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The ecotropic Cas-Br-E murine leukemia virus (MuLV) and its molecularly cloned derivative pBR-NE-8
MuLV are capable of inducing hind-limb paralysis and leukemia after inoculation into susceptible mice. T,
oligonucleotide fingerprinting, molecular hybridization, and restriction enzyme analysis previously showed
that the env gene of Cas-Br-E MuLV diverged the most from that of other ecotropic MuLVs. To analyze
proviruses in leukemic tissues, we derived DNA probes specific to Cas-Br-E sequences: two from the env region
and one from the U3 long terminal repeat. With these probes, we found that this virus induced clonal (or
oligoclonal) tumors and we documented the presence of typical mink cell focus-forming-type proviruses in
leukemic tissues and the possible presence of other recombinant MuLV proviruses. Since the region harboring
the determinant of paralysis was mapped within the pol-env region of the virus (L. DesGroseillers, M. Barrette,
and P. Jolicoeur, J. Virol. 52:356-363, 1984), we performed the complete nucleotide sequence of this region
covering the 3' end of the genome. We compared the deduced amino acid sequences of the pol carboxy-terminal
domain and of the env gene products with those of other nonparalytogenic, ecotropic, and mink cell
focus-forming MuLVs. This amino acid comparison revealed that this part of the pol gene product and the
pl5E diverged very little from homologous proteins of other MuLVs. However, the Cas-Br-E gp7O sequence
was found to be quite divergent from that of other MuLVs, and the amino acid changes were distributed all
along the protein. Therefore, gp7O remains the best candidate for harboring the determinant of paralysis.

The Cas-Br-E murine leukemia virus (MuLV) is an eco-
tropic retrovirus that was isolated from the brain of a
paralyzed wild mouse (Mus musculus) trapped in Lake
Casitas, Calif. (for a review, see references 16 and 17). It was
shown to induce a progressive form of hind-limb paralysis
and leukemia after inoculation into susceptible laboratory
mice (16). Initial studies on the molecular structure of the
Cas-Br-E MuLV genome revealed that its restriction map (5)
and its T1 oligonucleotide fingerprinting pattern (29) were
distinct from those of other ecotropic MuLVs isolated from
inbred strains of mice. However, its genome appeared
similar to the amphotropic MuLV genome except in the env
gene, in which they diverged the most (1, 5, 29). Amphotro-
pic MuLVs have also been isolated from wild mice, often
from the same mice from which neurotropic MuLVs were
isolated, and have been reported to be nonparalytogenic and
weakly leukemogenic (16, 18, 36). In an effort to understand
the molecular basis of the hind-limb paralysis, we first
cloned the genome of Cas-Br-E MuLV and showed that this
cloned virus, pBR-NE-8 MuLV, had retained the paralysis-
inducing and leukemogenic potential of the parental MuLV
(25). Using this cloned viral genome, we could subsequently
map the primary paralysis-inducing determinant of pBR-NE-
8 MuLV within a 3.9-kilobase-pair (kbp) pol-env fragment
(7). We also reported that its long terminal repeat (LTR)
region harbored sequences influencing the incidence and
clinical manifestation of the neurological disease (11). Later,
studying the leukemogenic potential of this virus, we found
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that several determinants of leukemia seemed to be distrib-
uted along its genome (24).
To monitor the fate of Cas-Br-E MuLV nucleic acids in

infected tissues and to analyze its proviruses in infiltrated
leukemic organs, we isolated probes which would not hy-
bridize to mouse endogenous viral sequences and which are
specific to Cas-Br-E MuLV sequences. Moreover, to get a
better understanding of the specific molecular alteration(s)
within the pol-env region that are responsible for the
paralytogenic phenotype of Cas-Br-E MuLV, we sequenced
the viral DNA fragment harboring the determinant of paral-
ysis. The present paper reports the identification and char-
acterization of Cas-Br-E MuLV-specific probes and the
DNA sequence of the 3' end of Cas-Br-E MuLV genome.

MATERIALS AND METHODS

Viral DNA clones. The structure and characterization of
the infectious viral DNA genome pBR-NE-8 were described
previously (25). The cloned viral genomes from amphotropic
4070-A (5), Moloney (11), BALB/c endogenous ecotropic
B-Cl-11 (8, 37), and BALB/c endogenous nonecotropic
BA-14 (38) MuLVs and from BL/VL3 V-13 (40) and G6T2 (40)
radiation leukemia viruses were described previously.

Construction of specific probes. The probe NE-8A, derived
from the env region of pBR-NE-8, corresponded to the
595-base-pair (bp) XbaI-BamHI fragment subcloned in the
Sp64 vector (Fig. 1). The probe NE-8B, also from the env
region of pBR-NE-8, corresponded to the 1,050-bp TaqI-
BamHI fragment subcloned in AccI-BamHI sites of the
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FIG. 1. Hybridization of various MuLV DNA genomes with
Cas-Br-E MuLV-specific probes. Equal amounts of cloned DNA of
Cas-Br-E (pBR-NE-8) (lane 1), ampho 4070-A (lane 2), Moloney
(lane 3), BALB/c endogenous B-Cl-11 (lane 4), and BALB/c endog-
enous nonecotropic (lane 5) MuLVs and of BL/VL3 V-13 (lane 6)
and G6T2 (lane 7) radiation leukemia viruses were digested with the
appropriate restriction endonucleases (to excise the full-length viral
genome from pBR322), fractionated by electrophoresis on a 1%
agarose gel in duplicate, and transferred by double transfer onto two
nitrocellulose membranes. The four membranes were then hybrid-
ized with 32P-labeled representative Cas-Br-E MuLV probe (A), or
NE-8A (B), NE-8B (C), or U3 LTR (D) Cas-Br-E MuLV probe. The
8.2- or 8.8-kbp fragments contain the full-length viral genomes. In
lane 6, the 7-kbp fragment contains pBR322 and cellular sequences
and the 12-kbp fragment contains V-13 viral and cellular sequences.
HindIll-digested DNA was used as marker (lane 8). Bottom. The
region of the viral genome from which these probes were derived.
Only relevant restriction sites are illustrated. Open boxes represent
the LTR. Restriction sites: B, BamHI; C, ClaI; Sc, Sacl; St, StuI;
T, TaqI, X, XbaI.

pEMBL18 vector (Fig. 1). The U3 LTR probe was con-
structed from a purified SacI-permuted LTR-containing
DNA fragment. The fragment was cleaved with Stul, and
EcoRI linkers were added by using T4 DNA ligase. After
ligation, the fragment was further cleaved with EcoRI and
Sacl, and the 280-bp EcoRI-SacI U3 fragment was
subcloned into the Sp64 vector (Fig. 1). To be used as a
probe, each DNA fragment was excised from the vector with
appropriate restriction endonucleases and purified by poly-
acrylamide (33) (U3 LTR fragment) or agarose (11) (frag-
ments NE-8A and NE-8B) gel electrophoresis prior to being
labeled and used for hybridization (7, 25).

Mice, tumors, and DNA extraction. AKR/J, DBA/2J,
C3H/HeJ, SWR/J, C58/J, and A/HeJ mice were obtained
from the Jackson Laboratory, Bar Harbor, Maine.
C57BL/Ka mice were initially obtained from H. S. Kaplan,
Stanford University, Stanford, Calif., and NIH Swiss mice
were obtained from the Small Animal Resources, National
Institutes of Health, Bethesda, Md. Newborn NIH Swiss
mice (<48 h old) were used for induction of tumors. They

were inoculated intraperitoneally with 0.15 ml of filtered
pBR-NE-8 virus suspension, as described previously (25).
DNA extraction of infiltrated leukemic organs or of mouse
livers was performed as described previously (39).
DNA sequence analysis. For DNA sequencing, the infec-

tious pBR-NE-8 DNA molecule, subcloned in pBR322, was
used (25). Appropriate restriction endonuclease fragments
were treated with alkaline phosphatase (Boehringer Mann-
heim Biochemicals, Montreal, Canada) and labeled at the 5'
end with 600 ,uCi of [y-32P]ATP (3,000 Ci/mmol; New
England Nuclear Corp., Boston, Mass.) and 20 U of poly-
nucleotide kinase (Bethesda Research Laboratories, Gaith-
ersburg, Md.) as already described (33, 40). The same
fragments were also labeled by filling out the 3' ends with 50
,uCi of the appropriate a-32P-labeled deoxynucleoside tri-
phosphate (3,000 Ci/mmol; New England Nuclear) and 5 U
of the Klenow fragment of DNA polymerase 1 (40). The
reaction was carried out in the restriction enzyme buffer,
supplemented with 10 mM dithiothreitol, for 20 min at 20°C.
End-labeled DNA fragments were further cleaved with ap-
propriate restriction endonucleases and then isolated by
electrophoresis on a 5% polyacrylamide gel (33). The nucle-
otide sequence was determined by the procedure of Maxam
and Gilbert (33). Nucleotide sequences were analyzed with a
VAX 11-750 computer and programs developed by
Mamdouh Mikhail from our Institute and the DB program of
Roger Staden (Medical Research Cambridge Center).

Hybridization procedure. Cellular DNA fragments trans-
ferred to nitrocellulose membranes were detected by hybrid-
ization with 32P-labeled DNA fragments subcloned from
pBR-NE-8 DNA (25, 46). Probes were labeled by nick
translation as described previously (41). After being an-
nealed (50% formamide, 3x SSC [lx SSC is 0.15 M NaCl
plus 0.015 M sodium citrate], Denhardt solution) at 42°C,
filters were washed sequentially in 2 x SSC for 20 min at
room temperature, in 0.1x SSC-0.1% sodium dodecyl sul-
fate for 1 h at 60°C, and then in 0.1x SSC for 2 min at room
temperature. Membranes were then dried and exposed at
-70°C to RP Royal X-Omat film (Eastman Kodak Co.,
Rochester, N.Y.) with a Cronex Lightning Plus intensifying
screen (Du Pont Co., Wilmington, Del.).

RESULTS

Isolation and characterization of env-specific probes from
Cas-Br-E MuLV. Probes specific for the env portion ofAKR
ecotropic endogenous MuLV were derived previously (20,
21). Because of the presence of numerous endogenous
retroviral sequences in the mouse genome, these probes
have been instrumental in the study of different aspects of
the cycle of these ecotropic MuLVs, both in normal and
malignant cells. Despite the fact that the neurotropic Cas-
Br-E MuLV (or its molecularly cloned derivative pBR-NE-
8) is an ecotropic MuLV, its genome does not hybridize
significantly at high stringency with gp7O-related AKV-3 or
with plSE-related AKV-5 or AKV-6 probes derived from the
endogenous AKR ecotropic MuLV genome (20, 21; our
unpublished results), and these probes could not be used to
detect Cas-Br-E MuLV sequences. Therefore, to determine
the origin of the gp7O neurotropic sequences and to detect
neurotropic env mRNA or DNA sequences without detect-
ing other homologous sequences from the endogenous
mouse viral sequences, we derived probes specific for pBR-
NE-8 MuLV env sequences.
The 3' end 3.9-kbp SalI-ClaI fragment was first cleaved

with Sau3A, and the resulting fragments were subcloned at
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FIG. 2. Hybridization analysis of DNA from d

strains with Cas-Br-E MuLV-derived probes. Liv
AIHeJ (lane 1), C58/J (lane 2), AKRIJ (lane 3), DI
C3H/HeJ (lane 5), SWR/J (lane 6), C57BL/Ka (lane

(lane 8) mouse DNA and control DNA from a Ca

induced tumor in an NIH Swiss mouse (lane 9) wer
EcoRI, phenol extracted, and fractionated by electi
1% agarose gel. Fragments were transferred to a
membrane and hybridized with 32P-labeled U3 LTR
(B) Cas-Br-E MuLV probes.

the BamHI site of pBR322. Each subclone i

tested for its inability to hybridize to a varic
DNA genomes. Four clones with this charac
identified. They were all clustered within tv
pBR-NE-8 MuLV DNA, one at the 5' end at
middle of gp7O-coding sequences (data not shoN
set of probes, we could subsequently derive I

specific to pBR-NE-8 MuLV DNA and of a le
for standard hybridization conditions.
The probes NE-8A and NE-8B were derived

region and corresponded to the 595-bp Xbal
1,050-bp TaqI-BamHI fragment, respectively (
both hybridized exclusively to homologous pB1
at high stringency and not to any other MuLV I
tested, namely amphotropic, Moloney, BALB/i
ecotropic and nonecotropic MuLVs, or radial
viruses (Fig. 1B and C). Probe NE-8B did not
any fragment of normal mouse DNA (
C57BL/Ka, SIM.R, C3H/HeJ, SWR/J, C58/J,
2/J, or AKR/J) digested with EcoRI, although i
detect the virus-specific fragments in DNA
induced in an NIH Swiss mouse by pBR-NE-E
2B). These results indicated that these env sequ
were unique to pBR-NE-8 MuLV, were not de
endogenous retroviral sequence present in the,,
Not surprisingly, sequencing of this region re'
homology with corresponding sequences from i

(see below).
Isolation and characterization of U3 LTR-s

from Cas-Br-E MuLV. The U3 LTR region of e
unique and has been shown to determine the ti
disease (3, 4, 9, 11) specificity of these viruse:
the presence of numerous endogenous LTR
mouse genome, specific U3 LTR probes ar(
detect newly acquired LTR-containing fragme
DNA after infection. Using this LTR region,
probe specific to the Cas-Br-E MuLV U3 LT]
corresponds to the 280-bp StuI-SacI fragmen

high stringency, it hybridized to homologous pBR-NE-8
5 6 7 8 9 MuLV DNA, as expected, but also to amphotropic 4070-A

and Moloney MuLV DNAs (Fig. 1D). Comparison of pBR-
, NE-8 (see Fig. 7), amphotropic 4070-A (R. Friedrich, per-

sonal communication), and Moloney (45) LTR nucleotide
sequences revealed indeed a high degree of homology among
these sequences. The amphotropic 4070-A and pBR-NE-8
sequences differed by only seven point mutations. The U3
LTR probe did not hybridize to the other viral genomes
tested (BALB/c endogenous ecotropic and nonecotropic
MuLVs and radiation leukemia viruses (Fig. 1D) or to any
EcoRI fragment from NIH Swiss, C57BL/Ka, SIM.R,
C3H/HeJ, SWR/J, C58/J, A/HeJ, DBA2/J, or AKR/J mouse
DNAs but detected the virus-specific fragments in DNA of a
tumor induced in an NIH Swiss mouse by pBR-NE-8 MuLV
(Fig. 2A). Again, these results indicated that the U3 LTR
region of Cas-Br-E MuLV was not derived from a specific

lifferent mouse class of endogenous viral sequences present in inbred strains
ver DNA from of laboratory mouse and suggested that Cas-Br-E and am-
A (lane 4,R photropic 4070-A MuLVs might have a common origin.

s-Br-E MuLV- Studies of Cas-Br-E MuLV-induced tumor DNAs with env-
e digested with and U3 LTR-specific probes. The Cas-Br-E MuLV and its
rophoresis on a molecularly cloned derivative pBR-NE-8 MuLV induce
l nitrocellulose hind-limb paralysis and leukemia in mice (25). Mink cell
(A) or NE-8B focus-forming (MCF) MuLVs have been isolated from leu-

kemic spleens of Cas-Br-E MuLV-inoculated mice but not
from the brains of these mice (22). Little is known about the
molecular structure of these MCF viruses. Previous studies

obtained was showed that several such recombinants are generated after
ety of MuLV inoculation of different strains of MuLVs into mice (13, 20).
cteristic were The MCF MuLVs have acquired a new env gene, and some
vo regions of have retained the LTR from the inoculated MuLV (13).
nd one in the Utilization of various ecotropic MuLV-specific probes has
wn). With this revealed the general structure of these MCF proviruses in
longer probes the AKR system (20). With the availability of env and LTR
-ngth suitable pBR-NE-8 MuLV-specific probes which do not hybridize to

endogenous viral fragments, we could study the general
Ifrom the env structure of the proviruses in pBR-NE-8 MuLV-induced
I-BamHI and leukemic DNAs.
(Fig. 1). They Some of these tumor DNAs were digested with restriction
R-NE-8 DNA endonucleases and hybridized with the three specific probes.
DNA genome env probe NE-8A detected few well-defined EcoRI frag-
'cendogenous ments in each tumor, suggesting that they were clonal or
tion leukemia oligoclonal, and the hybridization pattern was unique for
t hybridize to each tumor (Fig. 3B). Most of the EcoRI fragments hybrid-
NIH Swiss, izing with probe NE-8A were larger than 9 kbp. Most of the
A/HeJ, DBA fragments detected with the longer env NE-8B probe were

it could easily the same as those detected with probe NE-8A (data not
i of a tumor shown). Because EcoRI does not cleave the genome of the
B MuLV (Fig. inoculated pBR-NE-8 MuLV, this result suggested that
iences, which probe NE-8A was detecting mainly the integrated full-length
rived from an genome of the inoculated pBR-NE-8 MuLV. The fragments
strains tested. detected with probe NE-8A also hybridized with U3 LTR
vealed a poor probe, but in each tumor DNA, this U3 LTR probe detected
other MuLVs several additional EcoRI fragments ranging from 2 to 20 kbp

(Fig. 3A), indicating the presence of several additional newly
specific probe acquired integrated viral genomes in each tumor. Taken
-ach MuLV is together, these results are reminiscent of the data obtained
issue (10) and with ecotropic MuLV-specific probes in tumor DNAs known
s. Because of to contain MCF MuLV proviruses derived from other eco-
copies in the tropic MuLVs (20).
e required to Our results can best be interpreted by the presence of a
-nts in mouse mixture of pBR-NE-8 and MCF proviruses (derived from
we derived a pBR-NE-8 MuLV) in these tumor DNAs. Probe NE-8A,
R. The probe which maps within the recombination region of MCF, would
It (Fig. 1). At detect almost exclusively ecotropic parental pBR-NE-8 pro-

J. VIROL.
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FIG. 3. EcoRI analysis of proviruses in Cas-Br-E MuLV-
induced tumors. DNAs (15 ,ug) from leukemic organs were ex-
tracted, digested with EcoRI, and fractionated by electrophoresis on
a 1% agarose gel. DNA fragments were transferred to a nitrocellu-
lose membrane and hybridized with 32P-labeled U3 LTR (A) or
NE-8A (B) Cas-Br-E MuLV probes. Lanes: 1, control NIH Swiss
liver DNA; 2, tumor N006 DNA; 3, tumor N007 DNA; 4, tumor
N012 DNA; 5, tumor 1284-11 DNA; 6, tumor N011 DNA; 7, tumor
N010 DNA.

viruses on fragments longer than 9 kbp (because this viral
genome is not cleaved by EcoRI) and would not detect MCF
proviruses (because of its lack of homology to the MCF
sequences). Most MCF proviruses studied to date seem to
harbor an EcoRI site at position 6.9 on the viral genome. If
MCF proviruses are present in these DNAs, they most likely
harbor an EcoRI site within their genome. EcoRI cleavage
within each of these putative MCF MuLV genomes would
generate two LTR-containing fragments hybridizing with U3
LTR probe. This could explain the numerous bands, some of
smaller molecular weight, detected with this probe and
undetectable with the env probes NE-8A or NE-8B, the env
sequences having probably undergone recombination. The
other interpretation of our finding of small (<9 kbp) EcoRI
fragments hybridizing with U3 LTR probe would be to
postulate the presence of several defective pBR-NE-8
MuLV proviruses that had retained their LTR regions.
However, the presence of deleted proviruses is rare in
MuLV system, and in the systems in which all proviruses of
a single tumor have been cloned, such deleted proviruses
have not been observed frequently (our unpublished obser-
vations).
To distinguish between the two possibilities, we digested

the same tumor DNAs with EcoRI-SacI and hybridized them
with the U3 LTR probe. IfMCF proviruses of the same type
as those previously described were present in tumor DNAs,
this probe should hybridize to a 1.7-kbp 3' end EcoRI-SacI
fragment (position 6.9 to 8.6) (Fig. 4). The results of this
experiment are presented in Fig. 4A. As expected, in each
tumor, the U3 LTR probe hybridized to an amplified 4.7-kbp
Sacl fragment generated from ecotropic pBR-NE-8 MuLV
proviruses, confirming the presence of ecotropic MuLV
proviruses in each tumor. In three of four tumor DNAs
shown, a relatively intense comigrating 1.7-kbp EcoRI-SacI
fragment could also be detected, suggesting the presence of
recombinant MuLVs of the MCF type in these tumors. The
absence of a similar fragment in other tumors indicated the

absence of proviruses of the same class in these tumors and
suggested that MCF MuLV proviruses in these tumors, if
present, have a different restriction endonuclease cleavage
map or different fragment lengths, or both. The numerous
other hybridizing fragments presumably represent the 5'-end
cell-virus junction fragments. Hybridization of the same
filter with the env probe NE-8B revealed the same amplified
4.7-kbp SacI fragment generated from ecotropic pBR-NE-8
MuLV proviruses in all four tumors shown (Fig. 4B) and in
eight additional tumors tested (data not shown). In some
tumor DNAs, additional fragments of different lengths were
also detected. These results are compatible with the pres-
ence of ecotropic and MCF-type recombinant proviruses in
each tumor.

Nucleotide sequence of pBR-NE-8 DNA region harboring
the determinant of paralysis. By constructing chimeric vi-
ruses whose genomes were derived from parental neuro-
tropic paralytogenic Cas-Br-E MuLV (pBR-NE-8 MuLV)
and from nonneurotropic, nonparalytogenic amphotropic
4070A MuLV, we previously found that the determinant of
paralysis resided within the 3.9-kbp SalI-ClaI pol-env frag-
ment of pBR-NE-8 MuLV (7). More recently, using the same
approach, we found that the determinant resided within a
shorter 2.3-kbp XbaI-ClaI fragment (P. Savard, E. Rassart,
and P. Jolicoeur, unpublished results). This fragment en-
codes the end ofpol and all of env (see Fig. 7). To determine
the molecular basis of this biological characteristic and to
construct finer chimeric MuLV viruses, we sequenced this
viral DNA region. The sequence was determined by the
Maxam and Gilbert procedure (33), and the sequencing

w
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FIG. 4. EcoI-SacI analysis of proviruses in Cas-Br-E MuLV-
induced tumors. DNAs from leukemic organs were digested with
EcoRI and Sacl and fractionated by electrophoresis on a 1% agarose
gel. DNA fragments were transferred to a nitrocellulose membrane
and hybridized with 32P-labeled U3 LTR (A) or NE-8B (B) Cas-Br-E
MuLV probes. Lanes: 1, control NIH Swiss liver DNA; 2, Cas-Br-E
MuLV-infected NIH 3T3 cell DNA; 3, tumor N012 DNA; 4, tumor
1284-11 DNA; 5, tumor N011 DNA; 6, tumor N009 DNA. HindIll-
digested X DNA was used as marker (lane 7). (C) Partial restriction
map of Cas-Br-E MuLV genome, showing the size of the expected
ecotropic MuLV-specific fragments and the position of the EcoRI
site in putative MCF-type recombinants of Cas-BR-E MuLV. Open
boxes, LTR. Numbers are lengths in kilobase pairs. Restriction
sites: R, EcoRI; Sc, Sacl.
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strategy is illustrated in Fig. 5. For the nucleotide sequence
and the deduced amino acid sequence of the pBR-NE-8
pol-env region, see Fig. 7. The positions of the stop codons
in the three possible reading frames are shown in Fig. 6.
The first long open reading frame encountered represents

the carboxyterminus of the pol gene, which terminates at
position 847 (Fig. 7). A comparison of the deduced pBR-NE-
8 pol amino acid sequence with that of the corresponding
sequence of the nonparalytogenic Moloney MuLV (45) re-
vealed the complete identity of the 216 amino acids following
the HindIll site (residues 28 to 243 in Fig. 8; nucleotides 82
to 730 in Fig. 7), indicating that this pol region does not
harbor the determinant of paralysis. However, more varia-
tion was observed within the last 41 amino acids of the pol
gene and 14 differences were found between the pBR-NE-8
and Moloney MuLV sequences. This pol region was previ-
ously reported to be polymorphic among different strains of
MuLVs such as AKV and Moloney MuLVs (19, 45).
The second long open reading frame present in the se-

quenced region corresponds to the env gene (Fig. 6). Previ-
ous studies with other retroviruses showed that the env gene
of murine retroviruses is transcribed as a spliced mRNA (15,
43). Shinnick et al. (45) noticed a putative splice acceptor
site (CACTTACAG) in Moloney MuLV, 276 bp upstream
from the env precursor amino terminus. However, the splice
acceptor site could be CTCTCCAAG (2), a sequence 11 bp
upstream from the splice acceptor site described by Shinnick
et al. (45). Since both of these sequences are present in
pBR-NE-8 DNA, at the same location (positions 504 and
515; Fig. 7) as in Moloney MuLV, we postulate a similar
splicing mechanism for the neurotropic pBR-NE-8 env
mRNA as the one present in Moloney MuLV. The spliced
env mRNA translation product of various MuLVs was found
to be a precursor polyprotein of about 80,000 daltons (Pr
gp80) (14, 26, 34). Removal of a leader peptide from Pr gp80
generates gp8O, which is further cleaved into two polypep-
tides, gp70 and Prpl5E. Prpl5E is further processed into
pl2E (47, 48).
As expected, the overall structure of the deduced env gene

product of pBR-NE-8 MuLV is similar to that of other
MuLV env gene products (Fig. 7 and 9). The first putative
initiator ATG codon of the pBR-NE-8 env gene is at position
789, and the reading frame continues without interruption

pBR-NE-8

0 2 4 6 8 Kbp
H F-ENV-I

L GAG I -_ POL I

K

H X Xm T S SX B BZBK x C PiScS
_ 1 I I I I I I I r1

5.8 6.5 7.58.1'i5

I Kbp

FIG. 5. Strategy for sequencing the 3' end region of Cas-Br-E
MuLV. The LTRs are represented as open boxes. The arrows
indicate DNA regions sequenced from the restriction site. In most
regions, both strands were sequenced. Restriction sites: B, BamHI;
BI, BglI; BII, BgIII; C, ClaI; H, HindIII; K, KpnI; P, PstI; PII,
PvuII; S, SmaI; Sc, Sacl; T, TaqI; X, XbaI; Xm, XmaIII.

H C LTR

'WIIIVIlfIIIENV _
. .POL llllln T l T 111

1111I II 1 Il. I l II 11 II IN il I
500

0 500 K00 1500 2000 2500 bp

FIG. 6. Distribution of the termination codons present in the
three reading frames of the + strand of the 3' end of the Cas-Br-E
MuLV genome. The HindIlI (H) and ClaI (C) restriction sites are
indicated.

until position 2773, 44 bp upstream from the LTR. This open
reading frame overlaps with the end of the pol gene, as
already found for other MuLVs (19, 45), and represents most
likely the precursor polyprotein of the env gene (Pr gp8O).
No other methionine codon is found upstream of position
789 in the same reading frame. Since the direct amino acid
sequencing of pBR-NE-8 gp7O has not been done, we cannot
determine the amino terminus of gp7O from our DNA se-
quence. Moloney (35), Rauscher (44), and Friend (6, 31)
MuLV gp7O proteins have been found to start with an
alanine residue (Fig. 9), but AKV (30) MuLV gp7O protein
was found to harbor a valine residue at the same position.
The amino acid homology between pBR-NE-8 and other
MuLVs in this region is too poor (Fig. 9) to allow speculation
on the first residue of gp7O from Cas-Br-E MuLV.
The carboxy terminus of pBR-NE-8 gp7O is probably

located just before the amino terminus of pl5E, which is a
glutamic acid residue in all MuLVs sequenced to date
(nucleotide 2185; Fig. 7) (35). The Prpl5E in Moloney MuLV
is processed into pl2E by cleavage of the last 17 amino acids
at the carboxy terminus (30, 45) from the leucine residue at
position 686 (Fig. 9). Since pBR-NE-8 MuLV Prpl5E has the
same length as that of Moloney MuLV and is identical to it
in this cleavage region (Fig. 9), we postulate that a 17-amino-
acid peptide is cleaved off pBR-NE-8 MuLV Prpl5E for
maturation into pl2E, as in Moloney MuLV (45).
Comparison of the env amino acid sequence of pBR-NE-8

MuLV with that of other MuLVs. The neurotropic Cas-Br-E
MuLV, or its molecularly cloned derivative pBR-NE-8
MuLV, has the unique property of inducing paralysis. Since
this determinant resides within the sequenced pol-env region
(7), a direct comparison of pBR-NE-8 env sequences with
the corresponding sequences of other nonparalytogenic
MuLVs could be of interest. Such a comparison of the amino
acid env sequences of ecotropic pBR-NE-8, Moloney, AKV,
and Friend MuLVs and of MCF-247 MuLV is shown in Fig.
9.
The region of pBR-NE-8 MuLV Pr gp8O corresponding to

the leader sequences (positions 1 to 32; Fig. 9) is very
different from that of other MuLVs, although it has con-
served a highly hydrophobic content that is typical of
membrane precursor protein (12). It is more related to the
MCF-247 than to other MuLV leader sequences. However,
the amino acid sequence of this peptide of each MuLV is
highly polymorphic, and the significance of these variations
remains to be elucidated.
The amino acid sequence of pBR-NE-8 MuLV gp7O has

conserved all the cysteine residues and might have a similar
conformation to those of other MuLV gp7O proteins. How-
ever, its sequence is unique and shows several differences
from other gp7O MuLV sequences. These amino acid differ-
ences are distributed along the gp7O molecule. They appear
to be clustered in small domains of the molecule, such as at
positions 58 to 60, 97 to 102, 114 to 119, 146 to 154, 174 to
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FIG. 7. Nucleotide sequence of the 3A end of the Cas-Br-E MuLV genome. The deduced amino acid sequence of the pol and env gene
products is shown above the nucleotide sequence. Some restriction sites and the potential env mRNA splice acceptor sequences are indicated.
Symbols: ***A termination codon of pol and env gene products; arrows, beginning of env, of the Prpl5E protein, and of the different LTR
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177, 244 to 249, 360 to 369, 391 to 398, and 436 to 442, and in
one larger domain (positions 299 to 345) (Fig. 9). The high
proline content seen between positions 285 and 341 is
conserved, although the pBR-NE-8 sequence is significantly
different from the other sequences.
The gp70 proteins of retroviruses are known to be

glycosylated (42). Glycosylation occurs on asparagine resi-
dues in sequences Asn-X-Thr and Asn-X-Ser (32). Figure 9
shows seven potential glycosylation sites in the pBR-NE-8
MuLV gp7O molecule. Four of these sites are common with
those of ecotropic and MCF MuLVs. One site is present
only in gp70 from ecotropic MuLVs (position 207), and one
site is unique to pBR-NE-8 MuLV gp7O (position 194).
Another site is absent only in pBR-NE-8 MuLV gp7O (posi-
tion 396). Therefore, two different putative glycosylation
sites (positions 194 and 396) distinguish the gp7O of pBR-
NE-8 MuLV from those of other MuLVs.
The Prpl5E pBR-NE-8 MuLV amino acid sequence is

very similar to the corresponding sequence from other
MuLVs (Fig. 9), suggesting that this protein is not likely to
harbor the determinant of paralysis.

DISCUSSION

The Cas-Br-E MuLV, or its molecularly cloned derivative
pBR-NE-8 MuLV, is a bipotential pathogenic retrovirus,
having the ability to induce hind-limb paralysis and leukemia
in inoculated mice (7). By restriction endonuclease analysis
and T1 oligonucleotide fingerprinting, its genome was previ-
ously shown to be distinct from the genome of other murine
retroviruses, most notably in the env region (5, 7, 29). We
have exploited these nucleic acid differences to derive
probes specific to the Cas-Br-E MuLV genome. At high
stringency, the env-specific probes did not hybridize to any
of the MuLV genomes tested, while the U3 LTR-specific
probe hybridized also, but to a lower extent, to the ampho-
tropic (4070-A) and Moloney MuLV genomes. None of them
hybridized to EcoRI fragments of mouse genomic DNA.
These probes will be useful tools in the study of the virus
cycle and in the detection of Cas-Br-E MuLV nucleic acids
in brains of paralyzed mice or in infiltrated tissues of
leukemic mice, since they will not detect endogenous retro-
viral sequences. We have started to exploit their uniqueness
to detect proviruses in pBR-NE-8 MuLV-induced tumors.
We found that all these tumors appeared clonal (or
oligoclonal), like most tumors induced by MuLVs. More-
over, we could document the presence of typical MCF-type
MuLV proviruses in leukemic tissues and possibly the
presence of other recombinant MuLV proviruses whose
structure seemed different from those of MCF MuLVs.
Further studies on the structure of these proviruses require
their molecular cloning in a procaryotic vector. The U3
LTR-specific probe will be quite adequate for this task.
To better understand the molecular nature of the paraly-

sis-inducing potential of this virus, we sequenced the 3' end
region of the genome (from the Hindlll site to the LTR),
which is known to include the determinant of paralysis. We
have indeed recently found that a chimeric virus harboring
the XbaI-ClaI fragment (nucleotides 347 to 2675 in Fig. 7) of
pBR-NE-8 MuLV and all other regions of the nonparalyto-
genic amphotropic 4070-A MuLV could induce paralysis
(Savard, et al., unpublished experiments). The result with
this chimeric virus, in addition to the information obtained
by the present sequencing work and the possibility of
deducing the amino acid sequence, has allowed us to map
the determinant of paralysis within a shorter region of the

pBR-NE-8 IDFTEVKPRLYGYKYLLVFVDTFSGWIEAFPTKKETAKVVTKKLLEEIFP
MOL-ECO .......G.I.
AKV-ECO. G.V....RR S .
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FIG. 8. Alignment of the amino acid sequence of the carboxy
terminus of the pol gene of Cas-Br-E MuLV with comparable
sequences of ecotropic MuLVs. The amino acid sequence deduced
from the nucleotide sequence of Cas-Br-E MuLV pol gene was
compared with the homologous sequences of Moloney (45) (MOL-
ECO) and AKR (19) (AKV-ECO) MuLVs. The standard one-letter
abbreviations of amino acids were used. Symbols: dots, amino acid
identities with the top sequence from pBR-NE-8 (Cas-Br-E) MuLV;
dashes, an amino acid gap; *, termination codon; numbers, relative
position of amino acids counting the gaps introduced to align the
sequences. The HindlIl (H), XbaI (X), and TaqI (T) sites corre-
spond, respectively, to positions 27, 116, and 280.

genome by excluding much of the pol gene. Indeed, we
found a complete identity of the amino acids (residues 28 to
243 in Fig. 8 and nucleotides 82 to 730 in Fig. 7) encoded by
the Cas-Br-E and Moloney MuLV pol genes. Since Moloney
MuLV is nonparalytogenic, the determinant of paralysis
must reside within the 1,945-bp fragment delineated by
residue 243 (nucleotide 730) at the end of the pol gene and by
the ClaI site (nucleotide 2675) at the end of Prpl5E. It
therefore appears that the env gene is an excellent candidate
for harboring the determinant of paralysis, but the numerous
amino acid substitutions seen in the protein encoded by this
region as compared with the corresponding sequences from
other nonparalytogenic MuLVs preclude the mapping of the
determinant of paralysis more precisely. Within the env
gene, the encoded Prpl5E from Cas-Br-E MuLV is unlikely
to carry the determinant of paralysis, since its sequence
diverged very little from that of Prpl5E of other
nonparalytogenic MuLVs. However, several domains within
Cas-Br-E gp7O have diverged significantly from sequences of
other nonparalytogenic MuLVs, and any one of them could
harbor the determinant of paralysis. The neurotropism of the
Cas-Br-E MuLV could be caused by its ability to recognize
new cellular receptor(s) and consequently infect new types
of cells, notably brain cells. Alternatively, other domains of
Cas-Br-E gp7O, not responsible for receptor recognition,
could be involved in paralysis.

Recently, Yuen et al. (49), studying a temperature-
sensitive mutant of Moloney MuLV which induces hind-limb
paralysis, also mapped the determinant of paralysis within a
1.6-kbp HindIII-BamHI fragment spanning the end of pol
and the beginning of gp7O. If the molecular nature of the
defect leading to paralysis by each virus is identical, it would
indicate that the sequences responsible for paralysis map
within the 820-bp fragment delineated by residue 243 (nucle-
otide 730) at the end of the pol gene (Fig. 7), as we found,
and by the BamHI site which would be present at a site
equivalent to nucleotide 1550 in our sequence (Fig. 7), as
found by Yuen et al. However, it is conceivable that the
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FIG. 9. Alignment of the amino acid sequence of the env gene of Cas-Br-E MuLV with comparable sequences of ecotropic and MCF
MuLVs. The amino acid sequence deduced from the nucleotide sequence of Cas-Br-E MuLV env gene was compared with the homologous
sequences of Moloney (45) (MOL-ECO), AKR (19, 30) (AKV-ECO), Friend (28) (FR-ECO), and MCF-247 (23, 27) MuLVs. The standard
one-letter abbreviations of amino acids were used. Symbols: dots, amino acid identities with the top sequence of pBR-NE-8 (Cas-Br-E)
MuLV; dashes, one amino acid gap per dash; *, termination codon; open rectangles, potential glycosylation sites; arrows, cysteine residues;
numbers, relative position of amino acids counting the gaps introduced to align the sequences; vertical lines at positions 34 to 37, amino
terminus of gp7O for each MuLV strain.

determinant of paralysis maps at different locations within of paralyzed wild mice trapped in Lake Casitas, Calif. (16,
these two viruses, since the temperature-sensitive Moloney 17). Amphotropic nonparalytogenic MuLVs were also iso-
MuLV also showed an important defect of maturation of the lated from the same animals (16-18, 36). Our present data
env polyprotein Pr gp8O (49), which was not seen with shed some light on the molecular origin of this neurotropic
Cas-Br-E MuLV (22). The construction of chimeric MuLV MuLV. The availability of env probes, which encompass a
genomes harboring smaller regions from the paralytogenic large portion of the region known to harbor the determinant
parental genome should yield to the more precise mapping of of paralysis and which do not hybridize to any of the other
this determinant. viral genomes tested, has allowed us to test whether these

Origin of Cas-Br-E MuLV. The Cas-Br-E MuLV and other sequences are derived from endogenous mouse sequences.
similar paralytogenic MuLVs were isolated from the brains Our data are very clear regarding this point, and we could
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not detect any fragment hybridizing with these Cas-Br-E
MuLV env probes in several mouse strain DNAs tested,
suggesting that these env sequences are not part of the
normal genome of M. musculus. Therefore, these
neurotropic env sequences are unlikely to have been cap-
tured by recombination with endogenous mouse sequences,
unless such sequences are present in the genome of some
wild mice. These paralytogenic viruses have probably
emerged by successive additions of point mutations, small
insertions, and deletions within the pol-env region of the
molecule. Interestingly, the U3 LTR regions of Cas-Br-E
(Fig. 7) and amphotropic (R. Friedrich, personal communi-
cation) MuLVs are very homologous, suggesting a common
origin for these viruses. The initial isolation of these two
classes of MuLVs in the same mouse already suggested this
common origin. It is conceivable that the Cas-Br-E leuke-
mogenic and paralytogenic MuLV emerged from the
nonparalytogenic amphotropic MuLV.

Sequencing of the 3' end pol region from Cas-Br-E MuLV
revealed complete identity of 216 residues of the deduced
amino acid sequences (residues 28 to 243 in Fig. 8) with that
of Moloney MuLV. This conservation is remarkable, since
the same sequences from endogenous AKR (19) and
Moloney (45) MuLVs do not share this homology and are
more divergent. This observation tends to support the hy-
pothesis of a common origin for Cas-Br-E and Moloney
MuLVs. The conservation of few restriction sites on both
genomes (PstI at position 1.2, HindIIl at 5.3, XbaI at 5.8,
SmaI at 6.5, KpnI at 7.5, ClaI at 8.1, and within the LTRs,
PvuII and SacI) that were never present in the several
endogenous viral genomes isolated from different mouse
strains also favors a common origin for these two viruses.
Then, both the leukemogenic Moloney and paralytogenic
Cas-Br-E MuLVs could have emerged from nonparalyto-
genic amphotropic MuLVs. The amphotropic MuLV ap-
pears to be present in the population of wild mice as an
exogenous retrovirus, since its genome was previously
found to be absent from the normal mouse genome (1). Our
data tend to confirm these findings. Indeed, the pBR-NE-8
MuLV U3 LTR probe (Stul-SacI fragment), whose se-
quence is identical, except for five nonclustered point muta-
tions, to the corresponding U3 LTR sequences from ampho-
tropic MuLV (Friedrich, personal communication), could
not detect homologous endogenous viral sequences at high
stringency (Fig. 2). It appears that amphotropic MuLV, the
putative progenitor of Cas-Br-E MuLV, is not endogenous
to M. musculus. Its origin remains unknown. It could have
originated from another species and established itself in
some wild mice. Alternatively, an endogenous provirus
could have sustained multiple genetic alterations and
evolved to the point of appearing as an exogenous genome.
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