Creation of a Broad-Range and Highly Stereoselective D-Amino Acid Dehydrogenase for the One-Step Synthesis of D-Amino Acids

Kavitha Vedha-Peters, Manjula Gunawardana, J. David Rozzell, and Scott J. Novick*

BioCatalytics, Inc., 129 North Hill Avenue, Suite 103, Pasadena, CA 91106

Supporting Information

The following table contains the chromatography conditions used to analyzed the enantioselectivity of the mutant D-amino acid dehydrogenase (BC621).

D-Amino acid product	Column	Retention time (min)	Method
D-Alanine (D-2-aminopropionate)	Т	L: 8.3 D: 9.6	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-2-Aminobutyrate	T	L: 8.8 D: 9.9	20% acetonitrile 80% water (0.2% TEAA, pH 3.8)
D-Norvaline (D-2-aminopentanoate)	R	L: 7.5 D: 11.2	20% acetonitrile 80% water (0.2% TEAA, pH 3.8)
D-Norleucine (D-2-aminohexanoate)	T	L: 8.7 D: 17.1	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-2-Aminoheptanoate	T	L: 9.7 D: 17.3	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-2-Aminooctanoate	T	L: 11.5 D: 21.3	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-Valine	T	L: 9.37 D: 10.5	20% acetonitrile 80% water (0.2% TEAA, pH 3.8)
D-Isoleucine	T	L: 7.8 D: 12.5	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-Leucine	T	L: 11.0 D: 13.5	20% acetonitrile 80% water (0.2% TEAA, pH 3.8)
D-Cyclopentylglycine	T	L: 9.3 D: 13.2	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-Cyclohexylalanine	T	L: 7.9 D: 8.9	50% methanol 50% water (0.1% each TEA, acetic acid)
D-Methionine	T	L: 8.2 D: 17.0	40% methanol 60% water (0.2% TEAA, pH 3.8)
D-Phenylalanine	Т	L: 5.6 D: 7.3	80% methanol 20% water (0.2% TEAA, pH 3.8)
D-Tyrosine	T	L: 5.1 D: 6.3	80% methanol 20% water (0.2% TEAA, pH 3.8)
D-4-Fluorophenylalanine	T	L: 5.4 D: 6.7	80% methanol 20% water (0.2% TEAA, pH 3.8)
D-4-Chlorophenylalanine	T	L: 5.7 D: 7.2	80% methanol 20% water (0.2% TEAA, pH 3.8)

Notes:

- T: Chirobiotic T (Astec, Inc.), 250 x 4.6 mm, 5 μ m particle size
- R: Chirobiotic R (Astec, Inc.), 250 x 4.6 mm, 5 μm particle size
 The flow rate was 1 ml/min in all cases and all runs were performed isocratic conditions.

- TEAA was made by adding triethylamine to water at the given concentration and adjusting to the given pH with acetic acid.
- All amino acid, except for the aromatic amino one, were labeled with FMOC for UV visualization at 265 nm. The aromatic amino acids were observed directly at 254 nm.