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The genome of the lipid-containing bacteriophage +6 contains three segments of double-stranded RNA. We
determined the nucleotide sequence of cDNA derived from the largest RNA segment (L). This segment specifies
the procapsid proteins necessary for transcription and replication of the +6 genome. The coding sequences of
the four proteins on this segment were identified on the basis of size and the correlation of predicted N-terminal
amino acid sequences with those found through analysis of isolated proteins. This report completes the
sf quence analysis of +6. This constitutes the first complete sequence of a double-stranded RNA genome virus.

Bacteriophage +6 infects the plant pathogen Pseudomo-
nas phaseolicola HB1OY. Three separate pieces of double-
stranded RNA compose its genome, which is located inside
a polyhedral nucleocapsid (26). The nucleocapsid has RNA
polymerase activity (20) and is covered by a lipid-containing
membrane (26). The assembly pathway involves the forma-
tion of a polyhedral procapsid composed of four proteins,
P1, P2, P4, and P7, which is then filled with one copy each of
the three pieces of double-stranded RNA per virion (4, 16).
These filled procapsids are then covered with a shell of
protein P8 to become nucleocapsids, which are subsequently
enveloped within the lipid-containing membrane (15). This
envelopment process is dependent upon the activity of the
nonstructural protein P12 (17). The four proteins that con-
stitute the procapsid are coded for by the largest of the three
genomic segments, and their synthesis begins early in infec-
tion (25). The procapsid is responsible for genomic replica-
tion and transcription (24).
The study of the phage assembly process has been facili-

tated by the cloning of cDNA of each genomic segment (18).
We recently determined the nucleotide sequence of the
cDNA derived from the small RNA segment (12) and the
middle segment (P. Gottlieb et al., unpublished data). In this
communication, we describe the nucleotide sequence anal-
ysis of cDNA derived from the large genomic segment
designated L.

MATERIALS AND METHODS

Bacterial strains, phage, and plasmids. Escherichia coli
JM105 [A(lac pro) thi strA endA sbcB15 hsdR4 F' traD36
proAB lacIq ZAM15] was used as a host for M13 cloning. E.
coli HB101 (hsd20, an rK- mK- strain) and MM294 (an rK-
mK+ strain) were used as hosts for clones with plasmid
pBR322 or pUC8 as a vector. Phage M13 (mplO and mpll)
replicative-form DNA (14) was used to clone cDNA frag-
ments for the sequencing reaction. Plasmids pLMF72,
pLMF306, pLMF308, and pLMF309 are pBR322 derivatives
containing cDNA insert fragments of segment L (Fig. 1).

* Corresponding author.

Preparation of DNA. Purified single-stranded M13 phage
DNA for the sequencing reaction template was purified from
1.5-ml cultures by the procedure in the Amersham Corp.
M13 cloning and sequencing handbook. Large plasmid prep-
arations (200- to 500-ml overnight cultures) were prepared by
the cleared-lysate method of Clewell (2), with subsequent
CsCl gradient centrifugation. Restriction digests used endo-
nucleases supplied by Boehringer Mannheim Biochemicals,
and the buffer conditions were those specified by this man-

ufacturer. Ligation reactions used T4 DNA ligase supplied
by Collaborative Research, Inc. Conditions were as de-
scribed in the M13 cloning and sequencing handbook.
Procedures for 0.8% agarose and 5% polyacrylamide gel
electrophoresis have been previously described (13). Trans-
formation of E. coli JM105 was as described in the M13
sequencing and cloning handbook. Transformation of E. coli
HB101 and MM294 has been previously described (18).

Protein purification and amino acid sequencing. Unlabeled
and [3H]leucine- and [3H]alanine-labeled 46h1s were grown
and purified as described previously (1). Preparative and
analytical protein gel electrophoresis was performed as

previously described (1). Individual proteins electrophoreti-
cally eluted from gel slices were free of contaminating
material as analyzed by subsequent sodium dodecyl sulfate-
polyacrylamide gel electrophoresis.
Two sequencing strategies were used to localize the amino

terminus of the individual proteins upon the nucleotide
sequence. First, unlabeled proteins (to which 14C label had
been added to facilitate protein localization within the pre-

parative sodium dodecyl sulfate-polyacrylamide gel) were

subjected to automated Edman degradation in a Beckman
890 D sequencer and a 0.1 M Quadril program. The amino
acids were identified as their phenylthiohydantoin deriva-
tives by high-pressure liquid chromatography (Varian 5020
liquid chromatograph; UV-5 detector, 269 nm).

In the second method for radiosequence analysis, the
eluted tritium-labeled proteins were degraded as described
above, together with 200 ,ug of apomyoglobin. Ninety per-

cent of each phenylthiohydantoin-derivatized sample was

counted by liquid scintillation, and the remaining 10% was

analyzed by high-pressure liquid chromatography, with the
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FIG. 1. Restriction map of the entire large genomic segment.
Sites were obtained from restriction nuclease digestion of the cloned
cDNA fragments indicated. The illustration is aligned with the
direction of transcription to the right. cDNA fragments used for
determination of the nucleotide sequence are shown below the map.
Kbp, Kilobase pairs; bp, base pairs.

known sequence of carrier apomyoglobin used as a control
for sequencer performance.
DNA sequencing. Nucleotide sequence analysis was per-

formed by the dideoxy chain termination method of Sanger
et al. (23). The sequence was determined for both strands.
Fragments ofcDNA for sequencing were first cloned into the
unique restriction site region of the replicative form of
bacteriophage M13 DNA. For this work, M13 vectors mplO
and mpll were used (14). Our strategy involved the use of
specific restriction fragments as well as the use of unselected
collections of restriction fragments generated by treatment
with TaqI. Sequences were determined on over 550 frag-
ments. Single-stranded DNA isolated from mature M13 virus
served as a template for dideoxy sequencing. The polymer-
ase reaction was primed with a 17-nucleotide primer pur-
chased from P-L Biochemicals, Inc., and chain extension
was with the Klenow fragment ofDNA polymerase I (Boehr-
inger Mannheim Biochemicals). Labeling was performed
with [a-35S]dATP, >600 Ci/mmol (Amersham Corp.).
Dideoxy sequencing using dITP and reverse transcriptase.

Some sections of the sequence displayed GC compressions.
We resolved them by substituting dITP for dGTP in the
reaction mixture (22). Chain extension reactions used avian
myeloblastosis virus reverse transcriptase (Molecular Ge-
netics Resources). In these reactions, the molar ratio of
deoxy and dideoxy nucleotides was altered from that of the
Klenow fragment-catalyzed reaction. Final reaction concen-
trations were 0.77 ,uM dATP to 0.027 ,uM ddATP, 889 ,uM
dCTP to 819 ddCTP, 889 ,uM dTTP to 8.9 ,uM ddTTP, and
220 ,uM dITP to 0.35 ,uM ddGTP. The reaction buffer
contained 33 mM Tris hydrochloride (pH 8.3), 6.7 mM
MgCl2, 46.7 mM KCI, and 20 mM mercaptoethanol. The
17-mer primer was present at 0.3 ng per reaction. The chain
termination reactions were catalyzed by 2.5 U of avian
myeloblastosis virus reverse transcriptase at 42°C for 20
min. These were subsequently chased with a mixture of four
deoxynucleotide triphosphates at 222 ,uM each for an addi-
tional 20 min. Each chain termination reaction contained 2.5
,uCi of [a-355]dATP. 35S-labeled DNA fragments were dena-
tured and analyzed by gel electrophoresis on 6 or 8%
polyacrylamide gels (42.5 cm long) containing 8 M urea, 89
mM Tris-borate (pH 8.3), and 2 mM EDTA.
Computer analysis. The computer facility of the Public

Health Research Institute of the City ofNew York was used.

It consists of the Vax 11/750 computer equipped with the
multiuser UNIX operating system. Nucleic acid analysis
programs were provided by the sequence analysis package
of the Biomathematics Computation Laboratory, Depart-
ment of Biochemistry and Biophysics, University of Califor-
nia at San Francisco.

RESULTS

cDNA cloning of the 416 genome was described by Min-
dich et al. (19). Plasmids were constructed that bore frag-
ments of the L segment, and the protein reading frame
positions were estimated by restriction site analysis in con-
junction with in vivo complementation studies, in vitro
coupled transcription translation of plasmid DNA, and ref-
erence to the cloning work of Revel et al. (21). Ultimately,
the reading frame assignments were made by the identifica-
tion of the N-terminal amino acid sequence of the isolated
proteins and comparing these with the sequences predicted
from the nucleotide sequence of the cDNA.
The large genomic segment of 416 contains 6,374 nucleo-

tides and it has 55.5% guanine-cytosine. Four reading frames
were found that correspond to the four proteins known to be
coded for by this segment (Fig. 1 and 2). As with the other
two genomic segments, there were appreciable noncoding
sequences at the termini. The termini of the segment agree
with the sequence found by Iba et al. (9) by direct sequenc-
ing of the genomic RNA. The order of the genes is in
agreement with that found by Revel et al. (21) on the basis of
the protein synthesis competence of fragments on plasmids
containing T7 promoters. The salient results of the sequence
analysis are as follows.
Gene 7 is the first significant open reading frame in the

segment. The reading frame starts with an AUG at position
458 and terminates at position 940 with a UGA. There is a
Shine-Dalgarno sequence preceding the initiation codon
(Fig. 2). The calculated molecular mass of P7 is 17.3 kilo-
daltons. The amino-terminal methionine is partially absent
on the basis of amino acid sequencing. The sequence pre-
dicts an absence of cysteine, and this was confirmed by the
lack of labeling of P7 in vivo when +16-infected cells were
exposed to radioactive cysteine (results not shown). P7 is
predicted to have a high net negative charge, and this is
consistent with the behavior of the protein in isoelectric
focusing gels (17).
Gene 2 follows gene 7. The initiating codon begins at

position 943 with an AUG that overlaps the UGA termina-
tion codon of gene 7. Gene 2 does not have a discernable
Shine-Dalgarno sequence in the vicinity of the initiating
codon. The reading frame ends at position 2937. The termi-
nation codon is UAA. The calculated molecular mass of P2
is 74.8 kilodaltons, and the N-terminal methionine is lost.
The predicted amino acid composition indicates a basic
protein, consistent with its behavior in isoelectric focusing
gels (17).
Gene 4 follows gene 2. It has a Shine-Dalgarno sequence,

and the initiating codon is an AUG beginning at position
2943. The reading frame terminates at position 3938. The
termination codon is UAA. The calculated molecular mass
of P4 is 35.0 kilodaltons, and the N-terminal methionine is
lost.
Gene 1 follows gene 4. It has a Shine-Dalgarno sequence,

the initiating codon is an AUG beginning at position 3951,
and the reading frame terminates at position 6257 with UAA.
It is notable that gene 1 ends only 117 base pairs from the end
of the segment. This is much closer than those for the small
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The four proteins coded for by the large genomic segment cules each of P1 and P4, about 20 molecules of P2, and
are P1, P2, P4, and P7. These proteins are synthesized early between 80 and 100 molecules of P7. Although the results of
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this report change the predicted molecular weights for the
proteins, the changes are not great enough to alter the
expected stoichiometry of the particle significantly. Recent
studies (10, 19) suggest that P1 itself can form a dodecahe-
dral structure. It is not known whether the active site(s) for
polymerase activity is shared by different proteins or
whether it is located within one of the four proteins of the
procapsid; however, no RNA polymerase activity has been
demonstrated in any structure simpler than an RNA-filled
procapsid.
A comparison of the amino acid sequences of proteins P1,

P2, P4, and P7 against the Dayhoff protein sequence library
as of April 1987 showed no significant similarity to other
proteins. However, a search for sequences suggestive of
nucleotide-binding sites revealed that P4 contains sequences
highly similar to those found for a class of proteins that
includes the multiple drug resistance proteins of tumor cells,
transport proteins of bacteria, and UV repair proteins (Fig.
3) (7, 8, 27). The meaning of this site in P4 is not clear. Since
the procapsid is involved in RNA polymerization and pack-
aging and must itself be assembled, we could speculate that
the P4 site is involved in one of these processes. This
sequence is, however, not characteristic of polymerases.
Recent unpublished work in our laboratory indicates that P4
has nucleotide triphosphate phosphatase activity.

Iba et al. (9) showed that there is identity among the ends
of the three genomic segments for 17 bases at the 3' end and
for 18 bases at the 5' end, with the exception of a difference
in the second position. We have shown that the identity at
the 3' end is more extensive between the small and medium
segments (Gottlieb et al., unpublished data). We now show
that this is true for the large segment as well. Although the
exact identity at the 3' end stops at nucleotide 18, there is
overall similarity that continues until 80 nucleotides from the
3' end (Fig. 4). It appears reasonable that the regions of
similarity should be involved in the regulation and mecha-
nisms of transcription, replication, and genome packaging.
During infection, production of proteins P1, P4, and P7 is

almost identical on a molar basis. Protein P2 is produced at
about 10% of the rate of the others (25). Nonsense mutations
in gene 7 are completely polar on the production of P2 (11).
It appears that the mechanism of control of the synthesis of
P2 is translational coupling. The same motif has been de-
scribed for two other gene pairs in 4)6. Production of P12 is
dependent on ribosome loading on gene 8, which is immedi-
ately upstream, and production of P5 is dependent on
ribosome loading on gene 9 (12). In both of these cases, the
downstream product is synthesized at about 10% of the rate
of the upstream product, and nonsense mutations in the
upstream genes are completely polar on the production of
the downstream gene product. In the three cases, the ribo-
some-binding site upstream from the amino acid initiating

RWPSEGIYSGVTALMGATGSGKSITLNE
11 III

GLNLKVKSGQTVALVGNSGCGKSTTVQL
NINLSIKQGEVIGIVGRSGSGKSTLTKL
DLNFTLRAGETLGIVGESGSGKSQSRLR
DINLDIHEGEFVVFVGPSGCGKSTLLRM
GVSLQARAGDVISIIGSSGSGKSTFLRC
NINLDIAKNQVTAFIGPSGCGKSTLLRT
NINLVIPRDKLIVVTGLSGSGKSSLAFD

P4 111-138

Mdr
HylB
OppD
MalK
HisP
PstB
UvrA-1

411-438
488-505
4 0-557
21--48
24--51
28--5 5
16--43

FIG. 3. Comparison of a portion of the amino acid sequence of
protein P4 with those of a group of proteins with nucleotide-binding
sites. The sequences are derived from the genes for the multiple
drug resistance protein (Mdr), hemolysin transport protein (HylB),
oligopeptide permease (OppD), and transport proteins for maltose
(MalK), histidine (HisP), and phosphate (PstB) (7). A sequence from
an ATP-dependent UV repair protein (UvrA-1) (5) is also shown.

A
L GUAAAAAAACUUUAUAUAG

1111111111111111
M GGAAAAAAACUUUAUAUAU

1I1111111111111111
s GGAAAAAAACUUUAUAUAA

B
L

M

S

3UCUUUUACCUGGAUUCUCUGUG

UUUUCUACGUUGAGCUCCGUAUA

UCCAUAAGUCCUWAGAUWUCUAAGGCGAGACUCGCUWUGCGAGCGUCCAAUAGGACGGCCCCCUC GGGGGCUCUCUCUCU

I11111 111111111 111111111111111111I II 1111111111 111111 11111111111111111
UAAAUAAGUCCUUAGAUUUCUAACGCGAGACUCGCUUUGCGAGCAUCCAAUAGGAUGGCCCCUUCGGGGGCUCUCUCUCU
1111 11111111 111111111111 1111 1111111111
UAAACAAGUCCUGUAUAAC -AAGGCGAGACUCACUAUGUGAGCGUCCAAUAGGACGGCCCCWCGGGGGCUCUCUCUCU

FIG. 4. Comparison of the 5' (A) and 3' (B) ends of the three
genomic segments. In all cases, the 5' end is at the left.

codon is either absent or spaced far away. The 4)6 system
also uses other means of control of gene expression. The
production of proteins coded on the middle segment differs
among the genes, although each gene has its own ribosome-
binding site. It is likely that the strength of the interaction
between ribosomes and some of the messages determines
the level of production of individual proteins. In addition,
there is a dramatic change in the pattern of single-stranded
RNA synthesis during infection (3). This is certainly in-
volved in the turn on of translation of the late proteins.
A number of viruses contain segmented genomes of dou-

ble-stranded RNA. These include reovirus, rotavirus, blue
tongue virus, and 4)6. In addition, a number of particles that
replicate double-stranded RNA have been described, nota-
bly, the killer particle in Saccharomyces cerevisiae (6).
Although the replication of 4)6 RNA differs from most of
these in that transcription of 4)6 is by strand displacement,
whereas the others use a conservative mechanism, we
anticipate that there is considerable homology in the proteins
of these particles. In particular, we expect to find that the
replicase proteins are related.
The complete nucleotide sequence of the three genomic

segments has been entered into the GenBank database. The
accession numbers are M17461 for segment L, M17462 for
segment M, and M12921 for segment S.
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