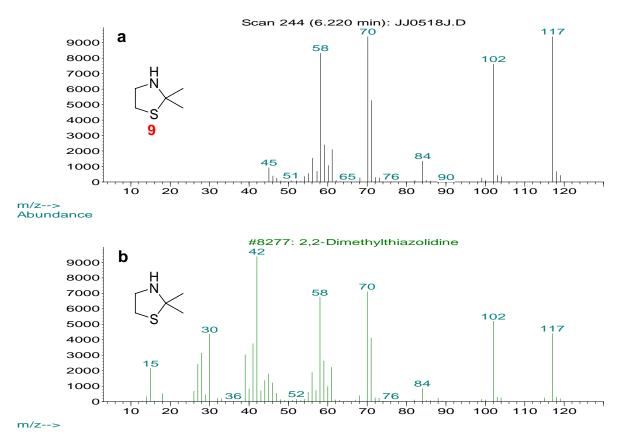
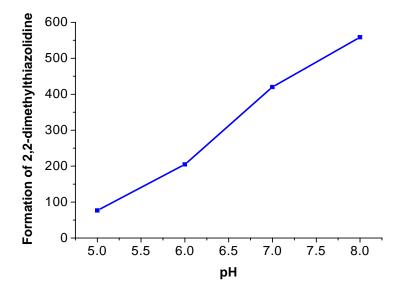
Supporting Information Geosmin Biosynthesis. Mechanism of the Fragmentation-Rearrangement in the Conversion of Germacradienol to Geosmin


Jiaoyang Jiang and David E. Cane*

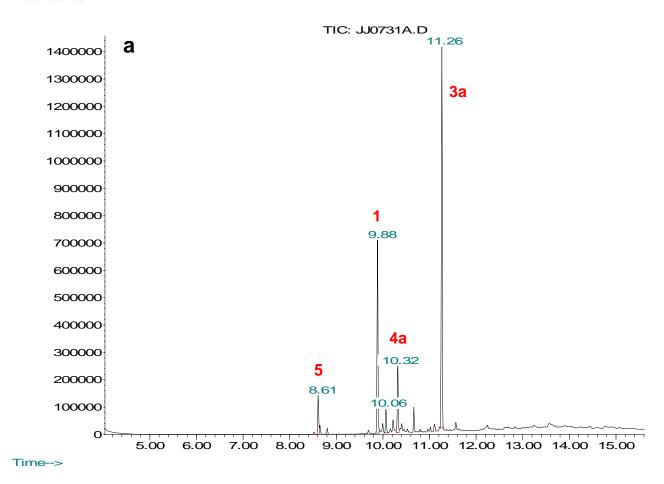
Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108 E-mail: David_Cane@brown.edu

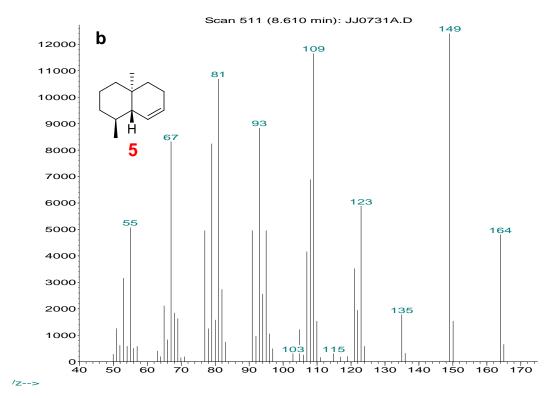

Materials and Methods. General materials and methods were as previously described.^{1,2} Recombinant germacradienol/geosmin synthase (GS), encoded by the *sco6073* (SC9B1.20) gene of *S. coelicolor* A3(2) was expressed from *E. coli* BL21(DE3)pLysS/pRW31, resolubilized from inclusion bodies, purified to homogeneity, and assayed as previously described.^{1,2}

Derivatization of Acetone – **Optimization of pH.** Acetone (10 μ L, 27 mM) and 0.1545 g cysteamine hydrochloride (270 mM) were added to 5 mL reaction buffer (50 mM Tris-HCl, 1 mM EDTA, 20% glycerol, 5 mM MgCl₂, pH 8.2) in a 20-mL glass vial, and the pH of the solution was immediately adjusted to 8.0 with 0.1 N NaOH. The mixture was stirred at room temperature overnight. Parallel experiments were conducted at pH 5.0, 6.0, and 7.0. The reaction mixture was transferred to a test tube, 1 μ L of α -humulene stock solution was added as internal standard, and the mixture was extracted with 3×3 mL CH₂Cl₂. The combined organic layers were dried by passage through a Pasteur pipette containing 1 g of MgSO₄ before concentration under reduced pressure at 0 °C to 200 μ L. A 1- μ L portion of the concentrated extract was analyzed by GC–MS (30 m × 0.25 mm DB5 capillary column, using a temperature program of 50–280 °C, 20 °C min⁻¹) (Figures S1 and S2).

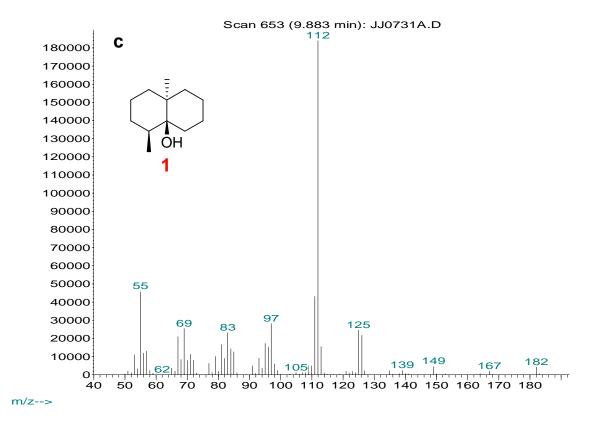
Figure S1. a) MS of 2,2-dimethylthiazolidine (**9**) derived from acetone. b) MS of standard 2,2-dimethylthiazolidine in the NIST/EPA/NIH Mass Spectral Library (2002 version).

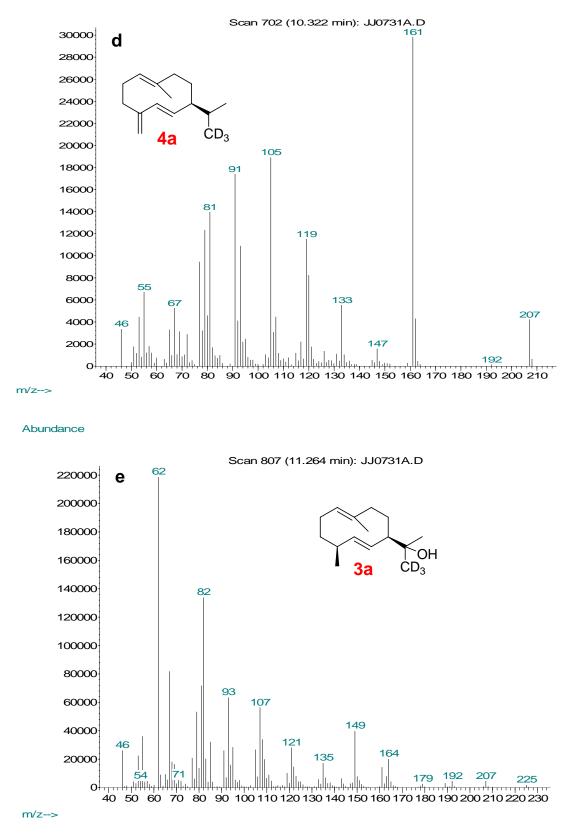
Figure S2. Relative yield of 2,2-dimethylthiazolidine (9) as a function of pH (internal standard α -humulene = 1.0).


Formation of Acetone in the Incubation of FPP with Germacradienol/Geosmin Synthase. FPP (66 μ M) was incubated with germacradienol/geosmin synthase (10.2 μ M) in 7.5 mL of buffer (50 mM Tris-HCl, 20% glycerol, 2 mM MgCl₂, pH 8.2) at 30 °C for 7 h 20 min, without a pentane overlay in order to avoid transfer of acetone out of the aqueous solution. At the end of the incubation period, 0.01 g cysteamine hydrochloride (11.7 mM) was added, and the pH was immediately adjusted to 8.0. The reaction mixture was stirred at room temperature overnight, and then extracted with 3×3 mL of CH₂Cl₂. The combined organic layers were dried over MgSO₄ before being concentrated under reduced pressure at 0 °C to 200 μ L and analyzed by GC-MS (Figure S3). A control incubation was carried out with 66 μ M FPP and 10.2 μ M boiled (98 °C, 30 min) protein.


Figure S3. Trapping of acetone generated by the incubation of FPP with germacradienol/geosmin synthase. GC-MS of organic extract after treatment with cysteamine. Inset: EI-MS of 2,2-dimethylthiazolidine (9), ret. time 6.17 min.

Incubation of $[13,13,13-{}^{2}H_{3}]FPP$ with Germacradienol/Geosmin Synthase. $[13,13,13-{}^{2}H_{3}]FPP$ (2a, 103 µM) was incubated with germacradienol/geosmin synthase (5.1 µM) in 5 mL of buffer (50 mM Tris-HCl, 20% glycerol, 3 mM MgCl₂, pH 8.2) at 30 °C for 6 h 15 min, with a pentane overlay. The reaction mixture was extracted with 3×3 mL of pentane/CH₂Cl₂ (5:1) and analyzed by GC-MS (Figure S4).


To detect the formation of deuterated acetone **8a**, the acetone was converted into corresponding dimethylthiazolidine **9a**. FPP (**2a**, 62 μ M) was incubated with germacradienol/geosmin synthase (7.8 μ M) and in 8.3 mL of buffer was incubated at 30 °C for 7 h 35 min, without a pentane overlay. After the incubation, 100 mM cysteamine hydrochloride was added, and the pH was immediately adjusted to 8.0. The reaction mixture was stirred at room temperature overnight, extracted with 3×3 mL of CH₂Cl₂, and analyzed by GC-MS (Figure S5).


oundance

Abundance

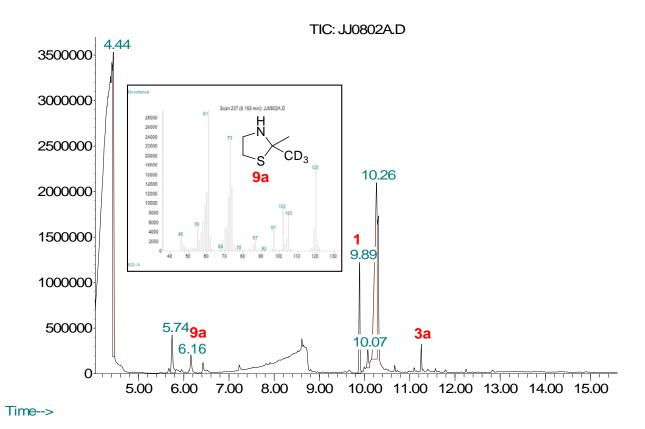
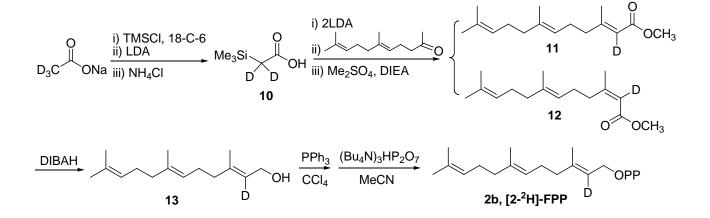


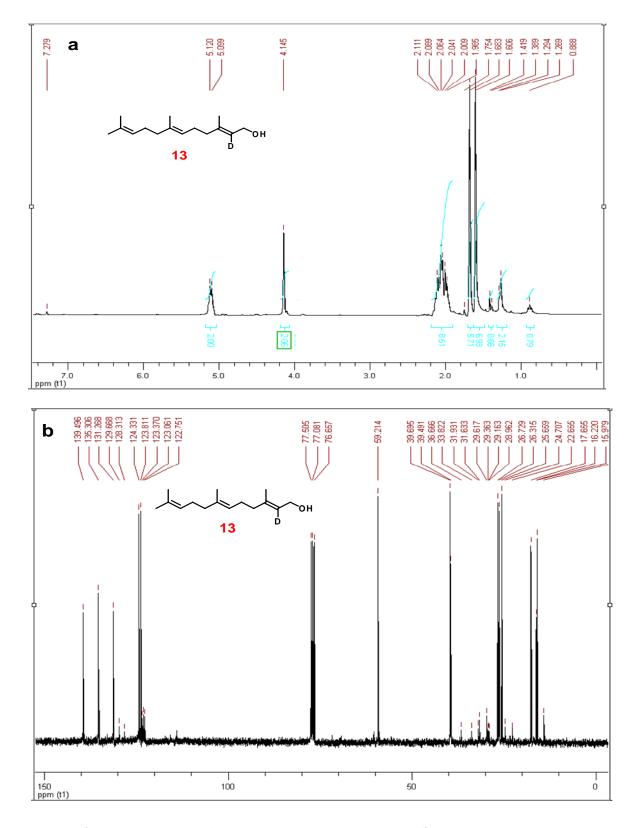
Figure S4. Incubation of 103 μ M [13,13,13-²H₃]FPP (**2a**) with 5.1 μ M germacradienol/geosmin synthase with at 30 °C for 6 h 15 min. a) GC-MS. b) MS of octalin (**5**), ret. time 8.61 min. c) MS


of geosmin (1), ret. time 9.88 min. d) MS of germacrene D (4a), ret. time 10.32 min. e) MS of germacradienol (3a), ret. time 11.26 min.

Abundance

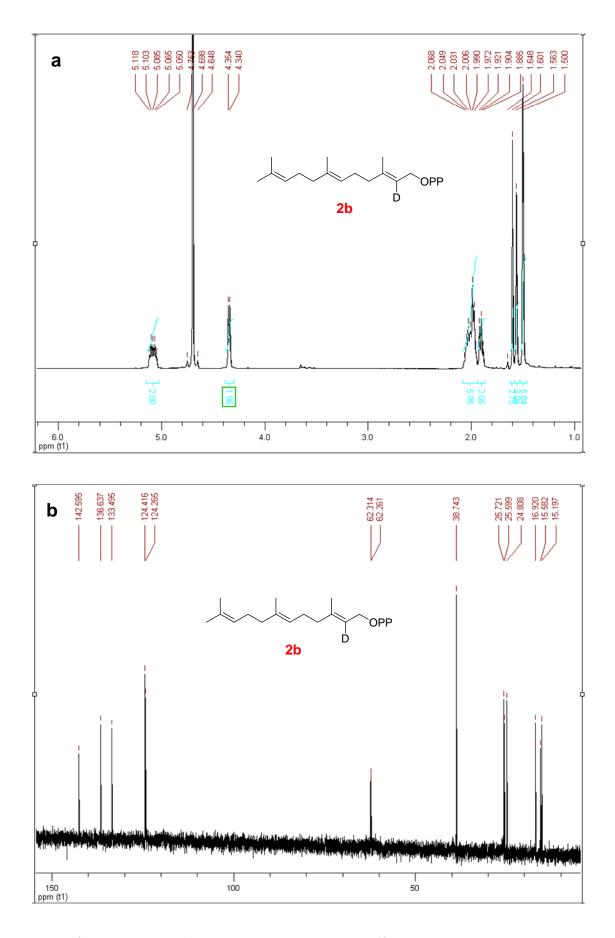
Figure S5. Trapping of acetone generated by the incubation of $[13,13,13-{}^{2}H_{3}]$ FPP with germacradienol/geosmin synthase. GC-MS of organic extract after treatment with cysteamine. Inset: EI-MS of [${}^{2}H_{3}$ -Me]-2,2-dimethylthiazolidine (**9a**), ret. time 6.16 min.

Scheme S1. Synthesis of [2-²H]FPP (2b)


Synthesis of [2-²H]-FPP (2b)

 $[2^{-2}H_2]$ *Trimethylsilylacetic acid* (*10*). A mixture of 1.14 g (13.4 mmol) of vacuum-dried sodium $[2^{-2}H_3]$ acetate (99 atom % ²H, Aldrich), 1.46 g (13.4 mmol) of trimethylsilyl chloride, and 18-crown-6 ether (1.24 g, 4.7 mmol) in 80 mL of Et₂O was refluxed for 2.5 h under N₂. The reaction mixture was cooled and the solution transferred dropwise to another flask containing 14.7 mmol of lithium diisopropylamide (prepared by reaction of *n*-butyllithium with diisopropylamine) in Et₂O at -78 °C. The resulting white suspension was stirred for 30 min at -78 °C, then warmed to room temperature for an additional 30 min during which the precipitate dissolved. The yellow solution was refluxed for 2 h after which the reaction was quenched by addition of satd aq. NH₄Cl. The pH of the aq. phase was adjusted to 3, brine was added, and the solution was extracted with Et₂O (3 x 100 mL). Drying of the Et₂O extract (MgSO₄) and concentration under vacuum gave 856 mg (40%) of [2⁻²H₃]trimethylsilylacetic acid which solidified at -20 °C. ¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) are both consistent with the reported data.³

(*E*)- and (*Z*)-Methyl [2-²*H*]farnesoates (11) and (12). [2-²H₂]Trimethylsilylacetic acid (10, 1.38 g, 10.3 mmol) in 10 mL of THF was added dropwise to 1.9 eq. of lithium diisopropylamide in THF at –78 °C. The reaction mixture was stirred for 30 min at -78 °C and 1 h at 0 °C, then cooled to -78 °C. A solution of 2.0 g (10.3 mmol, 1.0 eq.) of geranylacetone in 8 mL of THF was added dropwise and the resulting solution was stirred for 1 h at -78 °C, 1 h at -10 °C, and 1 h at room temperature. The reaction was quenched by dropwise addition of 0.1 N HCl at 0 °C. After the mixture was stirred for an additional 10 min, the THF was evaporated *in vacuo*, and the oily product was taken up in hexane and poured into a mixture of 65 mL 0.5 N HCl and 190 mL of hexane. After extraction with hexane (3 x 200 mL), drying (MgSO₄), and concentration *in vacuo*, flash silica gel column chromatography (1-20% EtOAc:hexane, stepwise) gave 2.08 g of a mixture of *cis* and *trans* acids which was esterified without further purification. A mixture of the isomeric acids (1.80 g) was dissolved in 50 mL of MeCN at 0 °C, 938 mg (7.6 mmol) of diisopropylethylamine was added, and the solution was stirred for 20 min at 0 °C and 30 min at room temperature, then cooled to 0 °C. Dimethyl sulphate (1.92 g, 15.2 mmol) was added. After 30 min stirring at 0 °C, the mixture was warmed to room temperature and stirred for 3.5 h. After addition of 0.1 N aq. NH₄OH to destroy


excess Me₂SO₄, the MeCN was evaporated and the product mixture was taken up in Et₂O and partitioned into H₂O. After extraction with Et₂O, drying (MgSO₄), and concentration *in vacuo*, the crude product was purified by prep. TLC (10% Et₂O in hexane) to give 492 mg of a mixture of the methyl esters of *cis* and *trans* [2-²H]farnesoic acid (**11** and **12**). Spectroscopic data for the unlabeled methyl esters, generated by identical procedures, were identical in all respects with authentic samples.

 $[2-{}^{2}H]Farnesol$ (13). To a solution of 492 mg (1.96 mmol) of the (*E*)- and (*Z*)- methyl $[2-{}^{2}H]$ farnesoate (11 and 12) in 37 mL of CH₂Cl₂ at -78 °C was added dropwise 4.51 mL (4.51 mmol) of diisobutylaluminum hydride (1 M, hexane). After stirring for 30 min at -78 °C, the reaction mixture was warmed to 0 °C with stirring for another 30 min, and the reaction was then quenched by addition of 9 mL of 0.5 M aq. sodium potassium tartrate followed by vigorous stirring of the mixture for 4 h at room temperature. After addition of H₂O, extraction with CH₂Cl₂, drying (MgSO₄) and concentration, the crude product was purified by column chromatography on AgNO₃-coated silica gel (20% EtOAc in hexane) to yield 88.6 mg (*E*)-[2-²H]farnesol (13) (Figure S6).

Figure S6. [2-²H]farnesol (**13**) a) ¹H NMR (300 MHz, CDCl₃). b) ¹³C NMR (75 MHz, CDCl₃).

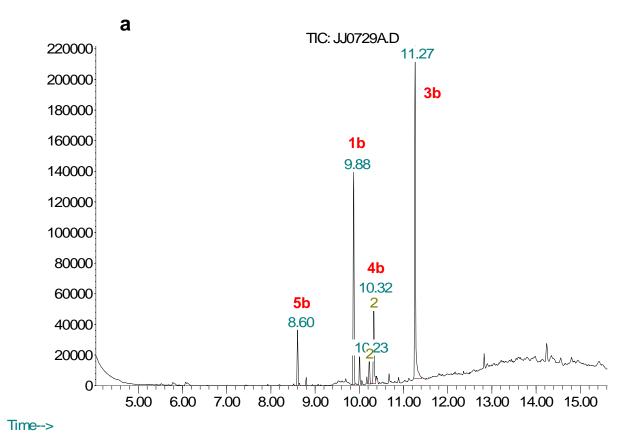
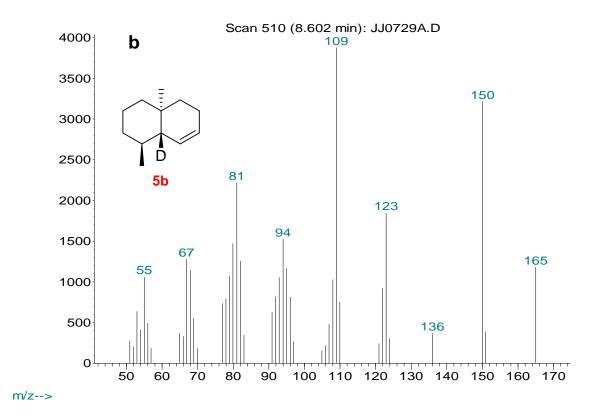
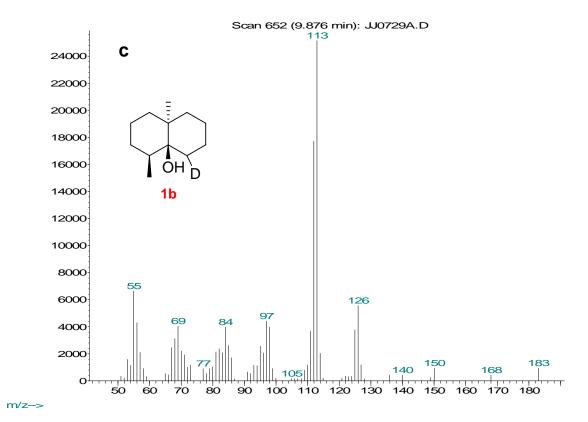

 $[2-{}^{2}H]$ *Farnesyl diphosphate (2b)* $[2-{}^{2}H]$ Farnesyl diphosphate (2b, 160 mg) was prepared from $[2-{}^{2}H]$ farnesol (13) in ca 80% yield by the method previously described (Figure S7).⁴

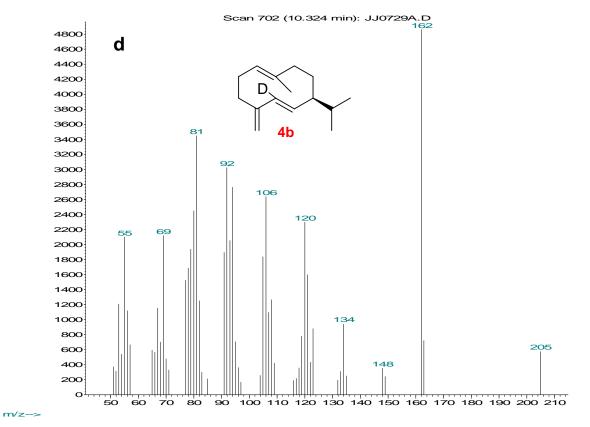
Figure S7. [2-²H]FPP (**2b**). a) ¹H NMR (400 MHz, D₂O). b) ¹³C NMR (100 MHz, D₂O).


Incubation of $[2-{}^{2}H]$ FPP with Germacradienol/Geosmin Synthase. $[2-{}^{2}H]$ FPP (2b, 99 μ M) was incubated with germacradienol/geosmin synthase (7.0 μ M) in 5 mL of buffer (50 mM Tris-HCl, 20% glycerol, 3 mM MgCl₂, pH 8.2) at 30 °C for 6 h 15 min with a pentane overlay. The reaction mixture was extracted with 3×3 mL of pentane/CH₂Cl₂ (5:1) and analyzed by GC-MS (Figure S8).

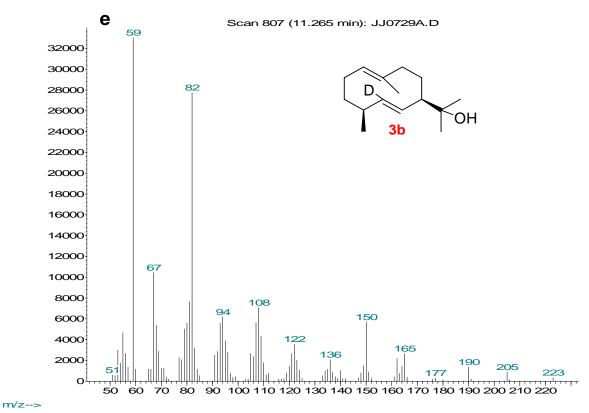
Abundance



S12



Abundance



S13

Abundance

Abundance

Figure S8. Incubation of 99 μ M [2-²H]-FPP (**2b**) with 7.0 μ M germacradienol/geosmin synthase at 30 °C for 6 h 15 min. a) (A) GC-MS. b) MS of octalin (**5b**), ret. time 8.60 min. c) MS of [6-²H]geosmin (**1b**), ret. time 9.88 min. d) MS of germacrene D (**4b**), ret. time 10.32 min. e) MS of germacradienol (**3b**), ret. time 11.27 min.

References

- (1) Cane, D. E.; Watt, R. M. Proc. Natl. Acad. Sci. USA 2003, 100, 1547-1551.
- (2) Jiang, J.; He, X.; Cane, D. E. J. Am. Chem. Soc. 2006, 128, 8128-8129.
- (3) Arigoni, D.; Cane, D. E.; Shim, J. H.; Croteau, R.; Wagschal, K. *Phytochemistry* 1993, *32*, 623-631.
- (4) Croteau, R.; Felton, N. M.; Wheeler, C. J. J. Biol. Chem. 1985, 260, 5956-5962.