Tailoring Relaxation Dispersion Experiments for Fast-Associating Protein Complexes

Kenji Sugase, Jonathan C. Lansing, H. Jane Dyson, and Peter E. Wright

Supporting Information

A. Sample preparation

Uniformly ¹⁵N-labeled C-terminal activation domain (residues 776-826) of human HIF-1 α was expressed as a GB1 fusion protein in BL21-DE3 cells in M9 minimal medium; complete and specific Asn803 hydroxylation was accomplished in *E. coli* by coexpression with human asparaginyl hydroxylase, the factor inhibiting HIF-1 (FIH). Following thrombin cleavage of the GB1 fusion protein, hydroxylated HIF (HIF-OH) was purified to homogeneity by reverse-phase HPLC. Unlabeled TAZ1 domain (residues 345-439) of mouse CBP was prepared as described.¹ The proteins were dissolved separately in NMR buffer [90% H₂O/10% D₂O, 20 mM MES (pH 6.12), 2 mM dithiothreitol (DTT), 2 mM NaN₃] and concentrated. NMR samples of the [¹⁵N]-HIF-OH:TAZ1 complex for the *R*₂ dispersion experiments, in which HIF-OH concentration was kept at 510 μ M while the effective TAZ1 concentration was 26.9, 21.5, 16.1, or 10.8 μ M, were prepared from a single concentrated solution of each protein to make the concentration ratios accurate. The concentration of HIF-OH was determined from the absorbance at 280 nm, using an extinction coefficient of 1.4 mM⁻¹·cm⁻¹. The effective concentrations of TAZ1 were determined from fitting the dispersion data; TAZ1 refolding is technically difficult, and the effective concentrations of correctly folded protein are lower than determined from UV absorbance measurements.

B. NMR measurements

¹H-¹⁵N HSQC,² ¹⁵N TOCSY-HSQC and ¹⁵N NOESY-HSQC,³ HNCA, HN(CO)CA, and HNCO,⁴ (HCA)CO(CA)NH,⁵ HNCACB⁶ spectra were acquired at 25 °C on a Bruker DRX600 spectrometer for

chemical shift assignments.

¹⁵N R_2 relaxation rates were measured for the four [¹⁵N]-HIF-OH:TAZ1 samples on Bruker DRX600 and Avance900 spectrometers at 25 °C using relaxation-compensated constant-time Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences.^{7,8} R_2 dispersion spectra were acquired as two-dimensional data sets with a constant relaxation delay of 40, 60 or 80 ms. Some data points (three to seven), including a reference spectrum acquired with the CPMG blocks omitted, were collected in duplicate and were used to estimate the absolute uncertainties and the signal-to-noise ratio of each spectrum.

A ¹H-¹⁵N heteronuclear single quantum coherence (HSQC) titration was performed for 510 μ M [¹⁵N]-HIF-OH with unlabeled TAZ1 on a Bruker DRX600 spectrometer at 25 °C. The HIF-OH:TAZ1 concentration ratio ranged from 1:0 to 1:1.2 (Fig. S1). Exchange between the free and fully bound states is slow on the chemical shift time scale. However, very small shifts are observed for a subset of HIF-OH cross peaks upon addition of substoichiometric amounts of TAZ1; this exchange process is fast and does not contribute to R₂ relaxation.

Fitting of R₂ dispersion profiles

¹⁵N R_2 dispersion profiles of HIF-OH for all four samples at the two spectrometer frequencies (Fig. S3) were fit simultaneously for each residue using the program GLOVE as described previously.^{9,10} The association and dissociation rate constants, k_{on} and k_{off} , were treated as global parameters for all residues in the C-terminal helix of HIF-OH. The data fitted well to a two-site exchange model. Fits to a three-site exchange model yielded physically unreasonable parameters and could not reproduce the macroscopic K_D measured by ITC.

An analytical equation derived by Carver and Richards was used:¹¹

$$\begin{split} R_{2}^{\text{eff}} &= R_{2}^{0} + \frac{1}{2} \Biggl\{ [\text{TAZ1}]k_{\text{on}} + k_{\text{off}} - \frac{1}{\tau_{\text{cp}}} \cosh^{-1} \Bigl[D_{+} \cosh \bigl(\eta_{+} \bigr) - D_{-} \cos \bigl(\eta_{-} \bigr) \Bigr] \Biggr\} \\ D_{\pm} &= \frac{1}{2} \Biggl[\pm 1 + \frac{\Psi + 2\Delta \varpi_{\text{FB}}^{2}}{\sqrt{\Psi^{2} + \xi^{2}}} \Biggr] \\ \eta_{\pm} &= \tau_{\text{CP}} \sqrt{\frac{1}{2} \Bigl(\pm \Psi + \sqrt{\Psi^{2} + \xi^{2}} \Bigr)} \\ \Psi &= \Bigl([\text{TAZ1}]k_{\text{on}} + k_{\text{off}} \Bigr)^{2} - \Delta \varpi_{\text{FB}}^{2} \\ \xi &= 2\Delta \varpi_{\text{FB}} \Bigl([\text{TAZ1}]k_{\text{on}} - k_{\text{off}} \Bigr), \end{split}$$

where fitting parameters are described in the main text. The free TAZ1 concentration, [TAZ1], can be calculated from the total concentrations [TAZ1]₀ and [HIF-OH]₀ and K_D (= k_{off}/k_{on}):

$$[TAZ1] = \frac{1}{2} \left\{ -K_{\rm D} + [TAZ1]_0 - [HIF-OH]_0 + \sqrt{\left(K_{\rm D} - [TAZ1]_0 + [HIF-OH]_0\right)^2 + 4[TAZ1]_0 K_{\rm D}} \right\}$$

Simulation of R₂ dispersion profiles

 R_2 dispersion profiles can be simulated using the same equations as used in the fitting. By varying [TAZ1]₀, the TAZ1 concentration dependence of R_2^{eff} can be obtained, as shown in Figure 2a. For this simulation, $1/\tau_{CP}$ was fixed to 100 s⁻¹, which corresponds to the first data point when R_2 rates are measured with a constant relaxation delay of 40 ms. On the other hand, by varying $1/\tau_{CP}$, typical R_2 dispersion profiles as shown in Figure 2b can be simulated.

Simulations were also performed for the pKID/KIX system, using the kinetic parameters derived previously from R_2 dispersion experiments performed with KIX:pKID concentration ratios in the range 0.95-1.10.¹⁰ The simulations confirm that concentration ratios near 1:1 represent the optimal stoichiometry for the pKID/KIX system (Fig. S5). Because the apparent association rate (average $k_{on}^* = 6.3 \times 10^6 \text{ M}^{-1} \cdot \text{s}^{-1}$) is much slower than for binding of HIF-OH to TAZ1 ($k_{on} = 1.3 \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1}$), exchange is too slow to contribute significantly to R_2 relaxation under conditions of a large excess of pKID. In practical terms, KIX:pKID concentration ratios > 0.33 would be required to give $R_{ex} > 3$, conditions under which the signal intensity of the free pKID resonances has been greatly reduced.

Reference List

- (1) Dames, S. A.; Martinez-Yamout, M.; De Guzman, R. N.; Dyson, H. J.; Wright, P. E. *Proc. Natl. Acad. Sci. U.S.A* **2002**, *99*, 5271-5276.
- (2) Grzesiek, S.; Bax, A. J. Am. Chem. Soc. 1993, 115, 12593-12594.
- (3) Marion, D.; Driscoll, P. C.; Kay, L. E.; Wingfield, P. T.; Bax, A.; Gronenborn, A. M.; Clore, G. M. Biochemistry 1989, 28, 6150-6156.
- (4) Grzesiek, S.; Bax, A. J. Magn. Reson. 1992, 96, 432-440.
- (5) Löhr, F.; Rüterjans, H. J. Biomol. NMR 1995, 6, 189-197.
- (6) Wittekind, M.; Mueller, L. J. Magn. Reson. 1993, 101, 201-205.
- (7) Loria, J. P.; Rance, M.; Palmer, A. G. J. Am. Chem. Soc. 1999, 121, 2331-2332.
- (8) Tollinger, M.; Skrynnikov, N. R.; Mulder, F. A.; Forman-Kay, J. D.; Kay, L. E. J. Am. Chem. Soc. 2001, 123, 11341-11352.
- (9) McElheny, D.; Schnell, J. R.; Lansing, J. C.; Dyson, H. J.; Wright, P. E. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5032-5037.
- (10) Sugase, K.; Dyson, H. J.; Wright, P. E. Nature 2007, 447, 1021-1025.
- (11) Carver, J. P.; Richards, R. E. J. Magn. Reson. 1972, 6, 89-105.

Supplementary Figure S1. ¹H-¹⁵N HSQC titration of [¹⁵N]-HIF-OH with unlabeled TAZ1 over a HIF-OH:TAZ1 concentration ratios ranging from 1:0 to 1:1.2. The cross peaks are color coded from blue (free HIF-OH) through green to red (1:1.2).

Supplementary Figure S2. R_2 dispersion data recorded at 600 MHz for ¹⁵N-labeled HIF-OH in the complex with TAZ1 at 1:1 concentration ratio.

Figure S3. TAZ1 concentration dependence of ¹⁵N R_2 dispersion curves recorded at 900 MHz (filled circles) and 600 MHz (open circles). Dispersion curves for 505 μ M [¹⁵N]-HIF-OH in the presence of 10.8, 16.1, 21.5, and 26.9 μ M TAZ1 are shown.

Figure S4. Correlation of ¹⁵N chemical shift differences, $\Delta \omega$, determined from the R_2 dispersion measurements with equilibrium chemical shift differences, $\Delta \delta$, between free and TAZ1-bound HIF-OH. The slope is 0.93 ($\mathbb{R}^2 = 0.98$).

Figure S5. R_2^{eff} rates for pSer133 of pKID simulated using the parameters listed in Table 1 of ref. 10. The R_2^{eff} rates are plotted versus the concentration ratio, [KIX]₀/[pKID]₀. The red and green lines indicate R_2^{0} , where the R_2^{0} rates for the free and bound states are 5 and 15 s⁻¹, respectively.