Supplementary Table 1. Bacterial strains used in this study

Bacterial stra	nin' Relevant genotype	Source or reference
BG214	trpC2 metB5 amyE sigB37 xin-1 attSPβ attICEB	Ss Strain collection
BG703	$+\Delta ruvAB$	(1)
BG190	$+\Delta recA$	(2)
BG855 ^b	$+\Delta rec U$	This work
BG651 ^b	$+ \Delta recA \Delta recU$	This work
BG1019	+ recU56	This work
BG1021	+ <i>recU71</i>	This work
BG1023	$+\Delta recA\ recU56$	This work
BG1025	+ ΔrecA recU71	This work

^aAll strains are isogenic with BG214. ^bThe entire *recU* gene coding region was deleted.

- 1. Sanchez H, *et al.* (2005) The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in *Bacillus subtilis. Genetics* 171: 873-883.
- 2. Ceglowski P, Luder G, Alonso JC (1990) Genetic analysis of *recE* activities in *Bacillus subtilis*. *Mol Gen Genet* 222: 441-445.