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1 Spectral Similarity

In order to cluster mass spectra we need to determine the similarity between them. We use the
normalized dot-product, which has previously been found to work well by several groups that have
approached similar problems [1, 2, 3, 4, 5, 6, 7, §].

To calculate the normalized dot-product of two mass spectra S and S’, we first reduce each
spectrum to a vector. Since the computation of the spectral similarity is a major part of the
clustering algorithm, restricting the size of theses vectors can reduce the running time. To construct
such vectors we first select the k strongest peaks from S and S’ (we assume that S and S’ have
similar precursor masses). Joining these two sets of masses yields a set of masses M = {my, ..., m:},
where k <t < 2k. M may contain less than 2k masses because duplicate masses are removed (we
consider two peaks to have a similar mass if they are within 0.5 Da from each other). Finally, we
reduce the spectrum S to a vector s = s1, ..., s; by assigning to each s; the intensity found at mass
m; in S if m; was one of the top k peaks in S, otherwise 0 is given to that position. Similarly, we
fill s’ using the intensities of the peaks in S’. In our experiments we found that for these similarity
computations it is optimal to set k to a value that corresponds to 15 peaks per 1000 Da of peptide
mass. Once spectra S and S” are converted to vectors, their normalized dot-product is given by
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The normalized dot-product takes values between 0 (when spectra do not share any selected peaks)
and 1.

Dot-products were initially used for measuring similarity between mass spectra of chemical
compounds, whose mass spectra typically contain a small number of peaks [1]. Directly applying
this measure to spectra of peptides can yield suboptimal results since a small number of strong
peaks in the spectrum can dominate the outcome of the spectral similarity computation. Scaling
peak intensities has been shown to improve the quality of the similarity computations [1]. One
method that has been suggested is to scale a peak’s intensity according to the square root of the
intensity [1, 9, 7]. The scaling method we found most suitable for our data was to first normalize
the peak intensities to bring the total spectrum’s intensity to 1000 and then fill the dot-product
vectors with the natural logarithm of the selected peaks’ intensities.

Similarity(S, ') = (1)




2 Consensus Spectra

A common approach for creating a representative spectrum for a cluster is to use a consensus
spectrum [4, 5, 10, 7, 8, 11], which is generated by “summing” the spectra in the cluster. Our
method for creating a consensus spectrum is as follows. Given the cluster’s mass spectra, we create
a single merged peak list for all the spectra, and sort the list according to the peaks’ masses. The
list is then scanned and when a pair of adjacent peaks having a mass difference below a specified
tolerance is detected, the peaks are consolidated to a single peak with a mass that equals the
weighted average of the joined peaks’ masses and an intensity that equals the sum of the joined
peaks’ intensities. To increase the accuracy of the peak joining, the process is repeated several
times with an increasing tolerance threshold (the final threshold we used was 0.4 Da). This is done
to avoid erroneous peak merging due to isotopic peaks, etc.

To increase the peptide’s signal in the spectrum, we take advantage of the fact that peaks
corresponding to genuine fragments are likely to appear in many of the cluster’s spectra. Thus
for each peak 7 in the consensus spectrum, we take note of the number peaks from the original
spectra that were merged to create ¢ and divide it by the total number of spectra to obtain the
peak probability p;. We then multiply the peak i’s intensity by a scaling factor a = 0.95 4 0.05 x
(1 + p;)>. This function gives a a value close to 1 for peaks with low probability, but increases
as the probability nears 1 to a maximal value of 2.55. Finally the list of peaks in the consensus
spectrum is filtered using a sliding window to filter out weak peaks (in our experiments we kept
the top 5 peaks in a window of 100 Da).

We considered five alternatives for a cluster’s representative.

1. “best spectrum”: the spectrum that maximizes a certain score, e.g., percent of explained
intensity or percent of explained b/y ions (this is the optimal spectrum that could be selected
from amongst the cluster members).

2. “consensus spectrum”: a virtual spectrum constructed by consolidating all spectra in the
cluster.

3. “most similar spectrum”: the spectrum that has the highest average similarity to the other
cluster members [3, 9].

4. “de novo spectrum”: the spectrum that has the highest score when submitted to de novo
sequencing.

5. “average spectrum”: a spectrum chosen from the cluster at random.

We start off by evaluating different methods for selecting a cluster representative. Figure 1
shows plots in which we examine the relation between the cluster size and the quality of different
types of cluster representatives. The plots were generated from 250 clusters each containing at
least 100 spectra from the Human dataset which were identified with high confidence by InsPecT.
The spectra were filtered using a sliding window to maintain a peak density of approximately
50 peaks per 1000 Da of peptide mass. For each cluster size, we repeatedly drew random subsets
(clusters) varying in size from 1 to 100, taken from the spectra of the original 250 large clusters. For
each drawn cluster of spectra corresponding to a peptide P, we examined the percent of explained
intensity (i.e., the sum of the intensities of peaks belonging to fragment ions of P), the proportion
of P’s b- and y-ions that were observed in the spectra and the score given to the spectrum by
InsPecT when annotated with the peptide P. These three statistics were recorded for five different
methods for selecting cluster representatives.
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Figure 1: Cluster size and spectrum quality. Clusters of various sizes were evaluated to determine
the fraction of explained spectrum intensity (left), proportion of observed b- and y-ions (center),
and score given to the spectrum by Inspect (right). With each cluster these statistics were collected
for five different cluster representatives: 1) The best spectrum, 2) The consensus spectrum, 3) The
most similar spectrum, 4) The best de novo spectrum, and 5) The average spectrum.
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Figure 1 illustrates the benefits of selecting cluster representatives “wisely”. Using representa-
tives 2-4 gave spectra with a significantly higher signal-to-noise ratio than the “average” represen-
tative (5). The most similar spectrum and the top de novo spectrum have higher proportions of
explained intensity (up to 5% more) than the consensus spectrum, but relatively similar propor-
tions of observed b- and y-ions. However ultimately, when the spectra are submitted to a database
search, the consensus spectra have higher Inspect scores than the other methods (except for select-
ing the “best” which we only know how to identify after searching all cluster members). In fact
with clusters of up to 10 spectra, the consensus spectra and the best spectra in the clusters have
similar Inspect scores (with a slight advantage for consensus spectra at size 5 which get a score of
6.4 compared to best spectrum’s score of 6.3). We therefore decided to use consensus spectra as
the cluster representatives for our clustering algorithm.

3 Clustering Heuristics

We use two heuristics to reduce the number of similarity computations performed by our clustering
algorithm. The first heuristic evaluates how likely it is that two spectra belong to the same peptide,
without explicitly computing the similarity between them. For example, spectra from the same
peptides have similar sets of strong peaks: in our data, 98.2% of the pairs of spectra from the
same peptide had at least one peak in common in their respective sets of the five strongest peaks.
However, only 5.5% of the pairs of spectra from different peptides also have such a match in their
top 5 peaks. Since testing for a common peak in the list of top 5 peaks can be done much quicker
than a complete similarity computation, this heuristic can account for a significant reduction in
running time by quickly eliminating the majority of the unnecessary similarity computations.
The second heuristic we use relies on the fact that our algorithm uses multiple rounds of cluster
joining (with decreasing similarity thresholds 7). Instead of recomputing the similarity between
pairs of consensus spectra at each round, we can carry over similarity results from one round to the
next. Thus, if at a certain round a pair of clusters show extremely low similarity, we take note of
this fact (by setting an appropriate indicator) and we do not examine that pair again in subsequent
rounds. We use a simple bit vector to store the similarity indicators of all pairs of clusters, which
for n spectra amounts to approximately n - (n — 1)/2 bits. Even when clustering large datasets (10



million spectra), the largest number of spectra simultaneously clustered is 60000, which requires
215 MB of memory to store the similarity indicators. Note that since the write operations to the
bit vector always precede read operations to the same addresses, the vector does not need to be
initialized at any time.

This filtration heuristic can very efficient. For example, 99.9% of pairs of spectra of the same
peptide have a similarity above 0.25, while less than 1% of the pairs of spectra from different
peptides have a similarity that exceeds that level. Since 0.25 is a very low threshold, we can safely
assume that if a pair of clusters have a similarity below 0.25 between them, even if they have
additional spectra added to them in subsequent rounds, the cluster similarity will still be way
below the minimum threshold for joining clusters (in our experiments the value 7,,;, = 0.55 was
used).

Heuristics used # Similarity (%) Total (%)
Carry Similarity | Match in Top 5 | Comparisons Run time (s)
- — 1.89 x 10 (100.0%) 8835 (100.0%)
+ - 4.71 x 108 (24.9%) 3731 (42.2%)
- + 5.12 x 108 (27.1%) 4009 (45.4%)
+ + 2.26 x 10% (11.9%) 2766 (31.3%)

Table 1: The algorithms performance with different combinations of heuristics. The clustering
algorithm was run on 0.8M spectra from the Human to evaluate the effect of adding the heuristics
of carrying similarity results between the algorithm rounds and requiring pairs of spectra to have a
match in their top 5 peaks. The algorithm’s performance was measured both in the total number
of computations performed and the total running time.

Table 1 shows the performance of the algorithm while applying different combinations of the
heuristics mentioned above. The algorithm was run with a » = 3 rounds, a minimal similarity
threshold 7,,;,, = 0.55, and using 15 peaks per 1000 Da for similarity computations. On their
own, each of the heuristics approximately halved the number of similarity computations that were
performed. Carrying similarity results between rounds reduced the number of these computations
to 24.9% of the number of computations without heuristics, and requiring spectra to have a match
in their sets of top 5 peaks reduced the number of computations to 27.1%. These two heuristics
are rather complimentary to each other. The filter that requires a match of a peak in the top 5
is most effective in the algorithm’s first round (in which most of the similarity computations are
performed). The carrying over similarity results between is naturally only applicable to subsequent
rounds. Thus when these two heuristics are combined they produce a significant reduction in the
number of similarity computations that are carried out to 11.9% of the number of computations
performed when no heuristics are used. Note that calculating the similarities between all pairs of
spectra in each mass bin amounts to 1.25 x 10? similarity computations.

The reduction in running time is also quite impressive, using both heuristics reduces the running
time less than a third of the time it takes without employing heuristics. It is worth noting that
the clustering results with and without heuristics are very similar. For instance, without heuristics
71.4% of the spectra fell into non-singleton clusters compared to 70.8% when both heuristics were
used.



4 Using Clustering to Focus Efforts On Interesting Spectra

In typical large-scale MS/MS experiments only 10%-20% of the spectra get identified. When these
datasets are clustered, the number of spectra is reduced tenfold but the majority of these clusters
do not get identified in the database search. Though many clusters can correspond to unidentifiable
peptides (for instance spectra with very poor fragmentation patterns), these clusters can also belong
to peptides with mutations/PTMs or alternative splice variants. Below we describe a process in
which we use clustering to isolate from a large dataset of 14.5 million spectra a relatively small group
of unexplained spectra that are good candidates for further investigation. This set of spectra is
then processed using spectral networks [11] to obtain additional peptide identifications and further
reduce the number of unidentified spectra that are left to be investigated. Table 2 summarizes the
steps taken in this process.

Analysis Stage # Explained ## Clusters That
Clusters Remain Unexplained

Initial Dataset - 14.5 M

After Clustering - 1.29 M
Identified by InsPecT 278914 1.02 M
Identified by MS-Alignment 85430 935779
Removal of unidentified singletons - 190091
Identified by alignment to annotated

spectral network components 28915 161176

Table 2: Reducing number of unexplained clusters. The table describes different steps used to
isolate a small subset of “interesting” unexplained spectra (clusters) from a large 14.5 million
spectra dataset.

We started off with the complete Shewanella dataset of 14.5 million spectra that has been
recently analyzed [12]. Clustering this data resulted 1.29 M clusters (of which 848418 were sin-
gletions), over a tenfold reduction compared to the original dataset size. Following that we used
InsPecT to perform a database search of the clusters against a six frame translation of the She-
wanella genome, which confidently assigned non-modified peptides to 278914 of the clusters (false
discovery rate of 5% at the peptide level). These identified clusters mapped back to 2.97 million
of the spectra in the original 14.5M dataset (20.5% of the spectra in the dataset), compared to 1.4
million spectra that were identified without clustering [12]. The clustered search identified 41220
peptides in the forward database, of which 94% were mapped back to known annotated proteins.

At this stage we were left with 1.02 million clusters that evaded identification by MS/MS
database search, a 14-fold reduction in the number of spectra needed to be searched. We proceeded
to run a “blind” MS-Alignment search of these clusters, which led to the identification of additional
85430 clusters which could be mapped to 10048 modified peptides (from the list of 10758 putative
modifications identified in ref [12]). We remained with 935779 clusters of spectra that were not
identified in MS/MS database searches.

We continued the analysis using spectral networks [11]. First we removed 745688 unidentified
singleton clusters, and were left with 189988 unidentified clusters (along with an additional 364344
identified clusters). We chose to remove the singletons because of their large number and the fact
that they are less likely to be spectra with a strong signal-to-noise ratio. The spectral network
graph was created by representing each cluster as a graph vertex. The graph’s edges were created
by connecting all pairs of vertices that displayed statistically significant alignments between their
peaks using a single arbitrary mass shift, which typically corresponded to a mass difference of up
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Figure 2: Histogram of absolute precursor mass differences for all detected spectral pairs on the
clusters from the Shewanella dataset; the y axis represents the number of spectral pairs with a
given difference in parent mass. For clarity, we only show the mass range 1 — 100 Da.

to two amino acids or a PTM. We then used these alignments to create connected components
(spectrum “stars” which correspond to different variants of the same peptide: prefix, or suffix
peptides, variants with PTMs, etc.).

After extracting connected components, an additional 28915 clusters, which previously did not
have an annotation, could be annotated based on their membership in a connected component with
at least one annotated cluster. 161176 clusters remained unidentified, of which 32004 clusters be-
longed to 1313 connected components containing only unidentified clusters. The remaining 129172
did not align to any other clusters.

The process described above demonstrates how clustering can help focus the analysis efforts
when dealing with large datasets. Computationally intensive searches might prove to be intractable
if performed on the entire body of unidentified spectra. However, using clustering we were able
to reduce the number of spectra that needed to be examined to approximately one million. This
reduction both allowed us to perform time-consuming “blind searches” in a reasonable time and
perform analysis using spectral networks [11] (after removing the unidentified singleton clusters),
which both added new peptide identifications and reduced the number of unassigned spectra that
remained to be investigated to 161176.

Our spectral network analysis leads to a surprisingly large estimate of the number of spectra
that remain unidentified even in advanced MS/MS database searches. One may ask a question
whether a large number of uninterpreted spectra forming our spectral networks is simply an arti-
fact of many spurious alignments between unrelated spectra. Figure 2 illustrates that it is not the
case by presenting the histogram of all mass offsets represented in spectral networks. Since spec-
tral alignment has no knowledge of biologically relevant modifications and masses of amino acids,
the histogram should not have any peaks in case the spectral networks are formed by spurious
alignments. The fact that the histogram has prominent peaks corresponding exactly to common
modifications and masses of amino acids proves that the spectral networks indeed reveal many
unidentified peptides. While Bandeira et al., 2007 [11] demonstrated that spectral networks enable



accurate peptide sequencing, de novo reconstruction of these peptides remains beyond the scope of
this paper and will be described elsewhere.

Clustering in conjunction with spectral networks facilitate the creation of spectral archives
that contain both identified and wunidentified spectra to complement the existing spectral library
approaches [1, 13, 10, 9, 8]. Clusters of spectra obtained from MS/MS datasets (both identified
and unidentified) are used to create spectral networks that can be stored in spectral archives.
The spectral archives aggregate results from many experiments, and possibly even contain results
from experiments done with closely related organisms. As results from new experiments become
available, they are aligned against the clusters in the existing spectral archives to gain additional
identifications both to the new data (by aligning the new results to existing annotated clusters),
and also to existing unidentified clusters in the spectral archive (by aligning them with annotated
clusters from the new results). As the spectral archives grow with the addition of data from more
and more experiments, the spectral networks may enable accurate de novo sequencing [14] of the
unidentified spectra in the archive. Our spectral network approach, for the first time, allows one
to estimate the number of peptides that remain unidentified in MS/MS searches. Since most edges
in our spectral networks represent common modifications and amino acid masses (see Figure 2) we
argue that the spectral network have a potential to reveal these peptides that evade even advanced
MS/MS searches.
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