even when λ replication initiation proteins (gpO and gpP) were provided in *trans* by the heteroimmune phage. The explanation that the repressor blocked replication of the homoimmune phage by inhibiting its transcriptional activation was supported by observations showing that replication inhibition was suppressed (i) by mutation of the homoimmune phage in its rightward operator, $o_{\rm R}$, causing $p_{\rm R}$ to become insensitive to repression, or (ii) by base changes creating new promoter sites downstream from $p_{\rm R}$, exempli-

TABLE 6. Phage sensitivity to replicative inhibition

imm [^] phage	Burst: imm^{434} phage/ imm^{λ} phage ratio
Test phages	
λ <i>se</i> 100a	1.6
λ <i>se</i> 101b	2.6
λ <i>se</i> 109b	3.7
λ <i>se</i> 109e	2.0
λ <i>se</i> 141e	4.5
λ <i>se</i> 145c	3.0
λ <i>se</i> 145d	3.9
Control phages	
λ wt	29.7
λ <i>c</i> I72	26.2
λ <i>c</i> I90yc17	0.7
$\lambda cy 42$	11.6 ^b
λprm116	4.8
λ_c Its 857 prm 116	10.0
$\lambda c Its 857(18,12)^{P22}$	120.9 ^b

^a Results shown represent the average imm^{434}/imm^{λ} bursts for separate coinfections with (i) λimm^{434} T plus λimm^{λ} and (ii) λimm^{434} cI⁻ (cIds) plus λimm^{λ} . The imm⁴³⁴/imm^{\lambda} burst ratio from infection of W3350(λ) was divided by the imm^{434}/imm^{λ} burst ratio from infection of W3350 in order to take into account the relative efficiency for growth of each coinfecting phage in the equivalent nonlysogenic host. For a sample calculation, single bursts from infection of W3350 with λse 109b or λimm^{434} cIds were 13.09 and 20.16. Single bursts from infection of W3350(λ) with λ se109b and λ imm⁴³⁴cIds were 0.16 and 16.37. Upon coinfection of W3350 with each phage, the burst of imm⁴³ phage was 14.97 and that of imm^{λ} phage was 5.4. The imm^{434}/imm^{λ} burst ratio phage was 14.57 and that of *imm* phage was 5.47 He *imm* function of was 0.451 phage was 2.77. Upon coinfection of W3350(λ) with $\lambda sel09h$ plus λimm^{434} clds, the burst of *imm*⁴³⁴ phage was 12.88 and that of *imm*^{λ} was 2.06. The *imm*⁴³⁴/*imm*^{λ} burst ratio on W3350(λ) was 6.25. The *imm*⁴³⁴/*imm*^{λ} ratio on W3350(λ) (i.e., 6.25) divided by the *imm*⁴³⁴/*imm*^{λ} ratio on W3350(λ) (i.e., 2.77) was 2.26. Similarly, the single bursts of λimm^{434} T on W3350 and on W3350(λ) were 17.80 and 17.78. Upon coinfection of W3350 by λimm^{434} T and $\lambda se109b$, the imm⁴³⁴/imm^{λ} ratio of the progeny was 4.01/6.26 = 0.64, and in the analogous coinfection of W3350(λ), the ratio of bursts was 3.98/1.20 = 3.32. The *imm*⁴³⁴/*imm*^{λ} ratio on W3350(λ) (i.e., 3.32) divided by the *imm*⁴³⁴/*imm*^{λ} ratio on W3350 (i.e., 0.64) was 5.12. The average imm⁴³⁴/imm^{\lambda} burst ratio was (2.26 + 5.12)/2 = 3.7. Single bursts for each λse isolate on W3350 and W3350(λ) were about as noted for λse 109b. The single bursts on W3350 and W3350(λ) for representative *imm*^{λ} phage were, respectively: λ wt, 9 and <0.01; λ cI72, 40 and 0.08; λ cy42, 4.4 and 0.0004; λ cI90yc17, 13.1 and 8.6; $\lambda c [857(18,12)^{P22}, 6.2 \text{ and } 0.001.$

^b Results only for coinfections of W3350(λ) and W3350 with $\lambda imm^{434}cI^{-}$ plus λimm^{λ} .

λse	Frequency of turbid recombinant λ wt plaques (10 ⁻⁵) with the following phage ^a									
mutation	bio3h-1	bio30-7 biot124 cI ΔKH54 spi173 spi275 spi113	spi113	spi274	imm ⁴³⁴ cI	<i>spi</i> 156				
100a	926	114	42	13	25	17	5	<1	<1	<1
101a	433	159	56	23				7	<1	<1
109b	500	126	67	22				31	<1	<1
109e	667	120	76	33				24	<1	<1
141e	397	105	55	46				27	<1	<1
145c	556	172	123	36				14	<1	<1
145d	667	166	47	46				39	<1	<1

TABLE 7. Deletion mapping of λse mutations

^a Ratio of turbid plaques (from λ wt recombinant) to clear plaques (formed by both the input λse and $\lambda \Delta$ phages). The order of markers is as follows: N bio3h-1 cI [bio30-7, bio124, cI Δ KH54, spi173, spi275] sM o_R3 spi113 prm116 spi274 o_R2 o_R1 cro imm⁴³⁴cIy cII spi156.

fied by c17 and by four ri^{c} (replication inhibition constitutive) mutations (4, 5).

We examined whether the se mutations influenced $o_{\rm R}$ activity by determining if they could suppress replicative inhibition (Table 6). The se point mutations were found to reduce λ sensitivity to replicative inhibition by about 10-fold. Interestingly, the prm116 mutation, which falls between o_R3 and $o_{\rm R}2$ (21) also reduced phage sensitivity to replicative inhibition to about the same extent as did the se mutations. As expected, both λ wt and a cI^- derivative were sensitive to replicative inhibition. The c17 mutation enabled the phage to completely overcome it. The results also revealed that when a coinfecting imm^{λ} phage depended upon the expression, in cis, of its own downstream replication genes (i.e., for synthesis of required replication functions, where they are not provided by the heteroimmune helper; for example, the coinfection of $\lambda c Its 857(18,12)^{P22}$ and λimm^{434}), the imm^{λ} hybrid phage was even more sensitive than λ wt to replicative inhibition.

Characterization of se mutations. The nature and map position of the se mutations were examined by analysis for phage deletion and by deletion mapping. Both λ wt and the λ se isolates were similarly inactivated by exposure to EDTA (number of phage [treated and untreated, respectively]: λ , 9 \times 10⁵ and 9 \times 10⁹; λ se100a, 1.5 \times 10⁶ and 9.6 \times 10⁹; similar results were obtained with se mutations 101b, 109b, 109e, 141e, 145c, and 145d). This treatment selects for phage with deletions representing (at least) about 3% less DNA than λ wt (16). A control phage $\lambda bio30-7\Delta nin5$ tested in parallel was not inactivated by the same treatment (number of treated and untreated phage, respectively: 1.7×10^{10} and $1.5 \times$ 10^{10}). The EDTA inactivation of λ se phage isolates suggested that the se mutations comprised either point mutations or small deletions (i.e., less than 3% λ).

The map position of each se mutation was determined genetically by scoring for turbid λ wt recombinants in crosses between λse and λbio or λspi substitution phages (Table 7). All seven se mutations were mapped within *imm*^{λ}, to the right of gene cI. The leftmost mutation, se100a, mapped between markers spi113 and spi274. Mutation se101b mapped just to the right of spi274, and the remaining mutations mapped even further to the right. The approximate rightward endpoint of spi deletions 113 and 274, assigned as including through bp 37,969 and 37,973, respectively, were determined by mRNA protection experiments (22) and considered accurate to within a few base pairs (20).

DNA from λ wt and the λse phages was extracted, digested with restriction endonucleases, and end-labeled, and the separated fragments carrying se mutations were sequenced (Fig. 1). All seven se mutations were base substitutions (Fig. 2). The se mutations 100a and 101b, (C:G \rightarrow

A:T and G:C \rightarrow T:A transversions, respectively) fell within o_R2 in bp 37,979 and 37,985 to the right of the polymerase recognition (-35 sequence) region for the repressor maintenance promoter p_{RM} . The five independent se mutations 109b, 109e, 141e, 145c, and 145d each were the same G:C \rightarrow T:A transversion at bp 38,009 within o_R1 and the overlapping p_R promoter for rightward transcription. The se mutation 100a and the group typified by 109b, respectively, fell at the positions altered by operator mutation v1 within o_R2 , and mutations vC1 and vs387 within o_R1 , although they were not identical base substitutions (Fig. 2).

Each se mutation had the potential for destabilizing palindromes formed by $o_R 2$ and $o_R 1$ by being able to eliminate the formation of the topmost base pair between each stem and loop (Fig. 3). The p_{RM} mutation prmE93 within $o_R 2$ (21), at the same site as sel00a and operator mutation v1, also has this property.

DISCUSSION

Among the RK⁻ clonal isolates that support plaque formation by λvir and have a functional immunity region, many

FIG. 1. DNA sequence change in λ se mutation 101b (G:C \rightarrow T:A) within $o_{\rm R}2$. Sequenced positions for the remaining se mutations are indicated in Fig. 2.

FIG. 2. DNA sequence of the upper and lower strands of the p_{RM} o_R p_R region and changes caused by se mutations. The p_{RM} and p_R promoter regions are numbered (between strands) from their RNA start sites s_R and s_M , respectively. Base positions are as described by Daniels et al. (3). Mutations E37, 116, U31, M104, E104, UV8, U93, M36, and E93 were isolated as defects in p_{RM} (20, 21). The sequenced locations for o_R mutations v1, vC1, vs326, vs387, and UV11 and p_R mutation x3 are described by Daniels et al. (3). The Pribnow box and consensus sequence for each promoter are shown by dashed lines (8). The bottom and top (*l*- and *r*-strand) sequences are oriented with terminal 5' phosphoryls to the left and right, respectively.

are phenotypically $N^- O^- P^-$ and express the Nie phenotype. The preponderance of these isolates led us to explore the mutational defects responsible for nonimmune exclusion.

The Nie phenotype is only demonstrable when the IIr⁻ λ prophage fragment is thermally induced, suggesting the synthesis of an inhibitor of λ gene expression or activity. The Nie inhibition would appear to be directed toward the initiation of transcription from p_R since both λvir and λse escape it, were it not for the exclusion of imm^{434} phage (10 of 12 different imm^{434} phage were excluded [unpublished data]). Blotting experiments with an N through $P \lambda$ probe of BamHI and BamHI-EcoRV digests of DNA extracted from the seven class B RK⁻ IIr⁻ isolates revealed that five strains have insertions. One insertion is near the rightward imm^{21} marker; the remainder are within the fragment formed by

*Eco*RV cuts within *O* and the contiguous stretch of *E. coli* DNA downstream from *ren* (unpublished data). We conclude that mutational inactivation of the replicative killing capacity of an induced λ fragment (and by inference, its ability to initiate replication) can confer the Nie phenotype. The ilr⁻ mutations responsible for the Nie phenotype can occur at more than one site within the λ replicator region.

We examined the variability of the Nie phenotype by determining the plating ability of 61λ and λ hybrid phage on culture overlays of each of the seven isolates (unpublished data). These studies and potential explanations for nonimmune exclusion are being reported elsewhere. However, the relevant observation with respect to the present report is that among 26 phages with missense mutations in gene cI (e.g., point, amber, conditional lethal, and *trans* dominant repressor mutations), 9 plated with about the same efficiency

٨	٨	٨	С	C
С С	С С	С С	C G	CG
G G	G G	G G	A C	A C
G-C	7 C	G A	G-C	G 🖌
T-A	T-A	T−A	A A	A A
G-C	G-C	G-C	G-C	G-C
T-A	T-A	T-A	GT	GT
T-A	T-A	T-A	T− ∧	T-A
V C	A C	A C	∧ −T	A-T
oR2	se100a	se101b	oR1	se109b, 109e, 141e, 145c, 145d

FIG. 3. Influence of se mutations on palindromic structures that can be drawn for $o_R 2$ and $o_R 1$. Only the r strand for each operator region is drawn, with an N to P (left to right) orientation of the λ map (Fig. 2).

as did λse , although most formed pinpoint plaques. Clearly, it is not essential that the plating phage be defective in o_R for it to escape nonimmune exclusion. Also, as a rationale for the plating results of λse phage on the class A and B RK⁻ ilr⁻ isolates (each derived from cro^+ and cro^- parental RK⁺ strains, respectively [Table 3] it was suggested to us that only a double mutant $o_R^- cro^-$ might form plaques on a $cro^$ host (the cro^+ host would complement for Cro). We do not view this hypothesis as tenable since, as mentioned, some $cro^+ \lambda cI^-$ phage efficiently plate on the class B isolates, and, additionally, $\lambda c Its cro27$ was found to be totally unable to plate on the class B isolates at 30, 39, or 42°C (only IIr145d permits reduced plating at 39°C [unpublished data]).

The cis dominant λ se point mutations confer several properties upon otherwise wild-type λ phage, making them defective for lysogenization of E. coli, insensitive to replicative inhibition, and able to escape nonimmune exclusion. The se mutations all map within $o_R 2$ and $o_R 1$ at -39, -45, and -69 bp from $s_{\rm M}$, outside of the $p_{\rm RM}$ sequence regions necessary for RNA polymerase recognition and binding. Phage that acquire one operator mutation in either $o_R 2$ or $o_{\rm R}$ 1 cannot lysogenize because repressor occupancy of $o_{\rm R}$ 1 and $o_{\rm R}2$ (but not $o_{\rm R}3$) is required for lysogeny (12). $o_{\rm R}1$ mutants are not virulent because the interaction between repressors at $o_R 2$ and $o_R 3$ ensures that p_R expression is turned off by concentrations of repressor found in a lysogen (12). $o_{\rm R}2$ mutants are not virulent because the binding of repressor to $o_R 1$ is affected only slightly by mutation of $o_R 2$ (18). By these criteria, each se mutation appears to inactivate $o_{\rm R}$, since it prevents lysogeny yet does not confer virulence.

Rosen and Gussin (20) obtained $P_{\rm RM}^-$ mutants mapping within $o_{\rm R}2$ (prmE104 and prmE93, -38 and -39 bp, respectively, from $s_{\rm M}$) and $o_{\rm R}1$ (prmUV8 and prmU93, -67 and -68 bp from $s_{\rm M}$). The mutations E104 and E93 were circumstantially considered to be $p_{\rm RM}$ mutations, although E104 exerted a much stronger negative effect on cI rex expression than did E93 (21) and influenced the interaction of RNA polymerase with $p_{\rm RM}$ (8). The $p_{\rm RM}^-$ phenotype of the mutations within $o_{\rm R}2$, and especially those within $o_{\rm R}1$, was considered to be due entirely to an inability to bind repressor and, thus, to an effect on repressor activation of $p_{\rm RM}$ (21).

The se mutations within o_R^2 and o_R^1 each confer a p_{RM}^- (as well as p_{RE}^{-} ?) phenotype, since they eliminate cIexpression, as measured by the inability of λse phage to complement *imm^{\lambda*} phage with cI^{-} mutations or a *cis*-acting cy42 mutation in p_{RE} . The inability of the se mutants to complement $\lambda cy42$ distinguishes them from the $p_{\rm RM}^{-}$ mutants isolated by Rosen and Gussin (20). The latter selection was based upon the ability of λc I857 mutants to form clear (or partially clear) plaques, to complement $\lambda cy42$ but not cI^{-} mutants for lysogenization, and to map to the right of spi275. The presence of the 857 marker in parental phage increases the selection sensitivity for weak $p_{\rm RM}$ mutations (20). The inability of λse phage to complement $\lambda cy42$, $\lambda imm^{434}cIII^-$, or $\lambda imm^{434} c II^{-}$ suggests that the se mutations produce significant operator defects that prevent the repressor from activating $p_{\rm RM}$ and confer partial virulence, both for potential λcy and λimm^{434} lysogens.

Mutation of both o_R^2 and o_R^1 is required to eliminate repression of p_R (18). Nevertheless, we find that phage with se mutations escape repressor-dependent replicative inhibition and that the phage with se mutations in o_R^2 are as insensitive to replicative inhibition as those with se mutations in o_R^1 . This latter result seems contrary to what would be expected (8) from studies of repressor action, where o_R^1 is the preferred site of repressor binding. In addition, our finding that point mutation *prm*116 suppresses replicative inhibition for an otherwise $o_R 2^+ o_R 1^+$ phage to about the same extent as do *se* mutations is not adequately explained by the model in which the repressor can prevent replication initiation by inhibiting transcriptional activation through the direct inhibition of p_R transcription. We question whether the ability of λse phage to escape replicative inhibition is dependent upon their p_{RM}^- or o_R^- phenotype.

The ability of λse phage to escape replicative inhibition suggests either that repressor inhibition of p_R transcription is significantly reduced by the se mutations in $o_R 2$ or $o_R 1$ or that the se mutations enhance p_R activity and in turn reduce p_{RM} activity. It is conceivable that $o_R 1$ and $o_R 2$ mutations confer a p_{RM}^- phenotype because they strengthen p_R by facilitating RNA polymerase binding. Accordingly, RNA polymerase bound to p_R (where either $o_R 1$ or $o_R 2$ was defective) would exclude binding of polymerase to the weaker promoter, p_{RM} . In the absence of o_R mutations, polymerase binding at p_R was found to have little inhibitory effect on binding of polymerase to p_{RM} (15).

There is no evidence that the se mutations negatively influence the initiation of transcription from $p_{\rm R}$, even though the five independent se mutations represented by se109e also mutate $p_{\rm R}$ at a site 14 bp upstream from $s_{\rm R}$. For example, each λse phage gave good bursts on E. coli hosts W3350 and TC600. $p_{\rm R}$ can apparently function with any base at position -14, since each possible sequence variation is available among sequences for λ wt and mutations sel09e, vs387 and UV11. Rosen and Gussin (20) identified a $p_{\rm RM}$ mutation (prmE37) within $o_{\rm R}$ 3 that fell 14 bp upstream from $s_{\rm M}$. This mutation was reported to reduce p_{RM}-directed gene expression 20-fold in vivo and to be defective in transcription initiation from p_{RM} (8, 21). The powerful p_R promoter may be less sensitive to a single base change at position -14 than is the weaker $p_{\rm RM}$ promoter. Alternatively, the negative influence of a se mutation on the initiation of transcription from $p_{\rm R}$ might go unnoticed because the effect is counterbalanced by the mutation's inactivation of $o_{\rm R}$ 1, which in turn reduces repressor expression and the consequent repression of $p_{\rm R}$ transcription. However, this interpretation is not in agreement with the observation that λse phage escape imm^{λ} prophage-dependent replicative inhibition.

ACKNOWLEDGMENTS

The DNA sequencing was carried out by C.H. at the Department of Biological Sciences, State University of New York at Albany, with guidance from Dan Wulff and Michael Mahoney. We are grateful for their support and hospitality. We thank F. Blattner, G. Gussin, S. Hilliker, G. Smith, W. Szybalski, and D. Wulff for phage strains.

This work was supported by U.S. Department of Health and Human Services grant GM30077 and by Medical Research Council of Canada grant MA9277.

LITERATURE CITED

- 1. Calef, E., and Z. Neubauer. 1968. Active and inactive states of the *cI* gene of some lambda defective phages. Cold Spring Harbor Symp. Quant. Biol. 33:765-767.
- Court, D., and A. B. Oppenheim. 1983. Phage lambda's accessory genes, p. 251–277. In R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
 Daniels, D. L., J. L. Schroeder, W. Szybalski, F. Sanger, A. B.
- 3. Daniels, D. L., J. L. Schroeder, W. Szybalski, F. Sanger, A. B. Coulson, G. F. Hong, D. F. Hill, G. B. Peterson, and F. R. Blattner. 1983. Complete annotated lambda sequence, p. 519-676. In R. W. Hendrix, J. W. Roberts, F. W. Stahl, and

R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

- 4. Dove, W. F., E. Hargrove, M. Ohashi, F. Haugli, and A. Guga. 1969. Replicator activation in lambda. Jpn. J. Genet. 44(Suppl.):11-22.
- 5. Dove, W. F., H. Inokuchi, and W. Stevens. 1971. Replication control in phage lambda, p. 747–777. In A. D. Hershey (ed.), The bacteriophage lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 6. Eisen, H., P. Barrand, W. Spiegelman, L. F. Reichardt, S. Heinemann, and C. Georgopoulos. 1982. Mutants in the y region of bacteriophage λ and the characterization of the Hyp phenotype. Gene 20:71-81.
- Eisen, H. A., L. H. Pereira da Silva, and F. Jacob. 1968. Sur la regulation precoce du bacteriophage λ. C. R. Acad. Sci. 266:1176-1178.
- Gussin, G. N., A. D. Johnson, C. O. Pabo, and R. T. Sauer. 1983. Repressor and Cro protein: Structure, function, and role in lysogenization, p. 93-121. *In* R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 9. Hayes, S. 1979. Initiation of coliphage lambda replication, *lit*, *oop* RNA synthesis, and effect of gene dosage on transcription from promoters P_L , P_R , and P_R' . Virology 97:415–438.
- Hayes, S., A. Gordon, I. Sadowski, and C. Hayes. 1984. RK bacterial test for independently measuring chemical toxicity and mutagenicity: short-term forward selection assay. Mutat. Res. 130:97-106.
- 11. Hayes, S., C. Hayes, E. Taitt, and M. Talbert. 1983. A simple, forward selection scheme for independently determining the toxicity and mutagenic effect of environmental chemicals: measuring replicative killing of *Escherichia coli* by an integrated fragment of bacteriophage lambda DNA, p. 61-77. *In A. R. Kolber, T. K. Wong, L. D. Grant, R. S. DeWoskin, and T. J. Hughes (ed.), In vitro toxicity testing of environmental agents, part A. Plenum Publishing Corp., New York.*
- 12. Johnson, A. D., A. R. Poteete, G. Lauer, R. T. Sauer, G. K. Ackers, and M. Ptashne. 1981. λ repressor and cro—components of an efficient molecular switch. Nature (London)

294:217-223.

- Kroger, M., and G. Hobom. 1982. A chain of genes in the ninR region of bacteriophage lambda. Gene. 20:25-38.
- Maxam, A., and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
- Meyer, B. J., and M. Ptashne. 1980. Gene regulation at the right operator (o_R) of bacteriophage λ. III. λ repressor directly activates gene transcription. J. Mol. Biol. 139:195-205.
- Parkinson, J. S., and R. J. Huskey. 1971. Deletion mutants of bacteriophage lambda. I. Isolation and initial characterization. J. Mol. Biol. 56:369-384.
- 17. Pereira da Silva, L., H. Eisen, and F. Jacob. 1968. Sur la replication du bacteriophage λ. C. R. Acad. Sci. 266:926-928.
- Ptashne, M., A. Jeffrey, A. D. Johnson, R. Maurer, B. J. Meyer, C. O. Pabo, T. M. Roberts, and R. T. Sauer. 1980. How the λ repressor and Cro work. Cell 19:1-11.
- Rambach, A. 1973. Replicator mutants of bacteriophage lambda: characterization of two subclasses. Virology 54: 270-277.
- Rosen E. D., and G. N. Gussin. 1979. Clustering of Prmmutations of bacteriophage λ in the region between 33 and 40 nucleotides from the cI transcription start point. Virology 98:393-410.
- Rosen, E. D., J. L. Hartley, K. Matz, B. P. Nichols, K. M. Young, J. E. Donelson, and G. N. Gussin. 1980. DNA sequence analysis of *prm⁻* mutations of coliphage lambda. Gene 11: 197-205.
- Smith, G. R., H. Eisen, L. Reichardt, and J. Hedgpeth. 1976. Deletions of lambda phage locating a prm mutation within the rightward operator. Proc. Natl. Acad. Sci. USA 73:712–716.
- 23. Susskind, M. M., and D. Botstein. 1980. Superinfection exclusion by λ prophage in lysogens of Salmonella typhimurium. Virology 100:212-216.
- Thomas, R., and L. E. Bertani. 1964. On the control of the replication of temperate bacteriophages superinfecting immune hosts. Virology 24:241–253.
- Toothman, P., and I. Herskowitz. 1980. Rex-dependent exclusion of lambdoid phages. I. Prophage requirements for exclusion. Virology 102:133-146.