Supporting Information

For

"Synthesis and Thermodynamic Studies of Oligodeoxynucleotides Containing Tandem Lesions of Thymidine Glycol and 8-oxo-2'-Deoxyguanosine" by

Yuesong Wang and Yinsheng Wang

(Chem. Res. Toxicol., 2006, Vol. 19)

Table of Contents

1. Experimental procedures for the synthesis of the phosphoramidite building block of 8-

oxodG.

2. ¹H- and ³¹P-NMR spectra.

3. HPLC traces for the separation of synthesized ODNs.

4. ESI-MS & ESI-MS/MS characterization of synthesized ODNs containing Tg or 8-

oxodG. 5. Thermodynamic studies of unmodified and single base lesion-bearing duplex ODNs.

List of Figures in the Supporting Information

Scheme S1. Synthesis of phosphoramidite building block of 8-oxodG.

Figure S1. ¹H NMR spectrum of 1 (400 MHz, DMSO- d_6).

Figure S2. ¹H NMR spectrum of 2 (300 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S4. ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of 5 (400 MHz, CDCl₃).

Figure S6. ³¹P NMR spectrum of 6 (400 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of 8-bromo-2'-deoxyguanosine (300 MHz, DMSO-*d*₆).

Figure S8. ¹H NMR spectrum of 8-benzyloxy-2'-deoxyguanosine (500 MHz, DMSO- d_6).

Figure S9. ¹H NMR of 8-oxo-2'-deoxyguanosine (300 MHz, DMSO- d_6).

Figure S10. ¹H NMR of 2-N-(phenoxyacetyl)-8-oxo-2'-deoxyguanosine (500 MHz, DMSO- d_6).

Figure S11. ³¹P NMR of 7 (400 MHz, CDCl₃).

Figure S12. HPLC traces for the separation of the synthesized ODNs: (a) d(ATGGCGTgGCTAT); (b) d(ATGGC*GTGCTAT), (c) d(ATGGCTg*GGCTAT).

Figure S13. ESI-MS & MS/MS characterizations of d(ATGGCGTgGCTAT). (a) Negative-ion ESI-MS; (b) product-ion spectrum of the $[M - 3H]^{3-}$ ion (*m*/*z* 1235).

Figure S14. ESI-MS & MS/MS characterizations of d(ATGGC*GTGCTAT). (a) Negative-ion ESI-MS; (b) product-ion spectrum of the $[M - 3H]^{3-}$ ion (*m/z* 1229).

Figure S15. ESI-MS & MS/MS characterizations of d(ATGGCTgG*GCTAT): (a) Negative-ion ESI-MS; (b) product-ion spectrum of $[M-3H]^3$ - ion (*m/z* 1241). **Figure S16.** Plot of $1/T_m$ vs. $\ln(C_t/4)$ for the unmodified duplexes. The duplex is d(ATGGCXYGCTAT)/d(ATAGCMNGCCAT), where XY/MN represents GT/AC(\blacksquare), GT/AA(\bullet), TG/CA(\blacktriangle).

Figure S17. Plot of $1/T_m$ vs $\ln(C_t/4)$ for the duplexes including single damaged lesion. The duplex is d(ATGGCXYGCTAT)/d(ATAGCMNGCCAT), where XY/MN represents $G^T/AC(\blacksquare), G^T/AA(\bullet), GTg/AC(\blacktriangle)$.

Synthesis of 8-oxo-2'-deoxyguanosine Phosphoramidite Building Block

The title compound was synthesized according to reported procedures¹⁻³.

8-bromo-2'-deoxyguanosine¹

8-Bromo-2'-deoxyguanosine was prepared according to the procedure reported by Scharer et al.¹

¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 10.78 (s, 1H, N1-H), 6.48 (s, 2H), 6.15 (t, J =

7.8 Hz), 4.39 (m, 1H), 3.80 (m, 1H), 3.60 (dd, *J* = 5.2, 11.8 Hz, 1H), 3.50 (dd, *J* = 5.9,

11.6 Hz, 1H), 3.16 (m, 1H), 2.09 (m, 1H); ESI-MS: *m/z* 343.9 [M – H]⁻.

8-benzyloxy-2'-deoxyguanosine²

The title compound was synthesized using the procedure reported by Kumar et al.²

¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.55 (s, 1H, N-H), 7.31-7.49 (m, 5H), 6.31 (s,

2H), 6.08 (t, J = 7.2 Hz), 5.40 (dd, J = 11.9, 17.3 Hz, 2H), 5.16 (d, J = 4.3 Hz, 1H), 4.77

(5, J = 6.0 Hz, 1H), 4.23 (m, 1H), 3.70 (m, 1H), 3.43 (m, 1H), 3.36 (m, 1H), 3.08 (br,

1H), 2.85 (m, 1H), 2.02 (m, 1H), 1.17 (t, J = 7.2 Hz, 1H); ESI-MS: m/z 372.1 [M – H]⁻.

8-oxo-2'-deoxyguanosine²

The title compound was synthesized using the procedure reported by Kumar et al.²

¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 10.80 (br, 1H, N-H); 10.68 (s, 1H), 6.45 (br,

2H), 6.02(t, J = 7.4 Hz, 1H), 4.85 (br, 2H), 4.32 (m, 1H), 3.74 (m, 1H), 3.56 (dd, J = 5.5,

11.7 Hz, 1H), 3.43 (dd, *J* = 5.5, 11.7 Hz, 1H), 2.97(m, 1H), 1.92 (m, 1H); ESI-MS: *m*/*z* 282.1 [M − H][−].

2-N-(phenoxyacetyl)-8-oxo-2'-deoxyguanosine³

Phenoxyacetyl-protected 8-oxodeoxyguanosine was prepared according to the procedure described by Cadet et al.³

¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm) 11.88 (br, 1H), 11.68 (br, 1H, N-H), 11.30 (s,

1H), 7.31 (t, *J* = 8.9 Hz, 2H), 6.98 (m, 3H), 6.08 (t, *J* = 7.3 Hz, 1H), 5.15 (d, *J* = 4.1 Hz,

1H), 4.85 (s, 2H), 4.70 (t, J = 5.5 Hz, 1H), 4.37 (m, 1H), 3.75 (m, 1H), 3.57 (m, 1H), 3.44

(m, 1H), 3.05 (m, 1H), 1.99 (m, 1H); ESI-MS: *m*/*z* 418.0 [M+H]⁺.

5'-O-(4,4'-dimethoxytrityl)-2-N-(phenoxyacetyl)-8-oxo-2'-deoxyguanosine-3'-O-[(2-

cyanoethyl)-*N*,*N*-diisopropyl-phosphoramidite (7)

Compound 7 was prepared according to the procedure described by Cadet et al.³

³¹P-NMR (400 MHz, CDCl₃): 149.56, 149.66. ESI-MS: *m/z* 942.3 [M+Na]⁺.

References:

1. Gillet, L. C. J.; Scharer, O. D., Preparation of C8-Amine and Acetylamine Adducts of 2'-Deoxyguanosine Suitably Protected for DNA Synthesis. *Org. Lett.* **2002**, 4, (24), 4205-4208.

2. Nampalli, S.; Kumar, S., Efficient synthesis of 8-Oxo-dGTP: A mutagenic nucleotide. *Bioorg. Med. Chem. Lett.* **2000**, 10, (15), 1677-1679.

3. Bourdat, A.-G.; Gasparutto, D.; Cadet, J., Synthesis and enzymic processing of oligodeoxynucleotides containing tandem base damage. *Nucleic Acids Res.* **1999**, 27, (4), 1015-1024.

Scheme S1 Synthesis of 8-oxodG phosphoramidite building block

Reagents: (a) NBS/CH₃CN/H₂O; (b) Na/BnOH/DMSO; (c) 1.0 M HCl/CH₃OH; (d) i, TMS/Pyridine; ii, Phenoxyacetyl chloride; (e) i, DMTrCl/Pyridine, ii, NC(CH₂)₂OP(Cl)N(*i*Pr)₂/DIEA/CH₂Cl₂

Figure S1. ¹H NMR spectrum of 1 (400 MHz, DMSO- d_6).

Figure S2. ¹H NMR spectrum of 2 (300 MHz, $CDCl_3$).

Figure S3. ¹H NMR spectrum of **3** (400 MHz, $CDCl_3$).

Figure S4. ¹H NMR spectrum of 4 (400 MHz, $CDCl_3$).

Figure S5. ¹H NMR spectrum of 5 (400 MHz, $CDCl_3$).

Figure S6. ³¹P NMR spectrum of 6 (400 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of 8-bromo-2'-deoxyguanosine (300 MHz, DMSO- d_6).

Figure S8. ¹H NMR spectrum of 8-benzyloxy-2'-deoxyguanosine (500 MHz, DMSO- d_6).

Figure S9. ¹H NMR of 8-oxo-2'-deoxyguanosine (300 MHz, DMSO- d_6).

Figure S10. ¹H NMR of 2-N-(phenoxyacetyl)-8-oxo-2'-deoxyguanosine (500 MHz, DMSO- d_6).

Figure S11. ³¹P NMR of **7** (400 MHz, CDCl₃).

Figure S12. HPLC traces for the separation of the synthesized ODNs: (a) d(ATGGCGTgGCTAT); (b) d(ATGGCG*TGCTAT), (c) d(ATGGCTgG*GCTAT).

Figure S13. ESI-MS & MS/MS characterizations of d(ATGGCGTgGCTAT). (a) Negative-ion ESI-MS; (b) product-ion spectrum of the $[M - 3H]^{3-}$ ion $(m/z \ 1235)$.

Figure S14. ESI-MS & MS/MS characterizations of d(ATGGC*GTGCTAT). (a) Negative-ion ESI-MS; (b) product-ion spectrum of the $[M - 3H]^{3-}$ ion (*m/z* 1229).

Figure S15. ESI-MS & MS/MS characterizations of d(ATGGCTgG*GCTAT): (a) Negative-ion ESI-MS; (b) product-ion spectrum of $[M-3H]^{3-}$ ion (m/z 1241).

Figure S16. Plot of $1/T_m$ vs $\ln(C_t/4)$ for the unmodified duplexes. The duplex is d(ATGGCXYGCTAT)/d(ATAGCMNGCCAT), where XY/MN represents $\text{GT}/\text{AC}(\blacksquare)$, $\text{GT}/\text{AA}(\bullet)$, $\text{TG}/\text{CA}(\blacktriangle)$.

Figure S17. Plot of $1/T_m$ vs $\ln(C_t/4)$ for the duplexes including single damaged lesion. The duplex is d(ATGGCXYGCTAT)/d(ATAGCMNGCCAT), where XY/MN represents G*T/AC(\blacksquare), G*T/AA(\bullet), GTg/AC(\blacktriangle).