Supporting Information for

Allenylazide Cycloaddition Chemistry. Synthesis of Annelated Indoles from 2-(Allenyl)phenylazide Substrates.

Ken S. Feldman^{*}, Malliga R. Iyer and D. Keith Hester II Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 USA.

General Experimental	S 5		
1-(2-Azidophenyl)but-2-yn-1-ol	S 5		
Representative Procedure 1. Azidophenyl Alkynyl Acetate Synthesis.			
Representative Procedure 2. Allenylazide Synthesis.			
Representative Procedure 3. Allenylazide Synthesis.			
Representative Procedure 4. Cyclization.			
Representative Procedure 5. Azidophenyl Alkynyl Alcohol Synthesis.	S9		
Representitive Procedure 6. Thermolysis of Crude			
Phenyl-substituted Allenylazides.	S9/S10		
1-t-Butyldimethylsilyloxy-4-acetoxy-4-(2-azidophenyl)but-2-yne (9b)	S10		
1- <i>t</i> -Butyldimethylsilyloxy-5-(2-azidophenyl)pent-3-yn-5-ol 1- <i>t</i> -Butyldimethylsilyloxy-5-acetoxy-5-(2-azidophenyl)pent-3-yne (9c) 1-(2-Azidophenyl)4,4-dimethylpent-2-yn-1-ol 1-Acetoxy-1(2-azidophenyl)4,4-dimethylpent-2-yne (9d) 1-(2-Azidophenyl)5-phenylpent-4en-2-yn-ol			
		1-Acetoxy-1(2-azidophenyl) 5-phenylpent-4en-2-yne (9g)	S13
		1-(2-Azidophenyl)3-cyclohex-1-enylprop-2-yn-1-ol	S13/S14
		1-Acetoxy-1(2-azidophenyl) 3-cyclohex-1-enylprop-2-yne (9h)	S14
		1-(2-Azidophenyl)3-cyclopent-1-enylprop-2-yn-1-ol	S14/S15
1-Acetoxy-1(2-azidophenyl) 3-cyclopent-1-enylprop-2-yne (9i)	S15		

1-t-Butyldimethylsilyloxy-2-vinyl-4-(2-azidophenyl)but-2,3-diene (6b)	S15/S16	
1-t-Butyldimethylsilyloxy-3-vinyl-5-(2-azidophenyl)but-3,4-diene (6c)	S16	
1-(2-Azidophenyl)3-t-butylpent-1,2,4-triene (6d)	S16/S17	
1-(2-Azidophenyl)3-methyl-5phenylpent-1,2,4-triene (6e)	S17	
1-(2-Azidophenyl)3-methyl-4-phenylpent-1,2,4-triene (6f)	S17/S18	
1-(2-Azidophenyl)3-methyl-4-phenylpent-1,2,4-triene (6g)	S18	
1-(2-Azidophenyl)3-cyclopent-1-enylbut-1,2-diene (6i)	S18/S19	
3-(t-Butyldimethylsilyloxymethyl)-1,4-dihydrocyclopenta[b]indole (7b)	S19	
1-(t-Butyldimethylsilyloxymethyl)-9H-pyrrolo[1,2-a]indole (11b)	S19/S20	
3-(t-Butyldimethylsilyloxyethyl)-1,4-dihydrocyclopenta[b]indole (7c)	S20	
1-(t-Butyldimethylsilyloxyethyl)-9H-pyrrolo[1,2-a]indole (11c)	S20	
3-t-Butyl-1,4-dihydrocyclopenta[b]indole (7d)	S20/S21	
1-t-Butyl-9H-pyrrolo[1,2-a]indole (11d)	S21	
3-Methyl-2-phenyl-1,4-dihydrocyclopenta[b]indole (7e)	S21/S22	
1-Methyl-2-phenyl-9H-pyrrolo[1,2-a]indole (11e)	S22	
2,3-Dimethyl -1,4-dihydrocyclopenta[b]indole (7f)	S22	
1,1-Dimethyl-9H-pyrrolo[1,2-a]indole (11f)	S22/S23	
1-Methyl-3-phenyl-3H-pyrrolo[1,2-a]indole (10g)	S23	
1-Methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (12g)	S23/S24	
6-Methyl -5,7,8,9-hexahydroindeno[2,1-b]indole (7h)	S24	
11-Methyl-2,3,4,10-tetrahydro-1H-indolo[1,2-a]indole (11h)	S24/S25	
Pyrrolo-indole (10i)	S25	
2-[1-(4-Methoxy-phenyl)-vinyl]-1H-indole (14k)	S25/S26	
2-[1-(3-Methoxy-phenyl)-vinyl]-1H-indole (14l)	S26/S27	
2-[1-(3-Fluoro-phenyl)-vinyl]-1H-indole (14m)	S27	
¹ H NMR, ¹³ C NMR 1-(2-Azidophenyl)but-2-yn-1-ol	S28/S29	
¹ H NMR, ¹³ C NMR 9a	S30/S31	
¹ H NMR, ¹³ C NMR 1- <i>t</i> -Butyldimethylsilyloxy-4-(2-azidophenyl)but-2-yn	-4olS32/S33	
¹ H NMR, ¹³ C NMR 9b	S34/S35	
¹ H NMR, ¹³ C NMR1- <i>t</i> -Butyldimethylsilyloxy-5-(2-azidophenyl)pent-3-yn-5olS36/S37		
¹ H NMR, ¹³ C NMR 9c	S38/S39	

¹ H NMR, ¹³ C NMR 1-(2-Azidophenyl)4,4-dimethylpent-2-yn-1-ol	S40/S41
¹ H NMR, ¹³ C NMR 9d	S42/S43
¹ H NMR, ¹³ C NMR 1-(2-Azidophenyl)5-phenylpent-4en-2-yn-ol	S44/S45
¹ H NMR, ¹³ C NMR 9g	S46/S47
¹ H NMR, ¹³ C NMR 1-(2-Azidophenyl)3-cyclohex-1-enylprop-2-yn-1-ol	S48/S49
¹ H NMR, ¹³ C NMR 9h	S50/S51
¹ H NMR, ¹³ C NMR 1-(2-Azidophenyl)3-cyclopent-1-enylprop-2-yn-1-ol	S52/S53
¹ H NMR, ¹³ C NMR 9i	S54/S55
¹ H NMR, ¹³ C NMR 6a	S56/S57
¹ H NMR, ¹³ C NMR 6b	S58/S59
¹ H NMR, ¹³ C NMR 6c	S60/S61
¹ H NMR, ¹³ C NMR 6d	S62/S63
¹ H NMR, ¹³ C NMR 6e	S64/S65
¹ H NMR, ¹³ C NMR 6f	S66/S67
¹ H NMR, ¹³ C NMR 6g	S68/S69
¹ H NMR, ¹³ C NMR 6h	S70/S71
¹ H NMR, ¹³ C NMR 6i	S72/S73
¹ H NMR, ¹³ C NMR 7a	S74/S75
¹ H NMR, ¹³ C NMR 11a	S76/S77
¹ H NMR, ¹³ C NMR 7b	S78/S79
¹ H NMR, ¹³ C NMR 11b	S80/S81
¹ H NMR, ¹³ C NMR 7c	S82/S83
¹ H NMR, ¹³ C NMR 11c	S84/S85
¹ H NMR, ¹³ C NMR 7d	S86/S87
¹ H NMR, ¹³ C NMR 11d	S88/S89
¹ H NMR, ¹³ C NMR 7e	S90/S91
¹ H NMR, ¹³ C NMR 11e	S92/S93
¹ H NMR, ¹³ C NMR 7f	S94/S95
¹ H NMR, ¹³ C NMR 11f	S96/S97
¹ H NMR, ¹³ C NMR 10g	S98/S99
¹ H NMR, ¹³ C NMR 12g	S100/S101

¹ H NMR, ¹³ C NMR 7h	S102/S103
¹ H NMR, ¹³ C NMR 11h	S104/S105
¹ H NMR, ¹³ C NMR 10i	S106/S107
¹ H NMR, ¹³ C NMR 14j	S108/S109
¹ H NMR, ¹³ C NMR 14k	S110/S111
¹ H NMR, ¹³ C NMR 14l	S112/S113
¹ H NMR, ¹³ C NMR 14m	S114/S115
X-ray Structure 11a	S116
X-ray Structure 12g	S118

General Experimental

Moisture and oxygen sensitive reactions were carried out in flame-dried glassware under a nitrogen atmosphere. Solvents were dried by passage through an activated alumina column under nitrogen. All organic reagents were used as purchased. Flash chromatography was performed using $32 - 63 \mu m$ silica gel with the indicated solvent systems. Melting points are uncorrected. Low and high resolution mass spectra were obtained according to the specified technique and were performed at the Proteomics and Mass Spectrometry Core Facility at the Pennsylvania State University. Copies of ¹H and ¹³C NMR spectra are supplied in the Supporting Information as criteria of purity.

1-(2-Azidophenyl)but-2-yn-1-ol.

To a solution of 2-azidobenzaldehyde (8) (2.0 g, 14 mmol) in 20 mL of THF at -20 °C was added 1-propynylmagnesium bromide (0.50 M, 30 mL, 15 mmol) and the mixture was stirred for 2 h. The reaction mixture was warmed to room temperature over an additional hour and poured into 20 mL of saturated NH₄Cl solution. The organic layer was extracted with 3x30 mL of Et₂O and the combined organic extracts were washed with water and brine, dried over Na₂SO₄ and the solvent was evaporated to yield a brown oil. The crude material was carried over to the next step. A small batch was purified by column chromatography (40% Et₂O in hexanes) to give a white solid: mp 49 - 50 °C; IR (neat): 3400, 2125 cm⁻¹; ¹H NMR (300 MHz, C₆D₆) δ 7.69 (m, 1H), 6.86 (m, 2H), 6.61 (m, 1H), 5.67 (d, *J* = 2.1 Hz, 1H), 3.07 (br s, 1H), 1.47 (d, *J* = 2.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.0, 131.9, 129.4, 128.1, 124.9, 118.0, 82.9, 78.2, 60.3, 3.6; TOFESMS *m*/*z* relative intensity 210.1 (MNa⁺ 100%); HRMS (+ES) Calcd for C₁₀H₉N₃ONa: 210.0643, Found: 210.0639.

Representative Procedure 1. Azidophenyl Alkynyl Acetate Synthesis. 1-Acetoxy-1(2-azidophenyl)but-2-yne (9a).

Acetic anhydride (1.2 mL, 13 mmol) and DMAP (1.6 g, 13 mmol) were added to an icecold solution of 1-(2-azidophenyl)but-2-yn-1-ol (2.0 g, 11 mmol) in 40 mL of CH₂Cl₂, and the mixture was stirred for 24 h with warming to room temperature. The reaction mixture was poured into 30 mL of saturated NaHCO₃ solution. The mixture was then extracted with 3x30 mL of CH₂Cl₂ and the combined organic layers were washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude material was purified by column chromatography (25% Et₂O in hexanes) to give the acetate **9a** as a pale yellow solid (1.5 g, 61%): mp 49 – 50 °C; IR (neat): 2140, 1736 cm⁻¹; ¹H NMR (360 MHz, C₆D₆) δ 7.75 (dd, *J* = 7.5, 1.8 Hz, 1H), 6.91 (m, 3H), 6.64 (dd, *J* = 7.6, 1.4 Hz, 1H), 1.66 (s, 3H), 1.45 (d, *J* = 2.3 Hz, 3H); ¹³C NMR (90 MHz, C₆D₆) δ 168.9, 138.1, 130.2, 129.5, 129.3, 124.9, 118.4, 83.6, 76.4, 61.3, 20.4, 3.3; TOFESMS *m/z* (relative intensity) 252.0 (MNa⁺, 100%), 284.0 (MMeOH⁺,70%); HRMS Calcd for C₁₂H₁₁N₃O₂Na : 252.0749, Found: 252.0762.

Representative Procedure 2. Allenylazide Synthesis.

1-(2-Azidophenyl)3-methylpent-1,2,4-triene (6a).

To a solution of $ZnCl_2$ (0.34 g, 2.5 mmol) in 10 mL of THF was added vinylMgBr (1.0 M in THF, 2.5 mL, 2.5 mmol) and the mixture was stirred at room temperature for 1 h. Pd(PPh₃)₄ (58 mg, 5.0 mol%) in 2mL of THF and the propargylic acetate **9a** (0.23 g, 1.0 mmol) in 5 mL of THF were added sequentially. The reaction mixture was stirred at

room temperature for 20 min. After addition of 10 mL of saturated NH₄Cl solution, the reaction mixture was extracted with 2x20 mL of Et₂O and the combined organic layers were washed with water and brine. Drying over Na₂SO₄ and removal of solvent under reduced pressure resulted in a brown oil. The crude product was purified by flash chromatography using pure hexanes as the eluent to give **6a** as a pale yellow oil (114 mg, 58%). IR (neat): 2120, 1930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.4 Hz, 1H), 7.27 (d, *J* = 7.4, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.10 (t, *J* = 7.3 Hz, 1H), 6.54 (m, 1H), 6.42 (dd, *J* = 17.4, 10.5 Hz, 1H), 5.25 (d, *J* = 17.4 Hz, 1H), 5.15 (d, *J* = 10.5 Hz, 1H), 1.97 (d, *J* = 2.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.3, 136.8, 135.0, 128.9, 128.4, 126.3, 125.3, 118.9, 114.0, 104.6, 89.1, 14.9; TOFESMS *m*/*z* relative intensity 170 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₂H₁₂N: 170.0970, Found: 170.0977.

Representative Procedure 3. Allenylazide Synthesis. 1-(2-Azidophenyl)3-cyclohex-1-enylbut-1,2-diene (6h).

To a solution of CuBr•Me₂S (2.5 g, 12 mmol) in 20 mL of THF at -40 °C was added MeMgBr (3.0 M in THF, 4.0 mL, 12 mmol) and the mixture was stirred for 1 h, after which acetate **9h** (0.30 g, 1.3 mmol) in 5 mL of THF was cannulated into the reaction mixture at -40 °C. The reaction mixture was warmed to room temperature over a period of 8 h to allow complete consumption of starting material. The excess cuprate was then quenched with drop-wise addition of saturated NH₄Cl solution. The organic layer was extracted with 3x50 mL of Et₂O and washed with water and brine. Drying the combined extracts over Na₂SO₄ and removal of solvent under reduced pressure resulted in a brown oil. The crude product was purified by column chromatography using pure hexanes as the eluent to give **6h** as a pale yellow oil (120 mg, 37%). IR (neat): 2123, 1928 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 7.0, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.57 (m, 1H), 5.81 (m, 1H), 2.2 (m, 3H), 2.07 (m, 1H), 1.97 (d, *J* = 2.7 Hz, 3H), 1.63-1.68 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 207.6, 136.5,

133.4, 128.4, 128.2, 127.2, 125.2, 123.9, 118.8, 107.1, 90.5, 27.4, 26.4, 23.2, 22.7, 16.3 ; TOFESMS *m*/*z* relative intensity 224 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₆H₁₈N: 224.1439, Found: 224.1459

Representative Procedure 4. Cyclization.

A deoxygenated solution of allenylazide **6a** (35 mg, 0.18 mmol) in toluene- d_8 , (1.8 mL) was heated at 110 °C in a clean, sealed tube for 15 min, after which the reaction mixture was cooled to room temperature. Evaporation of the solvent *in vacuo* gave a brown oil. The ratio of the products was determined at this stage by ¹H NMR analysis. Purification of this crude oil using an alumina column resulted in two products; **7a** (80% Et₂O in hexanes, 12 mg, 40%) and **11a** (10% Et₂O in hexanes 17 mg, 56%).

3-Methyl-1,4-dihydrocyclopenta[b]indole (7a).

IR (neat): 3406 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (bs, 1H), 7.58 (d, J = 7.43 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.09-7.24 (m, 2H), 6.22 (m, 1H), 3.25 (s, 2H), 2.22 (d, J = 1.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.7, 140.5, 132.7, 131.6, 125.2, 121.0, 120.6, 120.3, 118.5, 112.3, 31.9, 13.5; TOFESMS *m*/*z* relative intensity 170 (MH⁺ 35); HRMS (+ES) Calcd for C₁₂H₁₂N:170.0970, Found: 170.0967.

1-Methyl-9H-pyrrolo[1,2-a]indole (11a).

Crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation of an Et₂O solution of **11a** over a period of 48 h at 25 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 7.4 Hz, 1H), 7.24-7.33 (m, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.05 (d, *J* = 2.6 Hz, 1H), 6.25 (d, *J* = 2.6 Hz, 1H), 3.77 (s, 2H), 2.18 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.8, 135.3, 132.7, 127.7, 126.3, 123.0, 114.8, 111.9, 109.8, 109.6, 28.4, 11.7;

TOFESMS m/z relative intensity 170 (MH⁺ 35); HRMS (+ES) Calcd for C₁₂H₁₂N:170.0970, Found: 170.0967.

Representative Procedure 5. Azidophenyl Alkynyl Alcohol Synthesis.

1-t-Butyldimethylsilyloxy-4-(2-azidophenyl)but-2-yn-4-ol.

A solution of 1-*t*-butyldimethylsilyloxybut-2-yne (0.68 g, 4.0 mmol) in THF (20 mL) was cooled to -78 °C and *n*-butyllithium (2.3 M in hexanes, 1.8 mL, 4.0 mmol) was added. The reaction mixture was stirred at -78 °C for 30 min. 2-Azidobenzaldehyde (**8**) (0.59 g, 4.0 mmol) in 5 mL of THF was cannulated into the reaction mixture and the reaction was warmed to room temperature over a period of 2 h. The reaction mixture was poured into 10 mL of saturated NH₄Cl solution and extracted with 3x30 mL of Et₂O. The combined organic layers were washed with water and brine, dried over Na₂SO₄ and the solvent was evaporated. The crude alcohol was purified by flash chromatography using 40% Et₂O in hexanes to give 1.2 g (96%) of the alcohol as yellow oil. IR (neat): 3404, 2127 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 2H), 5.68 (m, 1H), 4.44 (s, 2H), 0.91 (s, 9H), 0.12 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 131.5, 130.1, 128.8, 125.5, 118.7, 85.7, 84.0, 61.1, 52.2, 26.2, 18.7, -4.8; TOFESMS *m*/*z* relative intensity 318 (MH⁺ 30); HRMS (+ES) Calcd for C₁₆H₂₄N₃O₂Si: 318.1638, Found: 318.1636.

Representitive Procedure 6. Thermolysis of Crude Phenyl-substituted Allenylazides.

2-(1-Phenyl-vinyl)-1H-indole (14j)

To a solution of propargyl acetate **9a** (77 mg, 0.34 mmol) and Pd(PPh₃)₄ (35 mg, 0.03 mmol) in 3.4 mL of THF was added drop-wise phenylzinc bromide (0.50 M in THF, 1.0 mL, 0.50 mmol) and the reaction mixture was stirred at room temperature for 1 h, and then brought to reflux and held there for 14 h. The reaction mixture was allowed to cool to room temperature and added to 30 mL of ice-cold saturated NH₄Cl solution. The mixture was extracted with Et₂O (3x30 mL), and the combined organic layers were washed with water and brine, then dried over MgSO₄ and concentrated *in vacuo*. This crude material was purified by column chromatography (5% EtOAc in hexanes) to give the product **14j** as a yellow oil (25 mg, 34%). IR (neat): 3416 cm⁻¹; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.30 (br s, 1H), 7.51-7.48 (m, 3H), 7.42-7.36 (m, 4H), 7.10 (m, 1H), 6.99 (m, 1H), 6.30 (dd, *J* = 2.2, 0.8 Hz, 1H), 5.76 (s, 1H), 5.33 (d, *J* = 0.6 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO) δ 143.0, 141.5, 138.8, 138.3, 129.5, 129.3, 129.1, 128.9, 123.1, 121.3, 120.3, 112.7, 111.9, 104.0; APCI *m*/*z* (relative intensity) 220.1 (MH⁺, 100%); HRMS Calcd for C₁₆H₁₄N: 220.1126, Found: 220.1121.

1-t-Butyldimethylsilyloxy-4-acetoxy-4-(2-azidophenyl)but-2-yne (9b).

Following representative procedure (**1**) for acetate synthesis, 1-*t*-butyldimethylsilyloxy-4-(2-azidophenyl)but-2-yn-4-ol (1.3 g, 3.9 mmol) was converted to acetate **9b** (1.3 g, 92%). IR (neat): 2127, 1745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 6.68 (m,1H), 4.44 (d, *J* = 1.8 Hz, 2H), 2.11 (s, 3H), 0.91 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 138.2, 130.7, 129.7, 128.3, 125.3, 118.6, 86.3, 81.2, 61.2, 52.2, 26.1, 21.3, 18.6, -4.8; TOFESMS *m*/*z* relative intensity 360 (MH⁺ 80); HRMS (+ES) Calcd for C₁₈H₂₆N₃O₃Si: 360.1743, Found: 360.1731.

1-t-butyldimethylsilyloxy-5-(2-azidophenyl)pent-3-yn-5-ol.

Following the representative procedure (**5**) for alcohol synthesis, 2-azidobenzaldehyde (**8**) (0.66 g, 4.4 mmol) was treated with 1-*t*-butyldimethylsilyloxypent-3-ynyllithium (1.0 equiv, 4.4 mmol) to give 1-*t*-butyldimethylsilyloxy-5-(2-azidophenyl)pent-3-yn-5-ol as a yellow oil (1.3 g, 96%). IR (neat): 3423, 2110 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 2H), 5.64 (m,1H), 3.76 (t, *J* = 7.1 Hz, 2H), 2.50 (dt, *J* = 7.0, 1.8 Hz, 2H), 0.91 (s, 9H), 0.08 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 137.8, 132.3, 130.1, 128.9, 125.5, 118.7, 85.0, 80.4, 62.1, 61.2, 26.3, 23.7, 18.7, -4.9 (2C); TOFESMS *m*/*z* relative intensity 332 (MH⁺ 40); HRMS (+ES) Calcd for C₁₇H₂₆N₃O₂Si: 332.1794, Found: 332.1780.

1-t-Butyldimethylsilyloxy-5-acetoxy-5-(2-azidophenyl)pent-3-yne (9c).

Following representative procedure (**1**) for acetate synthesis, 1-*t*-butyldimethylsilyloxy-5-(2-azidophenyl)pent-3-yn-5-ol (1.3g, 3.9 mmol) was converted to acetate **9c** (1.2 g, 82%). IR (neat): 2129, 1747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.7 Hz, 1H), 7.41 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 6.64 (t, *J* = 2.0 Hz, 1H), 3.75 (t, *J* = 6.9 Hz, 2H), 2.49 (dt, *J* = 6.9, 2.1 Hz, 1H), 2.11 (s, 3H), 0.89 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 138.2, 130.6, 129.9, 128.9, 125.4, 118.7, 85.7.3, 82.2, 61.9 61.5, 26.3, 23.7, 21.4, 18.7, -4.9 (2C); TOFESMS *m*/*z* relative intensity 396 (MNa⁺ 65); HRMS (+ES) Calcd for C₁₉H₂₇N₃O₃SiNa: 396.1719, Found: 396.1716.

1-(2-Azidophenyl)4,4-dimethylpent-2-yn-1-ol.

Following the representative procedure (**5**) for alcohol synthesis, 2-azidobenzaldehyde (**8**) (0.60 g, 4.0 mmol) was treated with 3,3-dimethylbutynyllithium (1.0 equiv, 4.0 mmol) to give 1-(2-azidophenyl)4,4-dimethylpent-2-yn-1-ol as a yellow oil (800 mg, 87%). IR (neat): 3375, 2128 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.17-7.28 (m, 2H), 5.67 (s,1H), 2.53 (bs, 1H) 1.28 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 137.9, 132.6, 130.0, 128.9, 125.4, 118.7, 96.4, 77.7, 60.1, 31.3 27.9; TOFESMS *m*/*z* relative intensity 230 (MH⁺ 80); HRMS (+ES) Calcd for C₁₂H₁₆N₃O: 230.1293, Found: 230.1280.

1-Acetoxy-1-(2-azidophenyl)4,4-dimethylpent-2-yne (9d).

Following representative procedure (1) for acetate synthesis, 1-(2-azidophenyl)4,4dimethylpent-2-yn-1-ol (0.80 g, 3.5 mmol) was converted to acetate **9d** (850 mg, 90%). IR (neat): 2127, 1745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.20 (t, *J* = 8.3 Hz, 2H), 6.64 (s,1H), 2.10 (s, 3H), 1.26 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 138.4, 130.5, 130.0, 129.1, 125.3, 118.7, 96.7, 74.9 61.6, 31.2, 27.9, 21.5; TOFESMS *m*/*z* relative intensity 272 (MH⁺ 32); HRMS (+MSES) Calcd for C₁₅H₁₈N₃O₂: 272.1399, Found: 272.1392. 1-(2-Azidophenyl)5-phenylpent-4-en-2-yn-ol.

Following the representative procedure (**5**) for alcohol synthesis, 2-azidobenzaldehyde (**8**) (0.46 g, 3.1 mmol) was treated with 4-phenylbut-3-en-1-ynyllithium (1.0 equiv, 3.1 mmol) to give 1-(2-azidophenyl)5-phenylpent-4-en-2-yn-ol as a bright yellow oil (460 mg, 54%). IR (neat): 3396, 2126 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.44-7.23 (m, 8H), 7.02 (d, *J* = 16.3 Hz, 1H), 6.24 (dd, *J* = 16.3, 1.9 Hz, 1H), 5.84 (m, 1H), 2.75 (bs, 1H) ; ¹³C NMR (75 MHz, CDCl₃) δ 142.6, 137.8, 136.5, 132.2, 130.2,129.3, 129.2, 128.9, 126.8, 125.6, 118.8, 107.8, 90.7, 86.1, 61.5; TOFESMS *m/z* relative intensity 276 (MH⁺ 30); HRMS (+ES) Calcd for C₁₃H₁₅N₃O: 276.1137, Found: 276.1123.

1-Acetoxy-1-(2-azidophenyl) 5-phenylpent-4en-2-yne (9g).

Following representative procedure (**1**) for acetate synthesis, 1-(2-azidophenyl)5phenylpent-4-en-2-yn-ol (0.40 g, 1.6 mmol) was converted to acetate **9g** (460 mg, 91%). IR (neat): 2127, 1742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.44-7.20 (m, 8H), 7.04 (d, *J* = 16.3 Hz, 1H), 6.87 (d, *J* = 1.8 Hz, 1H) 6.22 (dd, *J* = 16.3, 2.0 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.0, 143.2, 138.3, 136.3, 130.8, 129.8, 129.4, 129.2, 128.6, 126.8, 125.5, 118.8, 107.5, 87.5, 86.7, 61.9, 21.4; TOFESMS *m*/*z* relative intensity 318 (MH⁺ 68); HRMS (+ES) Calcd for C₁₉H₁₆N₃O₂: 318.1243, Found: 318.1261.

1-(2-Azidophenyl)3-cyclohex-1-enylprop-2-yn-1-ol.

Following the representative procedure (**5**) for alcohol synthesis, 2-azidobenzaldehyde (**8**) (0.50 g, 3.4 mmol) was treated with 1-cyclohexenylethynyllithium (0.85 equiv, 2.9 mmol) to give 1-(2-azidophenyl)3-cyclohex-1-enylprop-2-yn-1-ol as a yellow oil (280 mg, 38%). IR (neat): 3390, 2126 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.36 (m, 1H), 7.19-7.11 (m, 2H), 6.16 (m,1H), 5.76 (d, *J* = 4.6 Hz, 1H), 3.23 (d, *J* = 5.3 Hz, 1H), 2.15-2.09 (m, 4H), 1.64-1.58 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 136.1, 132.5, 130.0, 128.9,125.5, 120.5, 118.7, 88.7, 85.9, 61.1 29.5, 26.1, 22.7, 21.9; TOFESMS *m*/*z* relative intensity 254 (MH⁺ 75); HRMS (+ES) Calcd for C₁₅H₁₆N₃O: 254.1293, Found: 254.1302.

1-Acetoxy-1-(2-azidophenyl) 3-cyclohex-1-enylprop-2-yne (9h).

Following representative procedure (**1**) for acetate synthesis, 1-(2-azidophenyl)3cyclohex-1-enylprop-2-yn-1-ol (0.28 g, 1.1 mmol) was converted to acetate **9h** (260 mg, 80%). IR (neat): 2127, 1742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.42 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.18-7.22 (m, 2H), 6.76 (m, 1H) 6.20 (m, 1H), 2.11 (s, 3H), 2.16-2.10 (m, 4H), 1.67-1.55 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 138.2, 137.0, 130.6, 129.8, 128.9, 125.4, 120.2, 118.7, 89.3, 82.7, 61.7, 29.3, 26.0, 22.6, 21.8, 21.5; TOFESMS *m/z* relative intensity 318 (MNa⁺ 100); HRMS (+ES) Calcd for C₁₇H₁₇N₃O₂Na: 318.1203, Found: 318.1218.

1-(2-Azidophenyl)3-cyclopent-1-enylprop-2-yn-1-ol.

Following the representative procedure (**5**) for alcohol synthesis, 2-azidobenzaldehyde (**8**) (0.35 g, 2.4 mmol) was treated with 1-cyclopentenylethynyllithium (1.3 equiv, 3.2 mmol) to give 1-(2-Azidophenyl)3-cyclopent-1-enylprop-2-yn-1-ol as a yellow oil (330 mg, 54%). IR (neat): 3354, 2126 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.43 (m, 1H), 7.22-7.15 (m, 2H), 6.12 (t, *J* = 2.4 Hz, 1H), 5.80 (d, *J* = 6.2 Hz 1H), 2.61 (d, *J* = 6.1 Hz, 1H), 2.51-2.42 (m, 4H), 1.96-1.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 139.0, 137.4, 131.7, 129.8, 128.5, 125.1, 123.8, 118.3, 88.9, 84.1, 61.2 36.3, 33.3, 23.3; TOFESMS *m/z* relative intensity 240 (MH⁺ 30); HRMS (+ES) Calcd for C₁₄H₁₄N₃O: 240.1127, Found: 240.1137.

1-Acetoxy-1(2-azidophenyl) 3-cyclopent-1-enylprop-2-yne (9i).

Following representative procedure (1) for acetate synthesis, 1-(2-azidophenyl)3cyclopent-1-enylprop-2-yn-1-ol (0.33 g, 1.3 mmol) was converted to acetate **9i** (330 mg, 88%). IR (neat): 2126, 1746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.25-7.18 (m, 2H), 6.79 (m, 1H), 6.22 (m, 1H), 2.62-2.45 (m, 4H), 2.12 (s, 3H), 1.96-1.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 140.1, 138.3, 130.6, 129.8, 128.7, 125.4, 124.0, 118.7, 86.4, 84.8, 61.9, 36.6, 33.7, 23.7, 21.5; TOFESMS *m*/*z* relative intensity 282 (MH⁺ 30); HRMS (+ES) Calcd for C₁₆H₁₆N₃O₂: 282.1243, Found: 282.1229.

1-t-Butyldimethylsilyloxy-2-vinyl-4-(2-azidophenyl)but-2,3-diene (6b).

Following representative procedure (**2**) for allenylazide synthesis, acetate **9b** (0.50 g, 1.4 mmol) was converted to **6b** (250 mg, 55%). IR (neat): 2122, 1934 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 7.7, 1.5 Hz, 1H), 7.29 (m, 1H), 7.18-7.09 (m, 2H), 6.10 (m, 1H), 6.38 (dd, J = 17.7, 10.1 Hz, 1H), 5.38 (dd, J = 17.4, 1.1 Hz, 1H), 5.16 (d, J = 10.5, 1.2 Hz, 1H), 4.48 (d, J = 2.5 Hz, 2H), 0.9 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.0, 136.8, 132.0, 129.0, 128.7, 125.9, 125.2, 118.8, 115.1, 109.8, 91.9, 61.9, 26.2, 18.7, -4.8, -4.9; TOFESMS *m*/*z* relative intensity 300 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₈H₂₆NOSi: 300.1784, Found: 300.1812.

1-*t*-Butyldimethylsilyloxy-3-vinyl-5-(2-azidophenyl)but-3,4-diene (6c).

Following representative procedure (2) for allenylazide synthesis, acetate **9c** (0.50 g, 1.3 mmol) was converted to **6c** (259 mg, 57%). IR (neat): 2122, 1930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 7.3 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.59 (m, 1H), 6.32 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.29 (d, *J* = 17.6 Hz, 1H), 5.13 (d, *J* = 10.7 Hz, 1H), 3.81 (t, *J* = 5.8 Hz, 2H), 2.54-2.49 (m, 2H), 0.89 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.8, 136.7, 134.3, 128.8, 128.6, 126.1, 125.2, 118.9, 114.0, 106.2, 90.6, 62.1, 32.1, 26.3, 18.8, -4.8 (2C); TOFESMS *m/z* relative intensity 314 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₉H₂₈NOSi: 314.1940, Found: 314.1919.

1-(2-Azidophenyl)3-t-butylpent-1,2,4-triene (6d).

Following representative procedure (**2**) for allenylazide synthesis, acetate **9d** (0.27 g, 1.0 mmol) was converted to **6d** (150 mg, 63%). IR (neat): 2124, 1930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.7, 1.4 Hz, 1H), 7.27 (dt, J = 8.1, 1.5 Hz, 1H), 7.19 (d, J = 7.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.73 (m, 1H), 6.28 (ddd, J = 17.0, 10.4, 1.3 Hz, 1H), 5.51 (dd, J = 17.1, 0.9 Hz, 1H), 5.26 (dd, J = 10.4, 0.9 Hz, 1H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 204.7, 136.6, 130.9, 128.3, 128.0, 126.9, 125.3, 119.0,118.6, 117.2, 92.3, 34.3, 29.9; TOFESMS *m*/*z* relative intensity 210 (MH⁺-N₂ 100); HRMS (-ES) Calcd for C₁₅H₁₆N: 210.1283, Found: 210.1277.

1-(2-Azidophenyl)3-methyl-5phenylpent-1,2,4-triene (6e).

Following representative procedure (**2**) for allenylazide synthesis, acetate **9a** (0.20 g, 0.88 mmol) was converted to **6e** (160 mg, 67%). IR (neat): 2124, 1932 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.55 (m, 7H), 7.16 (d, *J* = 7.6 Hz, 2H), 6.48 (m, 1H), 5.41(s, 1H), 5.32 (s, 1H), 2.19 (d, *J* = 2.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.8, 147.2, 141.7, 136.7, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 126.4, 118.9, 114.4, 106.1, 90.4, 18.0; TOFESMS *m*/*z* relative intensity 246 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₈H₁₆N: 246.1283, Found: 246.1275.

1-(2-Azidophenyl)3-methyl-4-phenylpent-1,2,4-triene (6f).

Following representative procedure (**2**) for allenylazide synthesis, acetate **9a** (0.23 g, 1.0 mmol) was converted to **6e** (125 mg, 59%). IR (neat): 2124, 1930 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 7.7 Hz, 1H) 7.28 (t, *J* = 7.9 Hz, 1H), 7.16-7.10 (m, 2H), 6.6 (m, 1H), 5.08 (s, 1H), 5.04 (s, 1H), 2.05 (s, 3H), 2.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.7, 140.8, 136.7, 128.5, 128.4, 126.7, 125.3, 118.9, 112.0, 107.1, 90.3, 22.0, 16.7; TOFESMS *m/z* relative intensity 184 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₃H₁₄N: 184.1121, Found: 184.1126.

1-(2-Azidophenyl)3-methyl-4-phenylpent-1,2,4-triene (6g).

Following representative procedure (**3**) for allenylazide synthesis, acetate **9g** (0.21 g, 0.65 mmol) was converted to **6e** (60 mg, 34%). IR (neat): 2122, 1927 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.10 (m, 9H), 6.82 (d, *J* = 16.1 Hz, 1H), 6.63 (m, 1H), 6.56 (d, *J* = 16.2 Hz, 1H), 2.09 (d, *J* = 2.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 211.6, 137.7, 136.7, 130.5, 129.0, 128.9, 128.8, 128.6, 127.8, 126.9, 126.7, 125.3, 118.9, 104.8, 89.3, 15.7; TOFESMS *m/z* relative intensity 246 (MH⁺-N₂ 100); HRMS (+ES) Calcd for C₁₈H₁₆N: 246.1283, Found: 246.1289.

1-(2-Azidophenyl)3-cyclopent-1-enylbut-1,2-diene (6i).

Following representative procedure (**3**) for allenylazide synthesis, acetate **9i** (0.30 g, 1.1 mmol) was converted to **6e** (75 mg, 30%). IR (neat): 2112, 1930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.7, 1.5 Hz, 1H), 7.25 (dt, J = 7.0, 1.6 Hz, 1H), 7.16 (dd, J = 7.9, 1.1 1H), 7.09 (dt, J = 7.3, 1.8 Hz, 1H), 6.55 (m, 1H), 5.75 (d, J = 1.4 Hz, 1H), 2.50-2.35 (m, 4H), 2.02 (d, J = 2.7 Hz, 3H), 1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 208.8, 140.6, 136.6, 128.6, 128.2, 127.1, 127.0, 125.2, 118.8, 103.0, 89.5, 34.1, 33.8, 23.7, 17.0; APCIMS *m/z* relative intensity 210 (MH⁺-N₂ 100); HRMS (+APMS) Calcd for C₁₅H₁₆N: 210.1283, Found: 210.1302.

Cyclization Studies

Following the representative procedure (**4**) for cyclization, allenylazide **6b** (49 mg, 0.15 mmol) was converted to compounds **7b** (10 mg, 40%) and **11b** (13 mg, 56%).

3-(t-Butyldimethylsilyloxymethyl)-1,4-dihydrocyclopenta[b]indole (7b).

IR (neat): 3395 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (bs, 1H), 7.58 (m, 1H), 7.41 (m, 1H), 7.14-7.06 (m, 2H), 6.29 (m, 1H), 4.76 (d, J = 1.7 Hz, 2H), 3.29 (d, J = 1.6 Hz, 2H), 0.97 (s, 1H), 0.14 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 140.4, 137.8, 129.7, 124.8, 121.2, 120.7, 120.2, 118.5, 112.4, 61.1, 32.0, 29.4, 18.8, -4.8 (2C); TOFESMS *m/z* relative intensity 300 (MH⁺ 10); HRMS (+ES) Calcd for C₃₆H₅₁N₂O₂Si₂: 599.3489, Found: 599.3466.

1-(t-Butyldimethylsilyloxymethyl)-9H-pyrrolo[1,2-a]indole (11b).

¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 7.5 Hz, 1H), 7.30-7.24 (m, 2H), 7.09 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 2.1 Hz, 1H), 6.33 (d, J = 2.6 Hz, 1H), 4.73 (s, 2H), 3.85 (s, 2H), 0.96 (s, 9H) 0.13 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 141.5, 135.2, 133.0, 127.7, 126.3, 123.3, 117.1, 112.8, 109.94, 109.92, 59.6, 29.1, 26.5, 18.9, -4.7 (2C); TOFESMS

m/z relative intensity 300 (MH⁺ 10); HRMS (+ES) Calcd for C₃₆H₅₁N₂O₂Si₂: 599.3489, Found: 599.3466.

Following the representative procedure (4) for cyclization, allenylazide 6c (25 mg, 0.07 mmol) was converted to compounds 7c (12 mg, 52%) and 11c (10 mg, 43%).

3-(t-Butyldimethylsilyloxyethyl)-1,4-dihydrocyclopenta[b]indole (7c).

IR (neat): 3372 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.8 (bs, 1H), 7.57 (m, 1H), 7.38 (m, 1H), 7.13-7.07 (m, 2H), 6.22 (m, 1H), 3.95 (t, J = 5.7 Hz, 2H), 3.25 (s, 2H), 2.82 (t, J = 5.6 Hz, 1H), 0.99 (s, 9H), 0.14 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 148.5, 140.1, 136.1 131.9, 125.2, 120.6, 120.4, 120.0, 118.4, 112.2, 63.9, 32.7, 31.8, 26.5, 18.9, -4.9; TOFMSES *m*/*z* relative intensity 314 (MH⁺ 25); HRMS (+MSES) Calcd for C₁₉H₂₈NOSi: 314.1940, Found: 314.1929.

1-(*t*-Butyldimethylsilyloxyethyl)-9H-pyrrolo[1,2-a]indole (11c).

¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H) 7.04 (d, J = 2.4 Hz, 1H), 6.25 (d, J = 2.6 Hz, 1H), 3.84 (t, J = 7.7 Hz, 2H), 3.79 (s, 2H), 2.78 (t, J = 7.5 Hz, 2H), 0.93 (s, 9H) 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 141.7, 135.1, 133.0, 127.8, 126.3, 123.3, 114.2, 113.6, 109.9, 109.7, 64.5, 31.0, 28.7, 26.4, 18.9, -4.8; TOFESMS *m/z* relative intensity 314 (MH⁺ 25); HRMS (+ES) Calcd for C₁₉H₂₈NOSi: 314.1940, Found: 314.1929.

Following the representative procedure (4) for cyclization, allenylazide **6d** (60 mg, 0.25 mmol) was converted to compounds **7d** (30 mg, 57%) and **11d** (11 mg, 20%).

3-t-Butyl-1,4-dihydrocyclopenta[b]indole (7d).

IR (neat): 3414 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (bs, 1H), 7.60 (m, 1H), 7.43 (m, 1H), 7.29-7.13 (m, 2H), 6.19 (t, *J* = 1.6 Hz, 1H), 3.24 (d, *J* = 1.6 Hz, 2H), 1.4 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 147.5, 147.0, 140.5, 127.6, 124.8, 122.1, 120.7, 120.3, 118.5, 112.2, 32.8, 31.2, 30.2; TOFESMS *m*/*z* relative intensity 212 (MH⁺ 100); HRMS (+ES) Calcd for C₁₅H₁₈N: 212.1439, Found: 212.1436.

1-t-Butyl-9H-pyrrolo[1,2-a]indole (11d).

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.4 Hz, 1H), 7.28-7.22 (m, 2H), 7.07 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.04 (d, *J* = 2.9 Hz, 1H), 6.32 (d, *J* = 2.8 Hz, 1H), 3.92 (s, 2H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 141.8, 135.2, 130.1, 127.8, 127.7, 126.0, 123.0, 111.7, 109.7, 109.2, 31.7, 31.3, 30.8; TOFESMS *m*/*z* relative intensity 212 (MH⁺ 100); HRMS (+ES) Calcd for C₁₅H₁₈N: 212.1439, Found: 212.1436.

Following the representative procedure (4) for cyclization allenylazide **6e** (45 mg, 0.16 mmol) was converted to compounds **7e** (16 mg, 40%) and **11e** (12 mg, 30%).

3-Methyl-2-phenyl-1,4-dihydrocyclopenta[b]indole (7e).

IR (neat): 3414 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (bs, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.52 (m, 2H), 7.45-7.41 (m, 3H), 7.25 (m, 1H), 7.18-7.11 (m, 2H), 3.69 (q, J = 1.8 Hz, 2H), 2.39 (t, J = 1.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 143.5, 140.2,

138.3, 128.9, 128.1, 127.6, 126.6, 125.1, 120.8, 120.6, 118.7, 118.6, 112.3 34.7, 12.9; TOFESMS *m*/*z* relative intensity 246 (MH⁺ 100); HRMS (+ES) Calcd for C₁₈H₁₆N: 246.1283, Found: 246.1262.

1-Methyl-2-phenyl-9H-pyrrolo[1,2-a]indole (11e).

¹H NMR (300 MHz, CDCl₃) δ 7.54-7.52 (m, 2H), 7.45-7.40 (m, 3H), 7.34-7.28 (m, 3H), 7.24 (m, 1H), 7.11 (dt, J = 7.2, 1.5 Hz, 1H), 3.85 (s, 2H), 2.3 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 137.0, 134.8, 134.0, 130.0, 128.8, 128.2, 127.9, 126.3, 126.1, 123.2, 110.3, 109.9, 107.7, 28.6, 11.4; TOFESMS *m*/*z* relative intensity 246 (MH⁺ 100); HRMS (+ES) Calcd for C₁₈H₁₆N: 246.1283, Found: 246.1262.

Following the representative procedure (4) for cyclization, allenylazide 6f (35 mg, 0.17 mmol) was converted to compounds 7f (11 mg, 36%) and 11f (11 mg, 36%).

2,3-Dimethyl -1,4-dihydrocyclopenta[b]indole (7f).

IR (neat): 3406 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (bs, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.13-7.04 (m, 2H), 3.19 (s, 2H), 2.13 (s, 3H), 2.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 141.6, 139.7, 125.4, 125.3, 120.3, 119.7, 117.9, 116.9, 112.1, 36.5, 15.0, 10.8; TOFESMS *m*/*z* relative intensity 183 (MH⁺ 100); HRMS (+ES) Calcd for C₁₃H₁₄N: 184.1126, Found: 184.1095.

1,1-Dimethyl-9H-pyrrolo[1,2-a]indole (11f).

¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, *J* = 7.3 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 7.7 Hz, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.88 (s, 1H), 3.75 (s, 2H), 2.14 (s, 3H), 2.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.9, 134.7, 132.8, 127.7, 126.1, 124.0, 122.4, 111.6, 109.3, 107.6, 28.5, 11.3, 9.8; TOFESMS *m*/*z* relative intensity 183 (MH⁺ 100); HRMS (+ES) Calcd for C₁₃H₁₄N: 184.1126, Found: 184.1095.

Following the representative procedure (4) for cyclization, allenylazide **6g** (35 mg, 0.13 mmol) was converted to compound **10g** (9 mg, 36%).

1-Methyl-3-phenyl-3H-pyrrolo[1,2-a]indole (10g).

¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 6.6, 1.7 Hz, 1H), 7.36-7.30 (m, 3H), 7.21-7.11 (m, 2H), 7.05-7.01 (m, 2H), 6.94 (dd, J = 7.7, 1.5 Hz, 1H), 6.34 (s, 1H), 6.17 (m, 1H), 5.70 (s, 1H), 2.21 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.0, 138.2, 134.5, 133.9, 133.3, 132.1, 129.3, 128.4, 127.3, 122.0, 121.5, 119.5, 109.8, 90.6, 65.7, 12.9; TOFESMS *m*/*z* relative intensity 246 (MH⁺ 20); HRMS (+ES) Calcd for C₁₈H₁₆N: 246.1283, Found: 246.1259.

1-Methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (12g).

A deoxygenated solution of compound **10g** (9.0 mg, 0.04 mmol) and 5 mg of 10% Pd on carbon in 5 mL of THF was stirred at room temperature under H₂ at 1 atm for 2 h. The solution was then filtered through Celite and concentrated *in vacuo* to afford a yellow oil. The crude compound was purified over an alumina column using 20% Et₂O in hexanes to give **12g** as a yellow film (6 mg, 54%). Crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation of an Et₂O solution of **12g** over a period of 48 h at 25 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.9 Hz, 1H), 7.38-7.35 (m, 3H), 7.28-7.24 (m, 2H), 7.03 (dt, *J* = 7.1, 0.8 Hz, 1H), 6.90 (dt, *J* = 7.1, 1.0 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 6.24 (s, 1H), 5.35 (t, *J* = 8.2 Hz, 1H), 3.45 (m, 1H), 3.18 (m, 1H), 2.13 (m, 1H), 1.49 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 141.4, 133.8, 132.6, 129.2, 128.3, 127.1, 120.8, 120.4, 119.6, 110.8, 92.1, 61.9, 49.1, 32.7, 20.1; TOFESMS *m/z* relative intensity 248 (MH⁺ 45); HRMS (+ES) Calcd for C₁₈H₁₈N: 248.1439, Found: 248.1445.

Following the representative procedure (**4**) for cyclization, allenylazide **6h** (31 mg, 0.12 mmol) was converted to compounds **7h** (10 mg, 36%) and **11h** (14 mg, 51%).

6-Methyl -5,7,8,9-hexahydroindeno[2,1-b]indole (7h).

IR (neat): 3406 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (bs, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.1 Hz, 1H), 7.03 (t, *J* = 7.2 Hz, 1H) 3.05 (dd, *J* = 12.5, 5.5 Hz, 1H), 2.8 (m, 1H), 2.68 (m, 1H), 2.27 (m, 1H), 2.08 (s, 3H), 2.6 (m, 1H), 1.85 (m, 1H), 1.28-1.21 (m, 2H), 1.00 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.7, 148.8, 136.0, 139.7, 122.3, 121.2, 120.2, 119.6, 117.9, 112.2, 45.2, 33.6, 28.9, 27.3, 26.0, 10.4; TOFESMS *m*/*z* relative intensity 224 (MH⁺ 10); HRMS (+ES) Calcd for C₁₆H₁₈N: 214.1422, Found: 224.1439.

11-Methyl-2,3,4,10-tetrahydro-1H-indolo[1,2-a]indole (11h).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.4 Hz, 1H), 7.28-7.24 (m, 2H), 7.05 (m, 1H), 3.74 (s, 2H), 2.96(t, *J* = 5.6 Hz, 2H), 2.51(t, *J* = 6.0 Hz, 2H), 2.04 (s, 3H), 1.95-1.85 (m, 2H), 1.85-1.80 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 135.2, 130.6, 127.6, 126.2, 122.5, 122.0, 121.6, 110.2, 109.5, 28.1, 23.8, 23.7, 23.2, 22.4, 9.6; TOFESMS *m/z* relative intensity 224 (MH⁺ 10); HRMS (+ES) Calcd for C₁₆H₁₈N: 214.1422, Found: 224.1439.

Following the representative procedure (4) for cyclization, allenylazide 6i (40 mg, 0.17 mmol) was converted to compound 10i (14 mg, 40%),

Pyrrolo-indole (10i)

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 1H), 7.25 (s, 1H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 7.1 Hz, 1H), 6.11 (s, 1H), 4.8 (t, *J* = 8.5 Hz, 1H), 2.46-2.27 (m, 6H), 2.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.1, 152.2, 135.2, 132.8, 123.4, 121.7, 121.0, 119.1, 108.9, 89.1, 66.3, 29.7, 27.8, 21.2, 11.2; TOFMSES *m*/*z* relative intensity 210 (MH⁺ 10); HRMS (+MSES) Calcd for C₁₅H₁₆N: 210.1283, Found: 210.1274.

2-[1-(4-Methoxy-phenyl)-vinyl]-1H-indole (14k)

Following representative procedure (**6**) for crude thermolysis, propargyl acetate **9a** (78 mg, 0.34 mmol) was treated with 4-methoxyphenylzinc iodide (0.50M in THF, 1.0 mL, 0.51 mmol) to give compound **14k** (30 mg, 35%) as a yellow solid: mp 145 - 146 °C; IR (neat): 3429 cm⁻¹; ¹H NMR (300 MHz, (CD₃)₂CO) δ 10.35 (br s, 1H), 7.49 (dd, *J* = 6.8, 1.0 Hz, 1H), 7.42 (dd, *J* = 6.7, 2.2 Hz, 2H), 7.37 (dq, *J* = 8.1, 0.9 Hz, 1H), 7.10 (td, *J* = 7.1, 1.2 Hz, 1H), 7.01-6.94 (m, 3H), 6.32 (dd, *J* = 2.2, 0.8 Hz, 1H), 5.66 (d, *J* = 0.7, 1H), 5.27 (d, *J* = 0.8 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 141.0, 138.1, 136.3, 132.4, 129.6, 128.6, 122.6, 120.7, 120.0, 113.7, 111.7, 110.7, 103.1, 55.3; APCI *m/z* (relative intensity) 250.1 (MH⁺: 100%); HRMS Calcd for C₁₇H₁₆NO: 250.1232, Found: 250.1226.

2-[1-(3-Methoxy-phenyl)-vinyl]-1H-indole (14l)

Following representative procedure (6) for crude thermolysis using a reflux time of 4 h and 6% Et₂O in hexanes as chromatography eleuent, propargyl acetate **9a** (81 mg, 0.35 mmol) was treated with 3-methoxyphenylzinc iodide (0.50 M in THF, 1.8 mL, 0.88 mmol) to give the product **14l** as a yellow oil (20 mg, 23%). IR (neat): 3413 cm⁻¹; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.40 (br s, 1H), 7.49 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.37 (dq, *J* = 8.2, 0.8 Hz, 1H), 7.32 (t, *J* = 7.9 Hz, 1H), 7.10 (m, 1H), 7.07-7.03 (m, 2H), 7.00-6.96 (m, 2H), 6.35 (dd, *J* = 5.1, 0.8 Hz, 1H), 5.76 (s, 1H), 5.34 (s, 1H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 141.5, 141.4, 137.6, 136.4, 129.4, 128.6, 122.7, 121.0, 120.8,

120.1, 114.0, 113.9, 112.8, 110.8, 103.2, 55.3; ESI *m*/*z* (relative intensity) 250.1 (MH⁺, 100%); HRMS Calcd for C₁₇H₁₆NO: 250.1232, Found: 250.1230.

2-[1-(3-Fluoro-phenyl)-vinyl]-1H-indole (14m)

Following representative procedure (**6**) for crude thermolysis, propargyl acetate **9a** (82 mg, 0.36 mmol) was treated with 3-fluorophenylzinc iodide (0.50 M in THF, 1.1 mL, 0.54 mmol) to give compound **14m** (45 mg, 53%) as an orange solid: mp 74 - 75 °C; IR (neat): 3415 cm⁻¹; ¹H NMR (300 MHz, (CD₃)₂CO) δ 10.48 (br s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.48-7.33 (m, 3H), 7.26 (d, *J* = 10.2 Hz, 1H), 7.21-7.11 (m, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.35 (s, 1H), 5.82 (s, 1H), 5.41 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7 (d, *J*cF = 244.7 Hz), 142.2 (d, *J*cF = 7.6 Hz), 140.6 (d, *J*cF = 2.2 Hz), 137.1, 136.5, 129.8 (d, *J*cF = 8.2 Hz), 128.5, 124.2 (d, *J*cF = 2.9 Hz), 122.9, 120.9, 120.2, 115.4 (d, *J*cF = 25.6 Hz), 115.1 (d, *J*cF = 24.7 Hz), 113.2, 110.8, 103.7; CI *m*/*z* (relative intensity) 238.0 (MH⁺ 100%); HRMS Calcd for C₁₆H₁₃NF: 238.1032, Found: 238.1027.

S32

S34

.....

111111

S109

S111

S113

A yellow plate shaped crystal of **11a** (C12 H11 N) with approximate dimensions 0.10 x 0.30 x 0.40 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 108(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 20 seconds/frame. The total data collection time was about 12 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Monoclinic unit cell yielded a total of 5358 reflections to a maximum θ angle of 28.28° (0.90 Å resolution), of which 2066 were independent, completeness = 94.9 %, R_{int} = 0.0178, R_{sig} = 0.0245 and 1729 were greater than $2\sigma(I)$. The final cell constants: a = 11.907(4)Å, b = 5.6848(16)Å, c = 12.950(4)Å, $\alpha = 90^{\circ}$, $\beta = 92.517(5)^{\circ}$, $\gamma = 90^{\circ}$, volume = 875.7(4)Å³, are based upon the refinement of the XYZ-centroids of 2113 reflections above $20\sigma(I)$ with 2.274° < θ <28.242°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.849448.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P2(1)/n, with Z = 4 for the formula unit, C12 H11 N. The final anisotropic full-matrix least-squares refinement on F² with 119 variables converged at R1 = 5.17 %, for the observed data and wR2 = 13.90 % for all data. The

goodness-of-fit was 1.072 . The largest peak on the final difference map was 0.403 e⁻/Å³ and the largest hole was -0.249 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.283 g/cm³ and F(000) amounts to 360 electrons.

A yellow needle shaped crystal of **12g** (C18 H17 N) (two molecules in the asymmetric unit) with approximate dimensions 0.04 x 0.08 x 0.35 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 298(2) K, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 10 seconds/frame. The total data collection time was about 8 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Triclinic unit cell yielded a total of 8236 reflections to a maximum θ angle of 28.27 ° (0.90 Å resolution), of which 6090 were independent, completeness = 89.6 %, R_{int} = 0.0758, R_{sig} = 0.2293 and 1717 were greater than $2\sigma(I)$. The final cell constants: a = 5.538(3)Å, b = 9.573(5)Å, c = 25.815(14)Å, $\alpha = 90^{\circ}$, $\beta = 87.270(12)^{\circ}$, $\gamma = 90^{\circ}$, volume = 1367.1(13)Å³, are based upon the refinement of the XYZ-centroids of 715 reflections above $20\sigma(I)$ with 2.269° < θ <27.720°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.03821.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software

Package, using the space group P-1, with Z = 2 for the formula unit, C36 H34 N2. The final anisotropic full-matrix least-squares refinement on F² with 345 variables converged at R1 = 8.23 %, for the observed data and wR2 = 21.67 % for all data. The goodness-of-fit was 0.829. The largest peak on the final difference map was 0.233 e⁻/Å³ and the largest hole was -0.247 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.202 g/cm³ and F(000) amounts to 528 electrons.