Supporting Information

The 1,1-Dioxonaphtho[1,2-b]thiophene-2-methyloxycarbonyl (α-Nsmoc) and 3,3-Dioxonaphtho[2,1-b]thiophene-2-methyloxycarbonyl (β-Nsmoc) Amino-Protecting Groups

Louis A. Carpino, Adel Ali Abdel-Maksoud, Dumitru Ionescu, E. M. E. Mansour and Mohamed A. Zewail

carpino@chem.umass.edu

Table of Contents

		Page
I.	General	S4
II.	Additional Experimental Details for the Synthesis of 11 and 17	S5
III.	Characterization Data for α - and β -Nsmoc Amino Acids	S 6
	α-Nsmoc-Gly-OH	S 6
	α-Nsmoc-Ala-OH	S6
	α-Nsmoc-Val-OH	S6
	α-Nsmoc-Leu-OH	S7
	α-Nsmoc-Ile-OH	S7
	α-Nsmoc-Pro-OH	S7
	α-Nsmoc-Phe-OH	S7
	α-Nsmoc-Met-OH	S7
	α-Nsmoc-Trp-OH	S7
	α-Nsmoc-Ser(t-Bu)-OH	S 8
	α-Nsmoc-Thr(<i>t</i> -Bu)-OH	S 8
	α-Nsmoc-Tyr(t-Bu)-OH	S 8
	α-Nsmoc-Asp(O- <i>t</i> -Bu)-OH	S 8
	α-Nsmoc-Glu(O-t-Bu)-OH	S 8
	α-Nsmoc-Lys(Boc)-OH	S 8
	α-Nsmoc-Phg-OH	S 8
	α-Nsmoc-Aib-OH	S9
	α-Nsmoc-Asn(Trt)-OH	S9
	α-Nsmoc-Gln(Trt)-OH	S9
	β-Nsmoc-Gly-OH	S9
	β-Nsmoc-Ala-OH	S9
	β-Nsmoc-Val-OH	S9
	β-Nsmoc-Leu-OH	S10
	β-Nsmoc-Ile-OH	S10
	β-Nsmoc-Pro-OH	S10
	β-Nsmoc-Phe-OH	S10
	β-Nsmoc-Met-OH	S10

β-Nsmoc-Trp-OH	S10
β -Nsmoc-Ser(<i>t</i> -Bu)-OH	S10
β-Nsmoc-Thr(<i>t</i> -Bu)-OH	S11
β-Nsmoc-Tyr(<i>t</i> -Bu)-OH	S11
β-Nsmoc-Asp(O- <i>t</i> -Bu)-OH	S11
β-Nsmoc-Glu(O- <i>t</i> -Bu)-OH	S11
β-Nsmoc-Lys(Boc)-OH	S11
β-Nsmoc-Phg-OH	S11
β-Nsmoc-Aib-OH	S11
β-Nsmoc-Asn(Trt)-OH	S12
β-Nsmoc-Gln(Trt)-OH	S12

IV. Spectral Data for Key Intermediates

1-Chloro-3,4-dihydronapthalene-2-carboxaldehyde 8	S13
2-Bromo-3,4-dihydronapthalene-1-carboxaldehyde	S14
Ethyl 4,5-dihydronaphtho[1,2-b]thiophene-2-carboxylate 9	S15
Ethyl 4,5-dihydronaphtho[2,1-b]thiophene-2-carboxylate	S16
Ethyl naphtho[1,2-b]thiophene-2-carboxylate 10	S17
Ethyl naphtho[2,1-b]thiophene-2-carboxylate 16	S18
5-(1-Naphthylidene)rhodanine 13	S19
β -1-Naphthyl- α -mercaptoacrylic acid 14	S20
Naphtho[2,1-b]thiophene-2-carboxylic acid 15	S21
2-(Hydroxymethyl)naphtho[1,2-b]thiophene 5	S22
1,1-Dioxo-2-(hydroxymethyl)naphtho[1,2-b]thiophene 11	S23
2-(Hydroxymethyl)naphtho[2,1-b]thiophene 6	S24
3,3-Dioxo-2-(hydroxymethyl)naphtho[2,1-b]thiophene 17	S25
1,1-Dioxonaphtho[1,2-b]thiophene-2-methyl chloroformate 18	S26
3,3-Dioxonaphtho[2,1-b]thiophene-2-methyl chloroformate 19	S27
1,1-Dioxonaphtho[1,2-b]thiophene-2-methyl N-succinimidyl	
carbonate	S28
1,1-Dioxo-2-(chloromethyl)naphtho[1,2-b]thiophene 23	S29
1,1-Dioxo-2-(piperidinomethyl)naphtho[1,2-b]thiophene 22	S30
Initial α-Nsmoc/2-methylpiperidine adduct	S31
1,1-Dioxo-2-(2-methylpiperidinomethyl)naphtho[1,2-b]thiophe	ne
(final stable adduct)	832
1,1-Dioxonaphtho[1,2-b]thiophene-2-methyl N-p-chlorophenyl	G 22
	833
3,3-Dioxonaphtho[2,1-b]thiophene-2-methyl N-p-chlorophenyl carbamate 20c	\$34
	FCC

V. A. Course of the deblocking of α-Nsmoc-PCA/piperidine: before addition of piperidine and at 3, 7, 21 and 41 min (500 MHz NMR) S35-37

B. Course of the deblocking of β -Nsmoc-PCA/piperidine: before addition of piperidine and at 3, 7, 21 and 41 min (500 MHz NMR) S38-40

VI. A. Time course for the release of p-chloroaniline via reaction of **20 a-c** with piperidine S41

B. Time course for the disappearance of **20 a-c** via reaction with piperidine S42

VII. ¹H-NMR and IR Spectral data for α - and β -Nsmoc amino acids

α-Nsmoc-Gly-OH	S43
α-Nsmoc-Ala-OH	S44
α-Nsmoc-Val-OH	S45
α-Nsmoc-Leu-OH	S46
α-Nsmoc-Ile-OH	S47
α-Nsmoc-Pro-OH	S48
α-Nsmoc-Phe-OH	S49
α-Nsmoc-Met-OH	S50
α-Nsmoc-Trp-OH	S51
α-Nsmoc-Ser(t-Bu)-OH	S52
α-Nsmoc-Thr(t-Bu)-OH	S53
α-Nsmoc-Tyr(t-Bu)-OH	S54
α-Nsmoc-Asp(O-t-Bu)-OH	S55
α-Nsmoc-Glu(O-t-Bu)-OH	S56
α-Nsmoc-Lys(Boc)-OH	S57
α-Nsmoc-Asn(Trt)-OH	S58
α-Nsmoc-Gln(Trt)-OH	S59
α-Nsmoc-Phg-OH	S60
α-Nsmoc-Aib-OH	S61
β-Nsmoc-Gly-OH	S62
β-Nsmoc-Ala-OH	S63
β-Nsmoc-Val-OH	S64
β-Nsmoc-Leu-OH	S65
β-Nsmoc-Ile-OH	S66
β-Nsmoc-Pro-OH	S67
β-Nsmoc-Phe-OH	S68
β-Nsmoc-Met-OH	S69
β-Nsmoc-Trp-OH	S70
β-Nsmoc-Ser(t-Bu)-OH	S71
β-Nsmoc-Thr(t-Bu)-OH	S72
β-Nsmoc-Tyr(t-Bu)-OH	S73
β-Nsmoc-Asp(O-t-Bu)-OH	S74
β-Nsmoc-Glu(O-t-Bu)-OH	S75
β-Nsmoc-Lys(Boc)-OH	S76

	β-Nsmoc-Asn(Trt)-OH	S77
	β-Nsmoc-Gln(Trt)-OH	S78
	β-Nsmoc-Phg-OH	S79
	β-Nsmoc-Aib-OH	S80
VIII.	Racemization Tests	S81-83

I. 1. General:

Melting points were obtained in open capillary tubes with a Mel-Temp melting point apparatus and all are uncorrected. In general solvents were evaporated with the aid of a rotary evaporator under reduced pressure using a water aspirator at 40°C. Distillations at reduced pressure were conducted with the use of a heating mantle or an oil bath heated by means of a hot plate fitted with a magnetic stirrer. Column chromatography was performed with Silica Gel 60 (Merck, mesh size 230-400). Thin layer chromatography was performed on aluminum-backed Merck Silica Gel 60 F₂₅₄ plates, spots being visualized by means of a universal UV lamp model 51402 operating at 254 nm. All moisture-sensitive compounds were dried by means of a vacuum pump prior to storage and kept in a freezer in well-sealed containers.

2. Spectral Data:

Infrared (IR) spectra were recorded using a Perkin Elmer Model 1600 FT IR spectrometer. Neat spectra were recorded as films on NaCl plates (liquids) or as KBr pellets. Solution spectra were recorded using a NaCl cell with a path length near 0.1 mm.

¹**H NMR** spectra were recorded at 60 MHz on a Hitachi Model R-1200, at 200 MHz on a Bruker AC-200 and at 500 MHz on a Bruker AMX-500 instrument using tetramethylsilane (TMS) as an internal reference with chemical shifts reported in ppm relative to TMS.

HPLC analyses were obtained on an automated Waters system controlled by a NEC powermate computer using a millennium 2010 chromatography manager software system with the following components: two solvent delivery systems (6000A and 510 pumps), a Wisp model 712 automatic injector, a 996 photodiode array detector (PDA) and a Novapak C_{18} 60 A° column (3.9 x 150 mm, 4 µm). The mobile phase was generated by mixing two solutions: A (0.1% TFA in water) and B (0.1% TFA in CH₃CN).

3. Mass spectral analyses were acquired on a JMS-700 "M. Station" (Jeol-Tokyo-Japan) two-sector mass spectometer. All spectra were acquired in FABMS mode at a resolution of 1000. CSI was used as external calibrant in all experiments which were performed by Dmitry Gumerov under the supervision of Dr. Igor Kaltashov at the University of Massachusetts Mass Spectrometry Center.

4. Elemental analyses were performed at the University of Massachusetts Microanalysis laboratory under the direction of Dr. Gregory Dabkowski.

5. **References:** all reference citations are to the reference list of the paper

II. Additional Experimental Details for the Synthesis of **11** and **17**

1-Chloro-3,4-dihydronaphthalene-2-carboxaldehyde 8. Phosphoryl chloride (26.32 g; 16 ml; 0.171 mol) was added dropwise with stirring and cooling at °C to dry DMF (47.2 g; 59 ml; 0.645 mol) at such a rate that the temperature did not exceed 5°C. 3,4- Dihydronaphthalene-1(2H)-one (25 g; 22.74 ml; 0.174 mol) was added dropwise to the resulting solution at 0 to 5°C. The mixture was stirred for 0.5 h at 0°C and for 1.5 h at 80°C, and poured into cold aqueous sodium acetate (25% w/v; 300 ml). Extraction with ether (3 x 150 ml), drying over MgSO₄ and evaporation of the ether gave a residual oil which was distilled to give an unstable pale green oil (25 g, 76.6%) which later solidified on cooling, b.p 167-170°C at ~ 6 mm Hg (lit.⁷ 145-153°C at 5 mm Hg); IR (NaCl) 1667.9 cm⁻¹(C = O); ¹H NMR (CDCl₃) δ 2.6-2.97 (m, 4), 7.29-7.87 (m, 4), 10.43 (s, 1).

2-Bromo-3,4-dihydronaphthalene-1-carboxaldehyde. Dry DMF (30 g; 32 ml; 410 mmol) was cooled to 0°C in dry chloroform (600 ml) and phosphorous tribromide 43.88 g, (32.6 ml; 342 mmol) was added dropwise. The mixture was stirred at 0°C for 1 h to give a pale yellow solution. A solution of 20 g (18.08 ml; 36.8 mmol) of 3,4 dihydronaphthalene-2(1H)-one in 100 ml of chloroform was added dropwise at 0° to - 5°C. The resulting mixture was refluxed for 1.5 h. It was then cooled to 0°C and cold aqueous saturated sodium bicarbonate was very slowly added until the effervescence had subsided. The mixture was extracted with DCM (3 x 200 ml) and the extract dried over MgSO₄ and evaporated to give a yellow oil (30 g). Flash chromatography of 3 g of the oil using ether/petroleum ether (1/4) as eluent gave 2.5 g; 83.3% (lit.¹⁵ 84%) of the aldehyde as a yellow oil which solidified on cooling; IR (NaCl) 1682 cm⁻¹(C = O); ¹H NMR (CDCl₃) δ 2.75-3.0 (m, 4), 7.19-8.03 (m, 4), 10.34 (s, 1).

Ethyl 4,5-dihydronaphtho[1,2-*b*]thiophene-2-carboxylate 9. Ethyl mercaptoacetate (15.69 g; 14.31 ml; 130.3 mmol) was added to a cooled, stirred solution of sodium (3.77 g; 0.16 g atom) in dry ethanol (58 ml). During 30 min at 0-5°C 25 g (129.8 mmol) of 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde was added dropwise. The mixture was stirred overnight at room temperature, boiled for 30 min., cooled, and poured into 300 ml of water. The ester was filtered off, decolorized and recrystallized from ethanol and obtained as off-white crystals (17.06 g, 65.8%) m.p 82-83°C (lit.⁷ 81-82°C) IR (KBr) 1696 cm⁻¹ (C = O);¹H NMR(CDCl₃) δ 1.34-1.41 (t, 3), 2.77-3.00 (m, 4) 4.29-4.40 (q, 2), δ 7.22-7.59 (m, 5).

5-(1-Naphthylidene)rhodanine 13. A hot solution (70-75°C) of 20 g (150.16 mmol) of rhodanine and 37.5 g (450 mmol) of fused sodium acetate in 100 ml of glacial acetic acid was stirred while 25 g (22 ml; 160 mmol) of 1-naphthaldehyde was slowly added. The mixture was then refluxed for 15 min and poured into 4 l of ice-cold water. The red precipitate, when collected and dried weighed 35 g (86%). Two recrystallizations from absolute ethanol gave 31.40 g (77.16%) of the rhodanine as dark red needles, mp 225-227°C (lit.⁹ 224-225); IR (KBr) 1691 cm⁻¹ (C = O); ¹H NMR (CDCl₃) δ 2.74 (s, 1), 7.6 (m,3), 7.9 (t, 2), 8.17 (d, 2) 8.5 (s, 1).

β-1-Naphthyl-α-mercaptoacrylic acid 14. To a rapidly stirred ice-cold solution of 26 ml of 10% NaOH in 300 ml of water was added 15 g of crude 5-(naphthylidene)rhodanine. After 15 min. the yellow precipitate of the sodium salt was collected and stirred directly into a warm (60°C) solution of 90 ml of 10% NaOH and 1200 ml of water. The mixture was heated to 60-65°C for 20 min, 2 g of charcoal was added and the mixture heated at the same temperature for an additional 20 min and filtered. The filtrate was stirred rapidly and 80 ml of 6N HCl was added in one portion. The yellow precipitate weighed 9.39 g when dried; recrystallization from toluene gave 8.1 g (63.62%) of the acid, mp 186-188°C (lit.⁹ 169-171°C before recrystallization); IR (KBr) 1675 cm⁻¹ (C = O); ¹H NMR (CDCl₃+ DMSO-d₆) δ 4.42 (s, 1), 7.63 (q, 3), 7.9 (m, 4), 8.17 (d, 2) 8.45 (s, 1).

Naphtho[2,1-*b***]thiophene-2-carboxylic acid 15.** A solution of 10 g (43.47 mmol) of β -1-naphthyl- α -mercaptoacrylic acid and 40 g of iodine in 400 ml of dioxane was maintained at 45°C for 24 hours. The solution was then poured into 2 l of water, and the mixture stirred for 10 min., decolorized at room temperature with sodium bisulfate and the brown precipitate collected. The crude acid was dissolved in 50 ml of 10% NaOH and 450 ml of water, boiled for 10 min (not soluble at room temperature), treated with 1.5 g of charcoal and the mixture boiled for a further 20 min for decolorization. The resulting mixture was filtered and the filtrate saturated with NaCl and the gelatinous precipitate extracted with ethyl acetate (3 x 400 ml). The extracts were dried over MgSO₄ and evaporated at reduced pressure to give a brown precipitate. After decolorization and recrystallization from *p*-xylene there was obtained 5.8 g (79.26%) of the pure acid as silvery-white needles, mp 277-279°C (lit.⁹ 277-278°C). IR (KBr) 1666 (CO) cm⁻¹; ¹H NMR (CDCl₃+ DMSO-d₆) δ 7.37-8.67 (m, 7).

III. Characterization Data for α- and β-Nsmoc Amino Acids

a-Nsmoc-Gly-OH. The acid was obtained as an off-white solid from DCM/hexane in 90% yield, mp 191-193°C; IR (KBr): 1151, 1295 (SO₂), 1728 (CO, acid; urethane), 3412 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃ + TFA) δ 4.17 (d, 2), 5.32 (d, 2), 6.0 and 6.8 (d, 1), 7.45 (d, 1), 7.49 (d, 1), 7.66 (t, 1), 7.76 (t, 1), 7.98 (d, 1), 8.13 (d, 1), 8.2 (dd, 1). Anal. Calcd for C₁₆H₁₃NO₆S: C, 55.34; H, 3.74; N, 4.03. Found: C, 55.30; H, 3.68; N, 3.97

a-Nsmoc-Ala-OH. The product was obtained as an off-white solid from DCM/hexane in 86.2% yield, mp 120-125°C; IR (KBr): 1151, 1295 (SO₂), 1728 (CO, acid; urethane), 3412 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.46 (d, 3), 4.37 (q, 1), 5.17 (s, 2), 5.56 and 6.7 (d, 1), 7.2 (s, 1), 7.3 (d, 1), 7.54 (t, 1), 7.65 (t, 1), 7.85 (d, 1), 7.89 (d, 1), 8.22 (d, 1). Anal. Calcd for C₁₇H₁₅NO₆S: C, 56.53; H, 4.15, N, 3.87. Found: C. 56.56; H, 4.24; N, 3.76

α-Nsmoc-Val-OH. The acid was obtained as an off-white solid after evaporation to dryness of the DCM/hexane mixture in 75.4% yield, mp 138-139°C; IR (KBr): 1151, 1301 (SO₂), 1723 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 0.95

(d, 3), 1.01 (d, 3) 2.45 (m, 1), 4.33 (q, 1), 5.19 (s, 2), 5.46 (d, 1), 7.25 (s, 1), 7.38 (d, 1) 7.6 (t, 1), 7.72 (t, 1), 7.92 (d, 1), 8.05 (d, 1), 8.31 (d, 1). Anal. Calcd for $C_{19}H_{19}NO_6S$: C, 58.63; H, 4.88; N, 3.59. Found: C, 58.82; H, 5.08; N, 3.52

a-Nsmoc-Leu-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 84.6% yield, mp 75-96°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (d, 6), 1.58 (m, 1), 1.64-1.74 (m, 2), 4.33-4.44 (m, 1), 5.18 (s, 2), 5.38 (d, 1), 7.23 (s, 1), 7.37 (d, 1), 7.55 (t, 1), 7.70 (t, 1), 8.05 (d, 1), 8.57 (d, 1), 8.25 (d, 1). Anal. Calcd for C₂₀H₂₁NO₆S: C, 59.56; H, 5.20; N, 3.47. Found: C, 59.80; H, 5.42; N, 3.40

a-Nsmoc-Ile-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 88.46% yield, mp 148-150°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3369 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, 3), .97 (d, 3) 1.25 (m, 1), 1.46 (m, 1), 1.95 (m, 1), 4.35 (q, 1), 5.18 (s, 2), 5.49 (d, 1) 7.24 (s, 1), 7.31 (d, 1), 7.55 (t, 1), 7.73 (t, 1), 7.91 (d, 1), 8.01 (d, 1), 8.3 (d, 1). Anal. Calcd for C₂₀H₂₁NO₆S: C, 59.56; H, 5.20; N, 3.47. Found: C, 59.47; H, 5.32; N, 3.39

α-Nsmoc-Pro-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 77.6% yield, mp 192-195°C; IR (KBr): 1151, 1301 (SO₂), 1669, 1750 (CO, acid; urethane), 3134 (OH) cm⁻¹; ¹H NMR (CDCl₃ + TFA) δ 2.01 (m, 2), 2.2 (m, 1), 2.4 (m, 1) 3.65 (m, 2), 4.51 and 4.59 (2q, 1), 5.32 (m, 2), 7.38 (d, 1), 7.48 (d, 1), 7.63 (t, 1), 7.75 (t, 1) 7.95 (d, 1), 8.12 (d, 1) 8.27 (dd, 1). Anal. Calcd for $C_{19}H_{17}NO_6S$: C, 58.92; H, 4.39; N, 3.61. Found: 58.94; H, 4.48; N, 3.45

a-Nsmoc-Phe-OH. The acid was obtained as an off-white solid from DCM/hexane in 89.2% yield, mp 81-135°C; IR (KBr): 1151, 1295 (SO₂), 1723 (CO, acid; urethane), 3337 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 3.0-3.2 (m, 2), 4.68 (q, 1), 5.11 (s, 2), 5.53 and 6.0 (d, 1), 7.11-7.4 (m, 7), 7.54 (t, 1), 7.65 (t, 1), 7.85 (d, 1), 7.96 (d, 1), 8.25 (d, 1). Anal. Calcd for C₂₃H₁₉NO₆S: C, 63.16; H, 4.34; N, 3.20. Found: C, 62.93; H, 4.10; N, 3.03

α-Nsmoc-Met-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 80.8% yield, mp 55-117°C; IR (KBr): 1151, 1295 (SO₂), 1723 (CO, acid; urethane), 3337 (OH) cm⁻¹; ¹H NMR (CDCl₃ + TFA) δ 2.13-2.37 (m, 5), 2.68 (m, 2), 4.65 (m, 1), 5.30 (dd, 2), 6.25 and 6.85 (d, 1), 7.42 (s, 1), 7.5 (d, 1), 7.65 (t, 1), 7.81 (t, 1), 8.0 (d, 1), 8.15 (d, 1), 8.22 (d, 1). Anal. Calcd for $C_{19}H_{19}NO_6S$: C, 54.16; H, 4.50; N, 3.32. Found: C, 54.09; H, 4.65; N, 3.23

α-Nsmoc-Trp-OH. The acid was obtained as an off-white solid from DCM/hexane in 85.6% yield, mp 107-160°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3401 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 3.30 (d, 2), 4.6 (q, 1), 5.09 (s, 2) 5.51 (d, 1), 6.91-7.23 (m, 5), . Anal. Calcd for $C_{25}H_{20}NO_6S$: C, 63.04; H, 4.19; N, 5.87. Found: C, 62.91; H, 4.43; N, 5.73

a-Nsmoc-Ser(t-Bu)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 82.0% yield, mp 76-135°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.18 (s, 9), 3.58 (q, 1), 3.92 (q, 1), 4.47 (m, 1), 5.2 (s, 2), 5.77 (d, 1) 7.27 (s, 1), 7.43 (d, 1) 7.61 (t, 1), 7.7 (t, 1), 7.9 (d, 1), 8.05 (d, 1) 8.28 (d, 1). Anal. Calcd for C₂₁H₂₃NO₇S: C, 58.21; H, 5.30; N, 3.23. Found: C, 58.14; H, 5.31; N, 3.16

a-Nsmoc-Thr(t-Bu)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 82.8% yield, mp 85-107°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3433 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (d, 3), 1.20 (s, 9), 4.32 (m, 2), 5.16 (s, 2), 5.87 (d, 1), 7.24 (s, 7), 7.43 (d, 1), 7.6 (t, 1), 7.7 (t, 1), 7.91 (d, 1), 8.01 (d, 1), 8.27 (d, 1). Anal. Calcd for C₂₂H₂₅NO₇S: C, 59.01; H, 5.58; N, 3.12. Found: C, 59.21; H, 5.52; N, 3.06

a-Nsmoc-Tyr(t-Bu)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 81.8% yield, mp 134-136°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3369 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.3 (s, 9), 3.19 (m, 2), 4.65 (q, 1), 5.19 (s, 2), 5.42 (d, 1), 7.05 (dd, 4), 7.15 (s, 1), 7.45 (d, 1), 7.61 (t, 1), 7.73 (t, 1), 7.95 (d, 1), 8.0 (d, 1), 8.32 (d, 1)... Anal. Calcd for C₂₇H₂₇NO₇S: C, 63.66; H, 5.30; N, 2.74. Found: C, 63.51; H, 5.43; N, 2.78

a-Nsmoc-Asp(O-t-Bu)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 84.0% yield, mp 67-142°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3337 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.42 (s, 9), 2.73-3.05 (m, 2), 4.60 (m, 1), 5.19 (s, 2), 5.6 (d, 1), 7.17 (s, 1), 7.41 (d, 1), 7.59 (t, 1), 7.73 (t, 1), 7. 91 (d, 1), 8.03 (d, 1), 8.29 (d, 1). Anal. Calcd for C₂₂H₂₃NO₈S: C, 57.27; H, 4.98; N, 3.03. Found: C, 57.59; H, 5.07; N, 2.97

α-Nsmoc-Glu(O-t-Bu)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 46.13% yield, mp 69-128°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (s, 9), 1.95-2.51 (m, 4), 4.35 (m, 1), 5.18 (s, 2), 5.82 (d, 1), 7.18 (s, 1), 7.4 (d, 1), 7.6 (t, 1), 7.75 (t, 1), 7.9 (d, 1), 8.05 (d, 1), 8.29 (d, 1). Anal. Calcd for $C_{23}H_{25}NO_8S$: C, 58.11; H, 5.25; N, 2.94. Found: C, 58.14; H, 5.28; N, 2.95

a-Nsmoc-Lys(Boc)-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 72.0% yield, mp 83-125°C; IR (KBr): 1157, 1301 (SO₂), 1717 (CO, acid; urethane), 3380 (OH, NH) cm⁻¹; ¹H NMR (DMSO,d₆) δ 1.25 (m, 3), 1.34 (s, 10), 1.57 (m, 1), 1.7 (m, 1), 2.85 (q, 2), 3.81 (m, 1), 5.06 (s, 2), 6.73 (t, 1), 7.17 (bs, 1), 7.67 (s, 1),7.70 (t, 1), 7.76 (d, 1), 7.82 (t, 1), 8.1 (d, 1), 8.15 (d, 1), 8.30 (d, 1). Anal. Calcd for C₂₅H₃₀N₂O₈S: C, 57.92; H, 5.78; N, 5.40. Found: C, 58.14; H, 5.91; N, 5.34

a-Nsmoc-Phg-OH. The acid was obtained as an off-white solid after evaporation of DCM/hexane to dryness in 78.8% yield, mp 93-146°C; IR (KBr): 1151, 1301 (SO₂), 1728 (CO, acid; urethane), 3423 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 5.11

(m, 2), 5.41 (q, 1), 6.04 (d, 1), 7.22 (s, 1), 7.35 (m, 5), 7.45 (d, 1), 7.55 (t, 1), 7.67 (t, 1), 7.85 (d, 1), 7.98 (d, 1), 8.01 (d, 1), 8.25 (d, 1). Anal. Calcd for $C_{22}H_{17}NO_6S$: C, 62.42; H, 4.01; N, 3.30. Found: C, 62.48; H, 4.13; N, 3.21

a-Nsmoc-Aib-OH. The acid was obtained as an off-white solid from DCM/hexane in 84.4% yield, mp 181-182°C; IR (KBr): 1151, 1290 (SO₂), 1728 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃+TFA) δ 1.6 (s, 6), 5.25 (s, 2), 6.0 and 6.9 (d, 1), 7.38 (s, 1), 7.45 (d, 1), 7.65 (t, 1), 7.8 (t, 1), 7. 98 (d, 1), 8.15 (d, 1), 8.25 (d, 1). Anal. Calcd for C₁₈H₁₇NO₆S: C, 57.61; H, 4.53; N, 3.73. Found: C, 57.40; H, 4.48; N, 3.21

a-Nsmoc-Asn(Trt)-OH. The acid was obtained as a white solid from DCM/hexane after column chromatography in 49.74% yield, mp 170-200°C; IR (KBr): 1151, 1295 (SO₂), 1669 (CO, amide), 1728 (CO, acid; urethane), 3391 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 2.64 (m, 2), 4.21 (q, 1), 5.1 (s, 2), 7.15 (m, 15), 7.67 (s, 1), 7.7 (d, 1), 7.74 (d, 1), 7.83 (t, 1), 8.06 (d, 1), 8.17 (d, 1) 8.3 (d, 1). Anal. Calcd for C₃₇H₃₀N₂S.H₂O: C, 66.87; H, 4.81; N, 4.21. Found: C, 66.60; H, 4.66; N, 4.27

a-Nsmoc-Gln(Trt)-OH. The acid was obtained as a white solid from DCM/hexane after column chromatography in 56.8% yield, mp 120-160°C; IR (KBr): 1151, 1295 (SO₂), 1723 (CO, acid; urethane), 3369 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.7 (m, 1), 1.93 (m, 1), 2.39 (m, 2), 3.4 (q, 1), 5.1 (q, 2), 7.2 (m, 16), 7.7 (m, 2), 7.79 (m, 2), 8.08 (d, 1), 8.17 (d, 1), 8.3 (d, 1). Anal. Calcd for C₃₈H₃₂N₂O₇S: C, 69.10; H, 4.88; N, 4.24. Found: C, 68.87; H, 4.74; N, 4.14

β-Nsmoc-Gly-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 89.20% yield, mp 76-151°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3412 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃ + TFA) δ 4.17 (d, 2), 5.35 (d, 2), 5.9 and 6.8 (d, 1), 7.71 (quintet, 1), 7.76 (d, 1), 7.88 (d, 1), 7.95 (d, 1), 8.05 (d, 2). Anal. Calcd for C₁₆H₁₃NO₆S: C, 55.34; H, 3.74; N, 4.03. Found: C, 55.10; H, 3.85; N, 3.87

β-Nsmoc-Ala-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 82.7% yield, mp 89-109°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.51 (d, 3), 4.5 (quentet, 1), 5.21 (s, 2), 5.58, 6.30 (d, 1), 7.63 (t, 2), 7.75 (t, 2), 7.86 (d, 1), 7.93 (d, 1), 8.01 (d, 1). Anal. Calcd for $C_{17}H_{15}NO_6S$: C, 56.53; H, 4.15; N, 3.87. Found: C, 56.75; H, 4.24; N, 3.73

β-Nsmoc-Val-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 73.3% yield, mp 89-115°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (d, 3), 1.05 (d, 1) 2.25 (m, 1), 4.33 (q, 1), 5.21, (s, 2), 5.49 (d, 1) 7.61 (t, 2), 7.74 (t, 2), 7.83 (d, 1), 7.91 (d, 1), 8.05 (1, d) Anal. Calcd for $C_{19}H_{19}NO_6S$: C, 58.62; H, 4.88; N, 3.59. Found: C, 58.88; H, 5.15; N, 3.42

β-Nsmoc-Leu-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 83.8% yield, mp 78-105°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (d, 6), 1.57 (m, 1), 1.65-1.77 (m, 2), 4.33 (m, 1), 5.20, (s, 2), 5.7 (d, 1), 7.61(m, 2), 7.67 (t, 2), 7.85 (d, 1), 7.89 (d, 1), 7.97 (d, 1). Anal. Calcd for $C_{20}H_{21}NO_6S$: C, 59.56; H, 5.20; N, 3.47. Found: C, 59.76; H, 5.44; N, 3.41

β-Nsmoc-Ile-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 84.0% yield, mp 76-123°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃)) δ 0.88 (t, 3), .98 (d, 3) 1.25 (m, 1), 1.46 (m, 1), 2.0 (m, 1), 4.34 (q, 1), 5.22 (s, 2), 5.5 (d, 1) 7.6 (m, 2), 7.69 (t, 2). Anal. Calcd for $C_{20}H_{21}NO_6S$: C, 59.56; H, 5.20; N, 3.47. Found: C, 59.27; H, 5.06; N, 3.42

β-Nsmoc-Pro-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 80.0% yield, mp 91-146°C; IR (KBr): 1157, 1301 (SO₂), 1712 (CO, acid; urethane), 3359 (OH) cm⁻¹; ¹H NMR (CDCl₃) δ δ 1.93 (m, 2), 2.25 (m, 2), 3.6 (m, 2), 4.41 and 4.54 (2q, 1), 5.25 (m, 2), 6.7 (bs, 1), 7.60-7.85(m, 4), 7.88 (t, 1), 7.95 (d, 1), 8.01 (d, 1), 7.97 (d, 1). Anal. Calcd for $C_{19}H_{17}NO_6S$: C, 58.92; H, 4.39; N, 3.61. Found: C, 58.89; H, 4.37; N, 3.40

β-Nsmoc-Phe-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 91.8% yield, mp 81-158°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 3.03-3.26 (m, 2), 4.68 (q, 1), 5.16 (s, 2), 5.48, (d, 1), 7.14 (m, 3), 7.24 (d, 2), 7.63 (m, 3), 7.7 (d, 1), 7.88 (d, 1), 7.96 (d, 2). Anal. Calcd for $C_{23}H_{19}NO_6S$: C, 63.16; H, 4.34; N, 3.20. Found: C, 63.04; H, 4.50; N, 3.11

β-Nsmoc-Met-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 73.52% yield, mp 74-143°C; IR (KBr): 1154, 1301 (SO₂), 1723 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 2.15 (s, 3), 2.25 (m, 2), 2.58 (t, 2) 2.58 (m, 2), 4.56 (m, 1), 5.21 (s, 2) 5.93 (d, 1) 7.55 (t, 3), 7.7 (d, 1) 7.81 (d, 1), 7.9 (d, 1), 8.0 (d, 1). Anal. Calcd for $C_{19}H_{19}NO_6S$: C, 54.16; H, 4.50; N, 3.32. Found: C, 54.22; H, 4.62; N, 3.24

β-Nsmoc-Trp-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 85.7% yield, mp 119-204°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3401 (OH, NH) cm⁻¹; ¹H NMR (DMSO-d₆) δ 3.47 (d, 2), 4.87 (m, 1), 5.28 (d, 2), 5.79 (d, 1) 6.96 (t, 1), 7.05 (t, 1), 7.33 (d, 1), 7.54 (d, 1), 7.78 (m, 3), 7.94 (d, 1), 8.14 (d, 1) 8.25 (t, 2), 8.34 (d, 1). Anal. Calcd for $C_{25}H_{20}NO_6S$: C, 63.04; H, 4.19; N, 5.87. Found: C, 62.99; H, 4.24; N, 5.69

β-Nsmoc-Ser(t-Bu)-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 78.5% yield, mp 79-139°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3358 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.17 (s, 9), 3.58 (q, 1), 3.91 (dd, 1)δ 4.47 (m, 1), 5.23 (d, 2), 5.85 (d, 1) 7.65 (q, 3), 7.73 (d, 2), 7.9

(d, 1), 7.97 (d, 1), 8.04 (d, 1). Anal. Calcd for $C_{21}H_{23}NO_7S$: C, 58.21; H, 5.30; N, 3.23. Found: C, 58.46; H, 5.55; N, 3.10

β-Nsmoc-Thr(t-Bu)-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 86.3% yield, mp 88-119°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3433 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.17 (d, 3), 1.29 (s, 9), 4.31 (m, 2), 5.23 (s, 2) 5.89 (d, 1) 7.66 (m, 2), 7.73 (t, 2), 7.9 (d, 1), 7.98 (d, 1), 8.05 (d, 1). Anal. Calcd for C₂₂H₂₅NO₇S: C, 59.01; H, 5.58; N, 3.12. Found: C, 59.19; H, 5.72; N, 3.00

β-Nsmoc-Tyr(t-Bu)-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 87.16% yield, mp 96-162°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.3 (s, 9), 3.07 (dd, 1), 3.18 (dd, 1) 4.65 (q, 1), 5.19 (d, 2), 5.42 (d, 1), 6.9 (d, 2), 7.07 (d, 2), 7.64 (m, 3), 7.71 (d, 1), 7.9 (d, 1), 7.96 (d, 1), 8.05 (d, 1), 8.32 (d, 1). Anal. Calcd for $C_{27}H_{27}NO_7S$: C, 63.66; H, 5.30; N, 2.74. Found: C, 63.42; H, 5.17; N, 2.76

β-Nsmoc-Asp(O-t-Bu)-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 83.0% yield, mp 85-151°C; IR (KBr): 1157, 1301 (SO₂), 1728 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.44 (s, 9), 3.0 (2dd, 1), 4.6 (m, 1), 5.23 (s, 2) 6.0 (d, 1) 7.63 (m, 2), 7.75 (t, 2), 7.85 (d, 1), 7.93 (d, 1), 8.05 (d, 1).). Anal. Calcd for $C_{22}H_{23}NO_8S$: C, 57.27; H, 4.98; N, 3.03. Found: C, 56.99; H, 4.86; N, 2.94

β-Nsmoc-Glu(O-t-Bu)-OH. The acid was obtained as a cream-colored solid from DCM/hexane in 52.0% yield, mp 77-164°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (s, 9), 2.03 (m, 1), 2.21 (m, 1), 2.42 (m, 2) 4.41 (m, 1), 5.20 (q, 2), 5.83 (d, 1), 7.59 (m, 2) 7.67 (d, 2), 7.84 (d, 1), 7.9 (d, 1), 8.0 (d, 1). Anal. Calcd for $C_{23}H_{25}NO_8S$: C, 58.11; H, 5.25; N, 2.94. Found: C, 57.93; H, 5.04; N, 2.93

β-Nsmoc-Lys(Boc)-OH. The acid was obtained as a cream-colored solid after evaporation of DCM/hexane to dryness in 68.50% yield, mp 86-149°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3380 (OH, NH) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.1.7-1.34 (bm, 13), 1.59 (m, 1), 1.69 (m, 1), 2.86 (q, 2), 3.85 (m, 1), 5.1 (s, 2), 6.74 (t, 1) 7.46 (m, 1), 7.77 (m, 2), 7.93 (d, 1), 8.12 (d, 1), 8.23 (d, 1), 8.30 (s, 1), 8.4 (d, 1). Anal. Calcd for C₂₅H₃₀N₂O₈S: C, 57.92; H, 5.78; N, 5.40. Found: C, 58.04; H, 5.79; N, 5.26

β-Nsmoc-Phg-OH. The acid was obtained as a creamy solid from DCM/hexane in 80.3% yield, mp 98-159°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO, acid; urethane), 3359 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃) δ 5.17 (q, 2), 5.39 (t, 1), 6.2 (d, 1), 7.35 (m, 5), 7.67 (m, 4), 7.93 (m, 3). Anal. Calcd for $C_{22}H_{17}NO_6S$: C, 62.42; H, 4.01; N, 3.30. Found: C, 62.62; H, 4.26; N, 3.16

β-Nsmoc-Aib-OH (105). The acid was obtained as a cream-colored solid from DCM/hexane in 77.8% yield, mp 184-187°C; IR (KBr): 1157, 1301 (SO₂), 1723 (CO,

acid; urethane), 3348 (OH, NH) cm⁻¹; ¹H NMR (CDCl₃ + TFA) δ 1.61 (s, 6), 5.30 (s, 2), 6.0 (bs, 1) 6.95 (m, 4), 7.9 (d, 1), 7.97 (d, 1), 8.03 (d, 1). Anal. Calcd for C₁₈H₁₇NO₆S: C, 57.61; H, 4.53; N, 3.73. Found: C, 57.33; H, 4.39; N, 3.52

β-Nsmoc-Asn(Trt)-OH. The acid was obtained as a white solid from DCM/hexane after column chromatography in 47.8% yield, mp 77-164°C; IR (KBr): 1151, 1295 (SO₂), 1669 (CO, amide), 1712 (CO acid; urethane) 3391 (OH, NH) cm⁻¹; ¹H NMR (DMSO-d₆) δ 2.66 (m, 2), 4.2 (m, 1), 5.1 (s, 2), 7.2 (m, 18), 7.4 (bs, 1), 7.77 (m, 2), 7.85 (t, 1), 8.5 (d, 1), 8.8 (d, 1), 8.5 (d, 1). Anal. Calcd for $C_{37}H_{30}N_2O_7S.1.5.H_20$: C, 65.98; H, 4.90; N, 4.15. Found: C, 65.76; H, 4.81; N, 4.03

β-Nsmoc-Gln(Trt)-OH. The acid was obtained as a white solid from DCM/hexane after column chromatography in 56.3% yield, mp 238-240°C; IR (KBr): 1141, 1301 (SO₂), 1712 (CO acid; urethane) 3320 (OH, NH) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.73 (m, 1), 1.93 (m, 1), 2.37 (m, 2), 3.98 (m, 1) 5.13 (m, 2), 7.18 (m, 15), 7.75 (m, 2), 7.9 (d, 1), 8.01 (m. 1), 8.23 (d, 1), 8.3 (s, 1), 8.45 (m, 1). Anal. Calcd for C₃₈H₃₂N₂O₇S: C, 69.10; H, 4.84; N, 4.24. Found: C, 68.88; H, 5.06; N, 4.12

IR (NaCl) for 1-Chloro-3,4-dihydronaphthalene-2-carboxaldeyde 8

¹H NMR (CDCl₃, 60 MHz) for 1-Chloro-3,4-dihydronaphthalene-2carboxaldeyde 8

carboxaldehyde

Carboxylate 9

IR (**KBr**) for Ethyl 4,5-dihydronaphtho[2,1-*b*]thiophene-2-carboxylate

¹**H NMR (CDCl₃)** for Ethyl 4,5-dihydronaphtho[2,1-*b*]thiophene-2-carboxylate

IR (**KBr**) for Ethyl naphtho[2,1-*b*]thiophene-2-carboxylate **16**

¹H NMR (CDCl₃) for Ethyl naphtho[2,1-*b*]thiophene-2-carboxylate 16

¹H NMR (CDCl₃+DMSO-d₆) for Naphtho[2,1-*b*]thiophene-2-carboxylic acid 15

IR (KBr) for 2-(Hydroxymethyl)naphtho[1,2-*b*]thiophene 5

¹**H NMR** for 2-(Hydroxymethyl)naphtho[1,2-*b*]thiophene **5**

¹HNMR (CDCl₃+TFA) 1,1-Dioxo-2-(hydroxymethyl)naphtha[1,2-b]thiophene 11

IR (KBr) for 3,3-Dioxo-2-(hydroxymethyl)naphtho[2,1-*b*]thiophene 17

¹H NMR (CDCl₃) for 3,3-Dioxo-2-(hydroxymethyl)naphtho[2,1-*b*]thiophene 17

¹H NMR (CDCl₃) for 1,1-Dioxonaphtho[1,2-*b*]thiophene chloroformate 18

IR (KBr) for 3,3-Dioxonaphtho[2,1-*b*]thiophene-2-methyl chloroformate 19

¹**H NMR (CDCl₃)** for 3,3-Dioxonaphtho[2,1-*b*]thiophene-2-methyl chloroformate **19**

IR (KBr) for 1,1-Dioxonaphtho[1,2-*b*]thiophene-2-methyl N-succinimidyl carbonate

¹**H NMR (CDCl₃+TFA)** for 1,1-Dioxonaphtho[1,2-*b*]thiophene-2-methyl N-succinimidyl carbonate

IR (KBr) for 1,1-Dioxo-2-(chloromethyl)naphtho[1,2-b]thiophene 23

¹H NMR (CDCl₃) for 1,1-Dioxo-2-(chloromethyl)naphtho[1,2-*b*]thiophene 23

HPLC trace for 1,1-Dioxo-2-(chloromethyl)naphtho[1,2-*b*]thiophene 23

IR (KBr) for 1,1-Dioxo-2-(piperidinomethyl)naphtho[1,2-b]thiophene 22

¹H NMR (CDCl₃) for 1,1-Dioxo-2-(piperidinomethyl)naphtho[1,2-*b*]thiophene 22

HPLC trace for 1,1-Dioxo-2-(piperidinomethyl)naphtho[1,2-b]thiophene 22

HPLC trace for the initial α–Nsmoc/2-methylpiperidine adduct

IR (**KBr**) for the final α–Nsmoc/2-methylpiperidine adduct

 ^1H NMR (CDCl_3) for the final stable $\alpha\text{-Nsmoc}/2\text{-methylpiperidine}$ adduct

HPLC trace for the final stable α -Nsmoc/2-methylpiperidine adduct

IR (**KBr**) for 1,1-Dioxonaphtho[1,2-b]thiophene-2-methyl N-*p*-chlorophenyl carbamate **20b**

b]thiophene-2-methyl N-*p*-chlorophenyl carbamate **20b**

IR (**KBr**) for 3,3-Dioxonaphtho[2,1-*b*]thiophene-2-methyl N-*p*-chlorophenyl carbamate **20c**

¹H NMR (CDCl₃+DMSO-d₆, 500 MHz) for 3,3-Dioxonaphtho[2,1*b*]thiophene-2-methyl N-*p*-chlorophenyl carbamate **20**c

VI. A. Course of the deblocking of α-Nsmoc-PCA/piperidine

Snapshot after 7 min. of the ¹H NMR (CDCl₃ + DMSO-d₆, 500MHz) spectrum for the deblocking of α-Nsmoc-PCA **20b** by means of piperidine

Snapshot after 41 min. of the ¹H NMR (CDCl₃ + DMSO-d₆, 500MHz) spectrum for the deblocking of α -Nsmoc-PCA 20b by means of piperidine

¹H NMR (CDCl₃+DMSO-d₆, 500 MHz) for 3,3-Dioxonaphtho[2,1*b*]thiophene-2-methyl N-*p*-chlorophenyl carbamate **20**c

Before addition of 2 equiv. of piperidine

Snapshot after 7 min. of the ¹H NMR (CDCl₃ + DMSO-d₆, 500MHz) spectrum for the deblocking of β-Nsmoc-PCA **20c** by means of piperidine

Snapshot after 41 min. of the ¹H NMR (CDCl₃ + DMSO-d₆, 500MHz) spectrum for the deblocking of β -Nsmoc-PCA 20c by means of piperidine

 $^1\text{H-NMR}$ integral for the decrease of the urethane peak for CH2O at δ 5.2

 ^1H NMR (CDCl3) for $\alpha\text{-Nsmoc-Ala-OH}$

 ^1H NMR (CDCl₃) for $\alpha\text{-Nsmoc-Ser(t-Bu)-OH}$

 ^1H NMR (CDCl_3) for $\alpha\text{-Nsmoc-Thr}(\text{t-Bu})\text{-OH}$

 1H NMR (CDCl_3) for $\alpha\text{-Nsmoc-Tyr(t-Bu)-OH}$

IR (**KBr**) for α–Nsmoc-Asp(O-t-Bu)-OH

 1H NMR (CDCl_3) for $\alpha\text{-Nsmoc-Asp(O-t-Bu)-OH}$

¹**H NMR (DMSO-d**₆) for α -Nsmoc-Lys(Boc)-OH

¹H NMR (DMSO-d₆) for α -Nsmoc-Asn(Trt)-OH

IR (**KBr**) for α-Nsmoc-Gln(Trt)-OH

 1H NMR (DMSO-d_6) for $\alpha\text{-Nsmoc-Gln(Trt)-OH}$

¹**H NMR (CDCl₃)** for β -Nsmoc-Pro-OH

IR (**KBr**) for β–Nsmoc-Ser(t-Bu)-OH

¹**H NMR (CDCl₃)** for β -Nsmoc-Ser(t-Bu)-OH

 ^1H NMR (CDCl₃) for $\beta\text{-Nsmoc-Glu(O-t-Bu)-OH}$

¹H NMR (DMSO-d₆) for β -Nsmoc-Lys(Boc)-OH

¹**H NMR (DMSO-d**₆) for β -Nsmoc-Asn(Trt)-OH

IR (KBr) for β -Nsmoc-Phg-OH

¹H NMR (CDCl₃) for β -Nsmoc-Phg-OH

VIII. Racemization tests

Fig. VIII a. ¹H-NMR spectrum of a roughly 50-50 mixture of LL- and LD- α -Nsmoc-Phg-Ala-OMe.

Fig. VIII b. ¹H-NMR spectrum of the crude sample of α -Nsmoc-Phg-Ala-OMe prepared from H-Ala-OMe.HCl via N-HATU coupling. Integration at δ 3.71 shows that no more than 1.46% of the DL- form could be present.

Fig. VIII c. ¹H-NMR spectrum of the crude sample of α -Nsmoc-Phg-Ala-OMe prepared via crude α -Nsmoc-Phg-F and H-Ala-OMe.HCl via (1) the two-phase method in the presence of NaHCO₃ and (2) the one phase method in the presence of DIEA. Integration at δ 3.71 shows that no more than 1.23% or 0.6% respectively of the DL- form could have been present.

Fig. VIII a. ¹H-NMR spectrum of a roughly 50-50 mixture of LL- and LD- α -Nsmoc-Phg-Ala-OMe.

Fig. VIII c1. ¹H-NMR spectrum of the crude sample of α -Nsmoc-Phg-Ala-OMe prepared via crude α -Nsmoc-Phg-F and H-Ala-OMe.HCl via the two-phase method in the presence of NaHCO₃.

Fig. VIII c2. ¹H-NMR spectrum of the crude sample of α -Nsmoc-Phg-Ala-OMe prepared via crude α -Nsmoc-Phg-F and H-Ala-OMe.HCl via the one phase method in the presence of DIEA.