Supporting Information

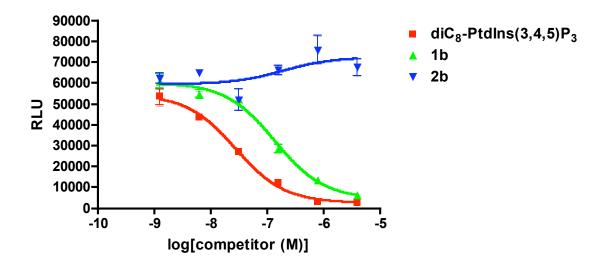
Manuscript for: Submitted: Revised: J. Am. Chem. Soc (Communication) July 24, 2006 Nov 15, 2006

Synthesis and Biological Activity of PTEN-Resistant Analogues of Phosphatidylinositol 3,4,5-trisphosphate

Honglu Zhang[#], Nicolas Markadieu[&], Renaud Beauwens[&], Christophe Erneux[§],

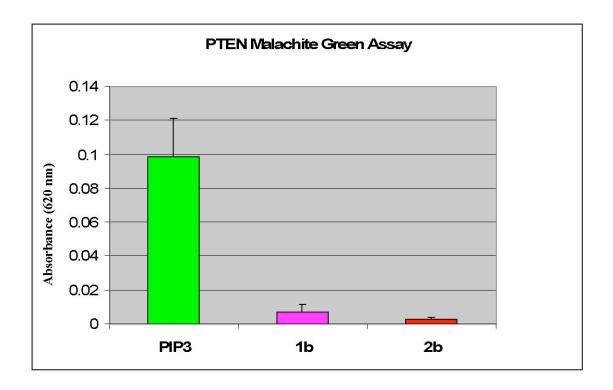
and Glenn D. Prestwich^{#,*}

[#]Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite

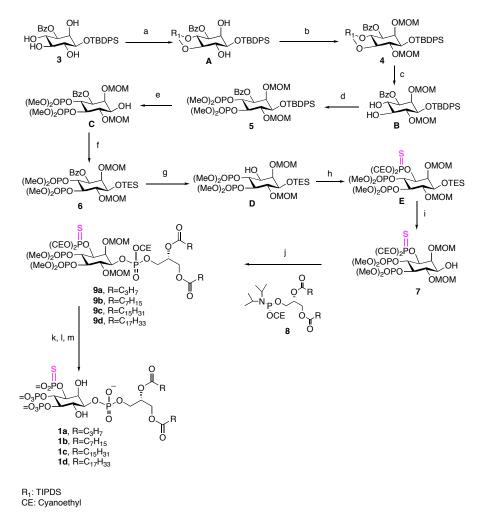

205, Salt Lake City, Utah 84108-1257, USA

[&]Department of Cell Physiology, [§]Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium.

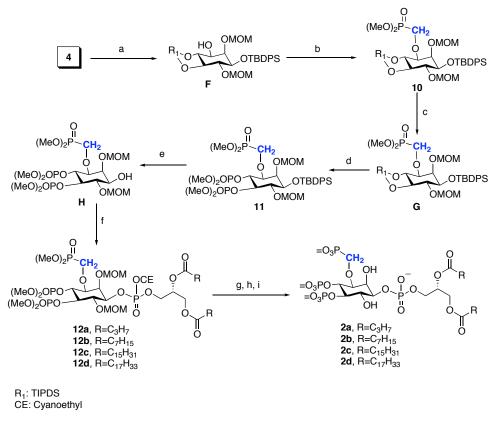
Phone: +1-801-585-9051. Fax: +1-801-585-9053. Email: gprestwich@pharm.utah.edu


- S3 Supplementary Figure 2. Competitive binding assay of 1b and 2bwith Grp1.
- S4 Supplementary Figure 3. PTEN Malachite Green Assay to detect the produced free phosphate.
- S5 **Details of Scheme 1.**
- S6 **Details of Scheme 2.**
- S7-S27 Experimental details for chemical synthesis.
- S27 Experimental protocol for sodium transport (I_{Na} +, μ A/cm²).
- S27 Experimental protocol for binding of analogues 1b and 2b to Grp1.
- S28 PTEN Malachite Green Assay Protocol.
- S29-S93 Spectroscopic data for typical compounds:

S29-S30, ¹H NMR and ¹³C NMR of compound 4. S31-S33, ¹H NMR, ³¹P NMR, and ¹³C NMR of compound **5**. S34-S36, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **6**. S37-S39, ¹H NMR, ³¹P NMR and ¹³C NMR of compound 7. S40-S42, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **9a**. S43-S45, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **9b**. S46-S48, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **9c**. S49-S51, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **9d**. S52-S54, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **1a**. S55-S57, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **1b**. S58-S60, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **1c**. S61-S63, ¹H NMR, ³¹P NMR and ¹³C NMR of compound 1d. S64-S66, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **10**. S67-S69, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **11**. S70-S72, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **12a**. S73-S75, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **12b**. S76-S78, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **12c**. S79-S81, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **12d**. S82-S84, ¹H NMR, ³¹P NMR and ¹³C NMR of compound 2a. S85-S87, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **2b**. S88-S90, ¹H NMR, ³¹P NMR and ¹³C NMR of compound **2c**. S91-S93, ¹H NMR, ³¹P NMR and ¹³C NMR of compound 2d.


Supplementary Figure 2. Competitive displacement of biotinylated-PtdIns(3,4,5)P₃ (10 nM) from Grp1 (10 nM) binding by diC₈-PtdIns(3,4,5)P₃ and analogues **1b** and **2b**.

•


Supplementary Figure 3. Detection of free phosphate produced in the PTEN reactions with diC₈-PI(3,4,5)P₃,1b and 2b.

.

Scheme 1. Synthesis of Phosphorothioates 1^a

^a Conditions: (a) TIPDSCl₂, imidazole, Py, 12 h, 88%; (b) MOMCl, DIPEA, DMF, 65 °C, 24 h, 63%; (c) TBAF, THF, 1 h, 77%; (d) *N*,*N*-dimethylphosphoramidite, 1*H*-tetrazole, 12 h; *m*-CPBA, 81%; (e) TBAF•3H₂O, DMF, 3 h, 91%; (f) TESCl, imidazole, CH₂Cl₂, 12 h, 88%; (g) Dibal-H, CH₂Cl₂, -78 °C, 1.5 h, 84%; (h) Bis(2-cyanoethoxy)(diisopropylamino)phosphine, 1*H*-tetrazole, 12 h; phenylacetyl disulfide, 30 min, 72%; (i) NH₄F, MeOH, 85%; (j) 1*H*-tetrazole, CH₂Cl₂, rt, 12 h; *t*-BuOOH; (k) TEA, BSTFA, CH₃CN; (l) TMSBr/CH₂Cl₂ (2:3), rt, 40 min; (m) MeOH, 1 h.

^a Conditions: (a) Dibal-H, CH₂Cl₂, -78 °C, 1.5 h, 88%; (b) *n*-BuLi, HMPA, dimethyl phosphonomethyltriflate, THF, -78 °C to rt, 80%; (c) TBAF, THF, 1 h, 90%; (d) *N*,*N*-dimethylphosphoramidite, 1*H*-tetrazole, 12 h; *m*-CPBA, 95%; (e) TBAF•3H₂O, DMF, 3 h, 75%; (f) **8**, 1*H*-tetrazole, CH₂Cl₂, rt, 12 h; *t*-BuOOH; (g) TEA, BSTFA, CH₃CN; (h) TMSBr/CH₂Cl₂ (2:3), rt, 40 min; (i) MeOH, 1 h.

.

Experimental details for chemical synthesis.

General. Chemicals were purchased from Aldrich and Acros Chemical Corporation and used without prior purification. Solvents were reagent-grade and distilled before use: CH₂Cl₂ was distilled from CaH₂ and THF was distilled from sodium wire. TLC used precoated silica gel glass sheets (EM SCIENCE silica gel 60F₂₅₄). Flash chromatography (FC) employed Whatman 230~400 mesh ASTM silica gel. NMR spectra were recorded on a Varian INOVA 400 at 400 MHz (¹H), 101 MHz (¹³C), 162 MHz (³¹P) and 376 MHz (¹⁹F) at 25 °C. Chemical shifts are reported in ppm with TMS as internal standard ($\delta = 0.00$); ³¹P, 85% H₃PO₄ ($\delta = 0.00$); ¹⁹F, CFCl₃ ($\delta = 0.00$). Low- and high-resolution mass spectra were obtained on HP5971A MSD and Finnigan MAT95 double focusing mass spectrometer (MS) instruments, respectively.

1D-1-*O*-(*tert*-**Butyldiphenylsilyl**)-**3**-*O*-benzoyl-**3**,**4**-*O*-(**1**,**1**,**3**,**3**-tetraisopropyldisiloxanedi-**1**,**3**-yl)-*myo*-inositol (**A**). A solution of tetrol **3** (900 mg, 1.72 mmol) and imidazole (250 mg, 3.44 mmol) in pyridine (10 mL) was treated with TIPDS-C1₂ (597.8 mg, 1.9 mmol) at - 5 °C and then slowly warmed to rt. The progress of the reaction was monitored by TLC. After 12 h the mixture was concentrated and subjected to the aqueous workup. The organic phase was concentrated, and the residue was chromatographed on silica gel (hexanes/EtOAc, 10 :1) giving pure product **A** (720 mg, 88%) as a colorless glassy solid. $[\alpha]^{20}_{\ D}$ = + 13.4 (*c* 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.79-7.74 (m, 4H), 7.56-7.38 (m, 9H), 4.99 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.30 (t, *J* = 9.2 Hz, 1H), 4.04 (t, *J* = 9.2 Hz, 1H), 3.98 (t, *J* = 2.8 Hz, 1H), 3.80 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.48 (t, *J* = 9.2 Hz, 1H), 2.67 (s, 1H), 2.33 (s, 1H), 1.13 (s, 9H), 1.08-0.81 (m, 28H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 136.2, 136.2, 133.4, 133.2, 133.2, 130.3, 130.1, 130.1, 128.5, 128.1, 127.9, 78.4, 74.0, 73.9, 73.3, 73.2, 71.5, 27.3, 19.7, 17.7, 17.6, 17.6, 17.5, 17.3, 17.2, 13.1, 13.0, 12.3, 12.3; MALDI-HRMS [M + Na]⁺ calcd for C₄₁H₆₀O₈ Si₃Na 787.3488, found 787.3488.

1D-1-O-(tert-Butyldiphenylsilyl)-3-O-benzoyl-2,6-O-bis(methoxymethylene)-4,5-O-

(1,1,3,3-tetraisopropyldisiloxanedi-1,3-yl)-*myo*-inositol (4). To a solution of the diol A (700 mg, 0.92 mmol) and DIPEA (1.4 mL, 8.27 mmol) in DMF (8 mL), was added MOMCl (0.5 mL, 6.59 mmol). After 24 h at 65 °C, the solvents were removed and the residue after aqueous work-up was loaded on a silica gel column. Purification (hexanes/EtOAc, 20:1) afforded **4** (1.8 g, 63%) as a colorless glass. $[\alpha]^{20}{}_{D} = + 40.1 (c 1.1, CHCl_3);$ ¹H NMR (400 MHz, CDCl_3) δ 8.00 (d, *J* = 7.2 Hz, 2H), 7.84 (d, *J* = 6.8 Hz, 2H), 7.76 (m, 2H), 7.54-7.37 (m, 9H), 5.03 (d, *J* = 6.0 Hz, 1H), 4.85 (d, *J* = 6.4 Hz, 1H), 4.79 (dd, *J* = 10.0, 2.0 Hz, 1H), 4.56 (d, *J* = 2.8 Hz, 2H), 4.19 (t, *J* = 8.8 Hz, 1 H), 4.08 (t, *J* = 9.6 Hz, 1H), 4.06 (s, 1H), 3.64 (t, *J* = 8.4 Hz, 1H), 3.47 (s, 3H), 3.21 (s, 3H), 1.16 (s, 9H), 1.11-0.82 (m, 28H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 136.5, 136.2, 134.1, 133.2, 133.0, 130.3, 130.3, 130.1, 129.9, 128.4, 128.2, 127.9, 98.8, 98.1, 78.5, 77.0, 74.6, 73.9, 73.2, 56.8, 55.9, 27.5, 19.5, 17.7, 17.6, 17.5, 17.4, 17.3, 17.2, 13.1, 13.1, 12.2, 12.2; MALDI-HRMS [M + Na]⁺ calcd for C₄₅H₆₈O₁₀ Si₃Na 875.4013, found 875.4037.

1D-1-*O*-(*tert*-Butyldiphenylsilyl)-3-*O*-benzoyl-2,6-*O*-bis(methoxymethylene)-*myo*inositol (B). At 0 °C TBAF (1 M in THF, 2 mL, 2 mmol) was added to inositol 4 (780 mg, 0.92 mmol) in 2 mL THF, then warmed to rt. The reaction mixture was stirred at rt

for 1 h, TLC showed the end of the reaction. The reaction system was diluted with EtOAc, and washed with water, 1 N HCl, then saturated aqueous NaCl solution. The organic solvents were dried with Na₂SO₄, then concentrated and flash chromatographed (hexanes/EtOAc, 1:1) to afford diol **B** (430 mg, 77%). $[\alpha]^{20}{}_{D} = +18.7 (c \ 0.97, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.0, 1.6 Hz, 2H), 7.72 (dd, J = 7.6, 1.6 Hz, 2H), 7.67 (dd, J = 7.6, 1.6 Hz, 2H), 7.55- 7.35 (m, 9H), 4.84 (d, J = 6.8 Hz, 1H), 4.79 (dd, J = 10.4, 2.4 Hz, 1H), 4.71 (d, J = 6.4 Hz, 1H), 4.34 (d, J = 7.2 Hz, 1H), 4.19-3.98 (m, 3H), 3.91 (d, J = 7.2 Hz, 1H), 3.86 (dd, J = 9.2, 2.4 Hz, 1H), 3.71 (t, J = 9.2 Hz, 1H), 3.34 (s, 1H), 3.21 (s, 3H), 3.18 (s, 3H), 2.99 (s, 1H), 1.04 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ; 166.4, 136.2, 135.8, 134.6, 133.3, 133.2, 130.2, 130.1, 129.7, 128.5, 128.2, 128.0, 127.7, 98.3, 98.2, 85.6, 74.6, 73.5, 73.1, 71.1, 56.1, 55.7, 27.3, 19.6. MALDI-HRMS [M + Na]⁺ calcd for C₃₃H₄₂O₉SiNa 633.2490, found 633.2498.

1D-1-*O*-(*tert*-**Butyldiphenylsilyl**)-**3**-*O*-**benzoyl-2,6**-*O*-**bis**(**methoxymethylene**)-**4,5bis**(**dimethylphosphate**)-*myo*-**inositol** (**5**). A solution of diol **B** (103 mg, 0.17 mmol) and 1-*H* tetrazole (40 mg, 0.55 mmol) in CH₂Cl₂ (2 mL) was treated with dimethyl *N*,*N*diisopropylphosphoramidite (0.16 mL, 0.68 mmol) under Ar. After 12 h the result mixture was cooled to – 20 °C and treated with *m*-CPBA (230 mg, 1mmol). After warmup to rt, saturated aqueous Na₂S₂O₃ and NaHCO₃ were added and stirred for 30 min. The reaction mixture was extracted with CH₂Cl₂ and dried with Na₂SO₄. The organic phase was concentrated, and the residue was chromatographed on silica gel (hexanes/acetone, 1:1) giving pure product **5** (113 mg, 81%) as an oil. $[\alpha]^{20}_{D} = + 39.3$ (*c* 0.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.72 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.60 (dd, J = 8.0, 2.4 Hz, 2H), 4.99 (d, J = 6.0 Hz, 1H), 4.97 (t, J = 8.4 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.72 (dd, J = 10.4, 2.8 Hz, 1H), 4.43-4.34 (m, 3H), 4.17 (t, J = 9.6 Hz, 1H), 3.98 (dd, J = 9.6, 1.8 Hz, 1H), 3.81 (d, J = 5.6 Hz, 3H), 3.78 (d, J = 5.2 Hz, 3H), 3.68 (d, J = 11.6 Hz, 3H), 3.46 (s, 3H), 3.44 (t, J = 2.2 Hz, 1H), 3.15 (d, J = 11.2 Hz, 3H), 3.08 (s, 3H), 1.09 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 136.2, 136.0, 133.5, 133.3, 132.5, 130.4, 130.3, 130.2, 129.6, 128.4, 128.3, 128.1, 99.0, 98.0, 78.9, 76.5, 76.2, 73.6, 71.5, 57.1, 56.1, 54.8, 54.8, 54.7, 53.8, 53.7, 27.4, 19.4; ³¹P NMR (162 MHz, CDCl₃) δ 1.71 (s, 1P), 0.86 (s, 1P). MALDI-HRMS [M + Na]⁺ calcd for C₃₇H₅₂O₁₅P₂SiNa 849.2443, found 849.2445.

inositol (**C**): Diphosphate **5** (180 mg, 0.22 mmol) was dissolved in 2.4 mL DMF, to the mixture was added TBAF•3H₂O (110 mg, 0.35 mmol), stirred at room temperature for 3 h. The mixture was concentrated, diluted with EtOAc, and then washed with water, 1 N HCl, saturated aqueous NaCl solution. The organic phase dried with Na₂SO₄. The crude product was chromatographed on silica gel (hexanes/acetone, 1:2) to give bisphosphate **C** (118 mg, 91%) as colorless oil. $[\alpha]_{20}^{D} = + 6.0$ (*c* 0.65, CHCl₃); ¹H NMR(400 MHz,

1D-3-O-Benzoyl-2,6-O-bis(methoxymethylene)-4,5-bis(dimethylphosphate)-myo-

CDCl₃) δ 8.15 – 8.13 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 5.08 – 5.04 (m, 2H), 4.78 (d, *J* = 6.8 Hz, 2H), 4.70 (d, *J* = 6.8 Hz, 1H), 4.58 (d, *J* = 6.8 Hz, 1H), 4.48-4.42 (m, 1H), 4.26 (t, *J* = 3.0 Hz, 2H), 3.80 (s, 6H), 3.77 (s, 6H), 3.74 (s, 1H), 3.71 (s, 1H), 3.68 (s, 1H), 3.65-3.61 (m, 2H), 3.44 (s, 3H), 3.24 (s, 1H), 3.22 (s, 1H), 3.20 (s, 3H), 3.17 (d, *J* = 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 133.6, 130.4, 130.1, 129.4, 128.6, 128.5, 99.1, 99.2, 83.3, 79.1, 79.1, 76.8, 75.5, 71.9, 70.4, 56.5, 56.2, 54.9,

54.7, 54.5, 53.9; ³¹P NMR (162 MHz, CDCl₃) δ 1.51 (1P), 1.21 (1P); MALDI-HRMS [M + Na]⁺ calcd for C₂₁H₃₄O₁₅P₂Na 611.1271, found 611.1306.

1D-1-O-triethylsilyl-3-O-Benzoyl-2,6-O-bis(methoxymethylene)-4,5-

bis(dimethylphosphate)-myo-inositol (6). A solution of alcohol obtained above C (60 mg, 0.10 mmol) and imidazole (68 mg, 1.0 mmol) in CH₂Cl₂ (5 mL) was treated with TESC1 (0.10 mL, 0.6 mmol) at rt. After 12 h the mixture was concentrated and subjected to the aqueous workup. The organic phase was concentrated, and the residue was chromatographed on silica gel (hexanes/acetone, 2:3) giving pure product 6 (63 mg, 88%) as a colorless oil. $[\alpha]_{20}^{D} = +27.9 (c \ 0.68, CHCl_3); {}^{1}H \ NMR(400 \ MHz, CDCl_3) \delta 8.15 -$ 8.12 (m, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 5.05 – 4.94 (m, 2H), 4.85 (d, J = 6.4 Hz, 2H), 4.73 (dd, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (q, J = 10.4, 6.8 Hz, 2H), 4.54 (d, J = 6.8 Hz, 1H), 4.39 (d, J = 69.2 Hz, 1H), 4.06 (s, 1H), 3.99 (t, J = 9.6 Hz, 1H), 3.77 (d, J = 1.2 Hz, 3H), 3.75 (d, J =1.6 Hz, 3H), 3.67 (d, J = 11.6 Hz, 4H), 3.41 (s, 3H), 3.17 (d, J = 11.6 Hz, 3 H), 3.14 (s, 3H), 3.14 (s, 3H), 3.17 (d, J = 11.6 Hz, 3 H), 3.14 (s, 3H), 3.14 (s, 3H), 3.17 (d, J = 11.6 Hz, 3H), 3.14 (s, 3H), 3.14 (s, 3H), 3.17 (d, J = 11.6 Hz, 3H), 3.14 (s, 3H), 3.14 (s, 3H), 3.17 (d, J = 11.6 Hz, 3H), 3.14 (s, 3H), 3.14 (s, 3H), 3.17 (d, J = 11.6 Hz, 3H), 3.14 (s, 3H), 3.3H), 0.91 (t, J = 7.6 Hz, 9 H), 0.60 (q, J = 7.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 133.5, 130.4, 129.5, 128.5, 98.6, 97.5, 79.0, 76.1, 75.9, 73.0, 72.0, 57.0, 56.1, 54.1, 54.8, 54.8, 54.7, 54.6, 54.6, 53.8, 53.7, 7.0, 5.0; ³¹P NMR (162 MHz, CDCl₃) δ 1.79 (1P), 1.02 (1P); MALDI-HRMS $[M + Na]^+$ calcd for $C_{27}H_{48}O_{15}P_2Na$ 725.2135, found 725.2148.

1D-1-*O***-triethylsilyl-2,6-***O***-bis(methoxymethylene)-4,5-bis(dimethylphosphate)***-myo*-**inositol (D).** A solution of diisobutylaluminium hydride (0.5 mL, 1 M in Hexanes, 0.5 mmol) was added dropwise at – 78 °C to a solution of **6** (63 mg, 0.09 mmol) in dry

CH₂Cl₂ (3 mL). After stirring for 1.5 h at – 78 °C, methanol (5 mL) was added slowly to quench the reaction and allowed to warm to rt. The reaction mixture was poured to wet Na₂SO₄ and stirred for a wile. The solid Na₂SO₄ was filtered off and washed with EtOAc. The filtrate was concentrated and the residue was chromatographed on silica gel (hexanes/acetone, 1:2) giving pure product **D** (45 mg, 84%) as a colorless oil. $[\alpha]_{20}^{D} = +$ 9.7 (*c* 0.50, CHCl₃); ¹H NMR(400 MHz, CDCl₃) δ 4.82 (d, *J* = 6.0 Hz, 1H), 4.75 (d, *J* = 6.8 Hz, 2H), 4.70 (t, *J* = 6.8Hz, 2H), 4.46 (q, *J* = 6.8 Hz, 2H), 4.26 (q, *J* = 9.2 Hz, 1H), 3.89 (t, *J* = 9.6 Hz, 1H), 3.82 (t, *J* = 2.0 Hz, 1H), 3.79 (d, *J* = 3.6 Hz, 3H), 3.77 (d, *J* = 3.6 Hz, 3H), 3.75 (d, *J* = 6.8 Hz, 3H), 3.72 (d, *J* = 6.4 Hz, 3H), 3.55 (m, 2H), 3.40 (s, 3H), 3.39 (s, 3H), 0.91 (t, *J* = 8.0 Hz, 9 H), 0.60 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 98.5, 98.3, 80.6, 80.5, 80.2, 78.7, 76.4, 72.9, 70.8, 56.9, 56.3, 55.2, 55.1, 55.1, 54.7, 54.6, 54.6, 7.0, 5.0; ³¹P NMR (162 MHz, CDCl₃) δ 3.05 (1P), 2.04 (1P); CI-HRMS [M + H]⁺ calcd for C₂₀H₄₅O₁₄P₅Si 599.2053, found 599.2040.

1D-1-*O***-triethylsilyl-3-(bis(cyanoethyl)phosphothionate)-2,6-***O***-bis (methoxymethylene)-4,5-bis(dimethylphosphate)***-myo***-inositol (E).** Bis(2-cyanoethoxy) (diisopropylamino)phosphine (38.5 mg, 0.16 mmol) was added to a solution of inositol **D** (40 mg, 0.067 mmol) and 1*H*-tetrazole (11 mg, 0.16 mmol) in 0.5 mL mixture solvents of CH₂Cl₂/CH₃CN (1:1). The mixture was stirred at rt under Ar for overnight. Then the phenylacetyl disulfide (140 mg, 0.4 mmol) was added and stirred for 30 min. The result mixture was diluted with 50 mL EtOAc and washed with water. After dried with Na₂SO₄, The organic phase was concentrated, and the residue was chromatographed on silica gel (hexanes/acetone, 1:2) to afford pure product **E** (41 mg, 72%) as a colorless oil. $[\alpha]_{20}^{D} =$

+ 5.8 (*c* 0.40, CHCl₃); ¹H NMR(400 MHz, CDCl₃) δ 4.81 (d, *J* = 6.4 Hz, 1H), 4.76 (d, *J* = 6.8 Hz, 1H), 4.74-4.66 (m, 3H), 4.36-4.22 (m, 6H), 4.13 (s, 1H), 3.91 (t, *J* = 9.6 Hz, 1H), 3.78-3.75 (m, 12H), 3.54 (dd, *J* = 9.6, 1.6 Hz, 1H), 3.39 (s, 3H), 3.35 (s, 3H), 0.91 (t, *J* = 8.0 Hz, 9 H), 0.61 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 116.9, 116.7, 98.6, 97.7, 78.2, 76.7, 76.6, 75.9, 72.6, 63.3, 63.2, 63.1, 63.0, 57.0, 56.3, 55.3, 55.2, 55.1, 55.0, 55.0, 55.0, 54.9, 54.9, 19.6, 19.6, 7.0, 4.9; ³¹P NMR (162 MHz, CDCl₃) δ 67.63 (1P), 1.77 (1P), 1.74 (1P); CI-HRMS [M + H]⁺ calcd for C₂₆H₅₂N₂O₁₆P₃SSi 801.2019, found 801.1970.

1D-3-(bis(cyanoethyl)phosphothionate)-2,6-O-bis(methoxymethylene)-4,5-

bis(dimethylphosphate)-*myo*-inositol (7). To a solution of E (10 mg, 0.012 mmol) in methanol (0.5 mL) was added NH₄F (4.5 mg, 0.12 mmol). The resulting mixture was stirred at rt for 3 h, concentrated and chromatographed on silica gel (hexanes/acetone, 1: 3) to afford pure product **7** (7.5 mg, 85%) as a colorless oil. $[\alpha]_{20}^{D} = -16.7$ (*c* 0.75, CHCl₃); ¹H NMR(400 MHz, CDCl₃) δ 4.81 (d, *J* = 6.4 Hz, 1H), 4.78 (d, *J* = 6.8 Hz, 1H), 4.72 (q, *J* = 7.2 Hz, 2H), 4.64 (d, *J* = 7.2 Hz, 1H), 4.40-4.26 (m, 1H), 3.91 (t, *J* = 9.6 Hz, 1H), 3.78-3.75 (m, 12H), 3.54 (dd, *J* = 9.6, 1.6 Hz, 1H), 3.39 (s, 8H), 3.78-3.67 (m, 12H), 3.48 (dd, *J* = 9.2, 2.0 Hz, 1H), 3.40 (s, 3H), 3.39 (s, 3H), 2.75 (q, *J* = 6.0 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 117.0, 116.8, 99.1, 98.3, 83.2, 78.6, 76.5, 76.3, 70.1, 63.3, 63.23, 63.1, 63.0, 56.5, 56.3, 55.3, 55.2, 55.0, 54.94, 54.9, 54.6, 54.6, 29.3, 19.7, 19.6; ³¹P NMR (162 MHz, CDCl₃) δ 67.59 (1P), 1.79 (1P), 1.54 (1P); MALDI-HRMS [M + Na]⁺ calcd for C₂₀H₃₇N₂NaO₁₆P₃S 709.0974, found 709.1033.

1D-O-(1,2-Di-O-butanoyl-sn-(2S)-glycerol-3-O-cyanoethylphospho)-3-(bis(cyano ethyl)phosphothionate)-2,6-O-bis(methoxymethylene)-4,5-bis(dimethylphosphate)*myo*-inositol (9a). To a solution of alcohol 7 (20 mg, 0.029 mmol) in dry CH₂Cl₂ (0.5 mL) was added N,N-diisopropyl-O-cyanoethyl-O-(di-butanoyl-sn-(2S)glycerol)phosphonamidite 8a (20 mg, 0.047 mmol) and 1H-tetrazole (6 mg, 0.085 mmol). The mixture was stirred at rt for 12 h. Oxidation was then performed with t-BuOOH (25 μ L, 5.5 M in decane, 0.14 mmol) at rt for 1 h. The solution was diluted with CH_2Cl_2 (20 mL) and washed with saturated aqueous $Na_2S_2O_4$. The organic layer was concentrated and the residue purified by chromatograph (acetone/hexanes, 2:1) to give 9a (28 mg, 93%) as a yellow oil. $[\alpha]_{20}^{D} = -13.8 (c \ 1.07, \text{CHCl}_3); ^{1}\text{H NMR}(400 \text{ MHz}, \text{CDCl}_3)$ δ 5.22 (m, 1H), 4.77-4.69 (m, 5H), 4.50 (d, J = 10.0 Hz, 1H), 4.41-4.06 (m, 13H), 4.00 (td, J = 9.6, 2.4 Hz, 1H), 3.79-3.74 (m, 12H), 3.38 (s, 3H), 3.37 (s, 3H), 2.80-2.72 (m, 6H), 2.29-2.23 (m, 4H), 1.62-1.55 (m, 4H), 0.91-0.86 (m, 6H); ¹³C NMR (101 MHz, $CDCl_{3}\delta$ 173.3, 173.0, 172.9, 117.1, 117.0, 116.8, 99.0, 98.3, 98.3, 77.9, 75.8, 75.2, 75.0, 69.5, 69.5, 66.5, 66.4, 63.3, 63.2, 62.7, 62.7, 62.7, 62.6, 61.7, 56.9, 56.5, 56.4, 55.3, 55.2, 55.1, 55.0, 54.99, 54.9, 54.8, 36.5, 36.2, 19.0, 19.7, 19.6, 19.5, 18.5, 13.8, 13.7; ³¹P NMR (162 MHz, CDCl₃) & 67.45 and 67.28 (1P), 1.94 and 1.92 (1P), 1.86 and 1.83 (1P), -1.02 and -1.34 (1P); MALDI-HRMS [M + H]⁺ calcd for C₃₄H₆₀N₃O₂₃P₄S 1034.2288, found 1034.2270.

1D-O-(1,2-Di-O-octanoyl-*sn*-(2S)-glycerol-3-O-cyanoethylphospho)-3-(bis(cyano ethyl)phosphothionate)-2,6-O-bis(methoxymethylene)-4,5-bis(dimethylphosphate)*myo*-inositol (9b) was obtained from 7 in 72% yield analogously as described for compound **9a**. $[\alpha]_{20}^{D} = -13.0$ (*c* 0.75, CHCl₃); ¹H NMR(400 MHz, CDCl₃) δ 5.20 (m, 1H), 4.77-4.68 (m, 5H), 4.50 (d, *J* = 13.2 Hz, 1H), 4.40-4.05 (m, 13H), 3.99 (td, *J* = 9.6, 2.4 Hz, 1H), 3.78-3.73 (m, 12H), 3.37 (s, 3H), 3.36 (s, 3H), 2.77-2.71 (m, 6H), 2.29-2.22 (m, 4H), 1.55-1.51 (m, 4H), 1.21 (m, 16H), 0.81 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.1, 173.1, 117.1, 117.09, 117.0, 116.99, 116.8, 116.8, 99.0, 98.3, 98.27, 77.9, 75.9, 75.8, 75.8, 75.2, 75.0, 69.6, 69.5, 66.5, 66.4, 66.4, 63.3, 63.3, 63.2, 63.2, 62.8, 62.7, 62.6, 62.6, 61.8, 56.9, 56.4, 56.4, 55.3, 55.2, 55.1, 55.0, 54.9, 54.8, 54.81, 34.3, 34.2, 31.8, 29.2, 29.2, 29.12, 29.1, 25.0, 22.8, 19.9, 19.88, 19.8, 19.8, 19.7, 19.6, 19.5, 14.3; ³¹P NMR (162 MHz, CDCl₃) δ 67.47 and 67.29 (1P), 1.95 and 1.93 (1P), 1.86 and 1.83 (1P), -1.02 and -1.31 (1P); MALDI-HRMS [M + H]⁺ calcd for C₄₂H₇₆N₃O₂₃P₄S 1146.3540, found 1146.3556.

1D-*O*-(1,2-Di-*O*-palmitoyl-*sn*-(2*S*)-glycerol-3-*O*-cyanoethylphospho)-3-(bis(cyano ethyl)phosphothionate)-2,6-*O*-bis(methoxymethylene)-4,5-bis(dimethylphosphate)*myo*-inositol (9c) was obtained from 7 in 87% yield analogously as described for compound 9a. $[\alpha]_{20}^{D} = -11.3$ (*c* 0.80, CHCl₃); ¹H NMR(400 MHz, CDCl₃) δ 5.21 (m, 1H), 4.78-4.69 (m, 5H), 4.50 (d, *J* = 13.6 Hz, 1H), 4.40-4.05 (m, 13H), 3.99 (td, *J* = 9.6, 2.4 Hz, 1H), 3.79-3.74 (m, 12H), 3.37 (s, 6H), 2.80-2.72 (m, 6H), 2.29-2.22 (m, 4H), 1.55-1.51 (m, 4H), 1.19 (m, 48H), 0.81 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 173.1, 173.0, 117.1, 117.0, 116.81, 116.8, 98.9, 98.3, 98.2, 77.9, 75.8, 75.6, 75.2, 75.0, 69.5, 69.46, 66.4, 63.3, 63.27, 63.2, 62.8, 62.7, 62.66, 62.6, 61.8, 56.9, 56.4, 55.2, 55.19, 55.1, 55.0, 54.97, 54.8, 54.76, 34.3, 34.2, 32.1, 29.9, 29.8, 29.7, 29.5, 29.49, 29.3, 29.27, 25.0, 22.8, 19.9, 19.8, 19.7, 19.6, 19.5, 14.3; ³¹P NMR (162 MHz, CDCl₃) δ 67.43 and 67.23 (1P), 1.94 and 1.91 (1P), 1.84 and 1.81 (1P), -1.04 and -1.35 (1P); MALDI-HRMS [M + Na]⁺ calcd for C₅₈H₁₀₇N₃O₂₃P₄SNa 1392.5864, found 1392.5876.

1D-*O*-(**1**,**2**-Di-*O*-oleoyl-*sn*-(**2***S*)-glycerol-3-*O*-cyanoethylphospho)-3-(bis(cyano ethyl)phosphothionate)-**2**,6-*O*-bis(methoxymethylene)-**4**,**5**-bis(dimethylphosphate)*myo*-inositol (**9**d) was obtained from **7** in 70% yield analogously as described for compound **9a**. $[\alpha]_{20}^{D} = -9.8 (c 0.77, CHCl_3); {}^{1}H NMR(400 MHz, CDCl_3) \delta 5.31-5.20$ (m, 5H), 4.78-4.69 (m, 5H), 4.50 (d, *J* = 13.2 Hz, 1H), 4.48-3.95 (m, 14H), 3.79-3.74 (m, 12H), 3.37 (s, 6H), 2.78-2.72 (m, 6H), 2.29-2.23 (m, 4H), 1.94 (m, 7H), 1.73 (m, 1H), 1.55 (m, 4H), 1.19 (m, 40H), 0.81 (t, *J* = 6.8 Hz, 6H); {}^{13}C NMR (101 MHz, CDCl_3) \delta 173.4, 173.0, 130.2, 129.9, 117.1, 117.0, 116.8, 98.9, 98.3, 98.2, 77.9, 75.8, 75.5, 75.2, 75.0, 69.6, 69.5, 66.4, 63.3, 63.28, 63.2, 62.8, 62.7, 62.66, 62.6, 61.8, 56.9, 56.4, 55.3, 55.2, 55.1, 55.0, 54.97, 54.8, 54.77, 34.3, 34.2, 32.1, 29.9, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.37, 29.3, 29.2, 27.8, 27.4, 27.35, 25.0, 22.9, 19.9, 19.86, 19.8, 19.79, 19.6, 19.6, 19.5, 14.3; ³¹P NMR (162 MHz, CDCl₃) δ 67.43 and 67.24 (1P), 1.94 and 1.91 (1P), 1.84 and 1.82 (1P), -1.04 and -1.34 (1P); MALDI-HRMS [M + H]⁺ calcd for C₆₂H₁₁₂N₃O₂₃P₄S 1422.6357, found 1422.6363.

1D-O-(1,2-Di-O-butanoyl-sn-(2S)-glycerol-3-phospho)-3-phosphothionate-4,5-

bisphosphate-*myo*-inositol (1a). To a solution of **9a** (16 mg, 0.015 mmol) in CH₃CN (0.5 mL) under Ar was added triethylamine (0.25 mL) followed by the addition of bis(trimethylsilyl)trifluoroacetamide (0.25 mL). After 24 h, the reaction mixture was concentrated and the residue was completely dried and dissolved in CH₂Cl₂ (0.3 mL). At

0 °C, TMSBr (0.2 mL) was added to the mixture and then warmed to rt for 40 min. The solvents were removed by evaporation and then dried completely to remove the excess TMSBr. The residue was stirred with methanol (1 mL) for 1 h. After concentration, the residue was washed with CHCl₃ at low temperature to give **1a** (10 mg, 89%) as white solid. $[\alpha]_{20}^{D} = + 4.1$ (*c* 1.1, CH₃OH); ¹H NMR(400 MHz, CD₃OD) δ 5.16 (m, 1H), 4.61 (q, *J* = 9.2 Hz, 1H), 4.47 (s, 1H), 4.41-4.28 (m, 2H), 4.15-3.99 (m, 5H), 3.89 (t, *J* = 9.6 Hz, 1H), 2.27-2.19 (m, 4H), 1.57-1.50 (m, 4H), 0.88-0.83 (m, 6H); ¹³C NMR (101 MHz, CD₃OD) δ 173.7, 173.3, 79.8, 77.2, 77.1, 75.7, 70.2, 70.1, 70.0, 69.5, 65.2, 62.0, 35.7, 35.5, 18.2, 12.7; ³¹P NMR (162 MHz, CD₃OD) δ 63.77 (1P), 1.07 (1P), 0.89 (1P), -0.64 (1P); MALDI-HRMS [M - H]⁻ calcd for C₁₇H₃₃O₂₁P₄S 729.0185, found 729.0162.

1D-*O*-(**1**,**2**-Di-*O*-octanoyl-*sn*-(**2***S*)-glycerol-**3**-phospho)-**3**-phosphothionate-**4**,**5**bisphosphate-*myo*-inositol (**1b**) was obtained from **9b** in 90% yield analogously as described for compound **1a**. $[α]^{D}_{20} = +4.9$ (*c* 0.77, CH₃OH); ¹H NMR(400 MHz, CD₃OD) δ 5.17 (m, 1H), 4.62 (q, *J* = 8.8 Hz, 1H), 4.48 (s, 1H), 4.41-4.28 (m, 2H), 4.15-4.00 (m, 5H), 3.92 (m, 1H), 2.28-2.22 (m, 4H), 1.54-1.50 (m, 4H), 1.22 (m, 16H), 0.81 (t, *J* = 6.4 Hz, 6H); ¹³C NMR (101 MHz, CD₃OD) δ 173.8, 173.4, 79.6, 77.0, 75.7, 70.2, 69.7, 65.1, 62.1, 33.9, 33.7, 31.7, 28.9, 24.8, 22.5, 13.3; ³¹P NMR (162 MHz, CD₃OD) δ 63.20 (1P), 0.69 (1P), 0.51 (1P), -0.67 (1P); MALDI-HRMS [M - H]⁻ calcd for $C_{25}H_{49}O_{21}P_4S$ 841.1438, found 841.1443.

1D-O-(1,2-Di-O-palmitoyl-sn-(2S)-glycerol-3-phospho)-3-phosphothionate-4,5bisphosphate-myo-inositol (1c) was obtained from 9c in 95% yield analogously as described for compound **1a.** $[\alpha]_{20}^{D} = +4.7$ (*c* 0.92, CH₃OH); ¹H NMR(400 MHz, CD₃OD/CDCl₃ 5:1) δ 5.18 (m, 1H), 4.63 (q, *J* = 8.8 Hz, 1H), 4.47 (s, 1H), 4.41-4.27 (m, 2H), 4.18-3.95 (m, 5H), 3.82 (m, 1H), 2.30-2.20 (m, 4H), 1.58-1.50 (m, 4H), 1.19 (m, 48H), 0.78 (t, *J* = 6.4 Hz, 6H); ¹³C NMR (101 MHz, CD₃OD/CDCl₃ 5:1) δ 177.8, 177.5, 83.7, 81.1, 79.6, 76.2, 74.5, 74.2, 74.0, 73.9, 73.88, 73.5, 69.2, 67.2, 66.2, 38.0, 37.9, 37.83, 37.8, 35.9, 35.89, 33.66, 33.6, 33.52, 33.5, 33.46, 33.4, 33.3, 33.31, 33.24, 33.2, 33.1, 33.0, 28.9, 28.8, 26.6, 17.52, 17.5; ³¹P NMR (162 MHz, CD₃OD/CDCl₃ 5:1) δ 63.66 (1P), 0.92 (1P), 0.75 (1P), -0.66 (1P); MALDI-HRMS [M - H]⁻ calcd for C₄₁H₈₁O₂₁P₄S 1065.3947, found 1065.3918.

1D-O-(1,2-Di-O-oleoyl-*sn***-(2S)-glycerol-3-phospho)-3-phosphothionate-4,5bisphosphate-***myo***-inositol (1d)** was obtained from **9d** in 91% yield analogously as described for compound **1a.** $[\alpha]_{20}^{D} = + 6.0$ (*c* 0.86, CH₃OH); ¹H NMR(400 MHz, CD₃OD) δ 5.24 (m, 5H), 4.59 (m, 1H), 4.47 (s, 1H), 4.41-4.31 (m, 2H), 4.18-3.95 (m, 5H), 3.90 (m, 1H), 2.26-2.20 (m, 4H), 1.93 (m, 7H), 1.69 (m, 1H), 1.51 (m, 4H), 1.20 (m, 40H), 0.78 (s, br, 6H); ¹³C NMR (101 MHz, CD₃OD) δ 177.7, 177.5, 133.7, 133.6, 83.5, 80.8, 79.6, 74.2, 73.6, 69.1, 66.4, 43.3, 38.0, 37.8, 37.7, 36.0, 35.9, 33.8, 33.7, 33.7, 33.6, 33.5, 33.4, 33.37, 33.34, 33.3, 33.26, 33.2, 33.17, 33.1, 33.08, 31.2, 31.1, 28.9, 26.7, 17.7; ³¹P NMR (162 MHz, CD₃OD) δ 62.62 (1P), 0.89 (2P), -0.60 (1P); MALDI-HRMS

 $[M - H]^{-}$ calcd for $C_{45}H_{85}O_{21}P_4S$ 1117.4260, found 1117.4249.

1D-1-*O*-(*tert*-Butyldiphenylsilyl)-2,6-*O*-bis(methoxymethylene)-4,5-*O*-(1,1,3,3tetraisopropyldisiloxanedi-1,3-yl)-*myo*-inositol (F) was obtained from 4 in 88% yield analogously as described for compound **D**. $[\alpha]_{D}^{20} = + 11.7$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.63 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.36-7.26 (m, 6H), 4.94 (d, *J* = 6.4 Hz, 1H), 4.78 (d, *J* = 6.0 Hz, 1H), 4.53 (d, *J* = 6.8 Hz, 1H), 4.17 (d, *J* = 6.4 Hz, 1H), 3.86 (t, *J* = 9.6 Hz, 1H), 3.75 (dd, *J* = 9.6, 2.4 Hz, 1H), 3.60 (t, *J* = 9.2 Hz, 1H), 3.41 (t, *J* = 8.4 Hz, 1H), 3.37 (s, 3H), 3.22 (s, 3H), 3.04 (s, 1H), 2.90 (dd, *J* = 9.2, 2.0 Hz, 2H), 1.02 (s, 9H), 1.01-0.84 (m, 28H); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 136.0, 134.5, 133.3, 130.4, 130.1, 128.1, 127.9, 98.9, 98.8, 82.3, 78.9, 78.5, 77.7, 73.67, 71.3, 56.8, 56.1, 27.4, 19.5, 17.7, 17.66, 17.65, 17.5, 17.52, 17.4, 17.3, 13.2, 12.9, 12.3, 12.2; MALDI-HRMS [M + Na]⁺ calcd for C₃₈H₆₄O₉ Si₃Na 771.3755, found 771.3761.

1D-1-*O*-(*tert*-Butyldiphenylsilyl)-3-(dimethyl methylenephosphonate)-2,6-*O*bis(methoxymethylene)-4,5-*O*-(1,1,3,3-tetraisopropyldisiloxanedi-1,3-yl)-*myo*-inositol (10). *n*-BuLi (1.6 M in THF, 0.55 mL, 0.88 mmol) was added under Ar atmosphere to a solution of **F** (540 mg, 0.72 mmol) at – 78 °C. The reaction mixture was stirred for 30 min at – 78 °C and then added 1 mL HMPA. After 15 min, dimethyl methylenephosphonate (272 mg, 1.11 mmol) was added. The reaction was stirred at – 78 °C for 2 h and then allowed to warm to rt and then stirred at rt for 5 h. The reaction was diluted with 200 mL EtOAc and washed with Brine and water. The organic layer was dried with Na₂SO₄, concentrated and purified by flash chromatograph (hexanes/EtOAc, 3:2) to give **10** (500 mg, 80%) as an oil. $[\alpha]^{20}_{D} = + 14.8$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.65 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.39-7.29 (m, 6H), 4.93 (d, *J* = 6.0 Hz, 1H), 4.79 (d, *J* = 6.4 Hz, 1H), 4.50 (d, *J* = 6.4 Hz, 1H), 4.45 (d, *J* = 6.0 Hz, 1H), 3.89 (t, *J* = 9.6 Hz, 1H), 3.81 (dd, *J* = 11.6, 9.2 Hz, 1H), 3.68 (dd, *J* = 10.0, 1.6 Hz, 1H), 3.60 (d, J = 10.8 Hz, 3H), 3.57 (d, J = 10.8 Hz, 3.48-3.41 (m, 2H), 3.40 (s, 3H), 3.33-3.27 (m, 1H), 3.19 (s, 3H), 3.12 (s, 1H), 2.70 (dd, J = 9.6, 2.0 Hz, 2H), 1.04 (s, 9H), 1.02-0.90 (m, 28H); ³¹P NMR (162 MHz, CDCl₃) δ 24.73 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 136.2, 134.7, 130.3, 128.2, 127.9, 98.7, 97.6, 82.1, 82.0, 78.6, 78.4, 76.3, 75.1, 73.7, 64.7, 62.5, 56.8, 55.6, 52.9, 52.8, 27.4, 19.4, 17.6, 17.6, 17.5, 17.4, 13.2, 17.0, 13.1, 12.8, 12.2, 12.1; MALDI-HRMS [M + H]⁺ calcd for C₄₁H₇₂O₁₂Si₃P 871.4069, found 871.4064.

1D-1-O-(tert-Butyldiphenylsilyl)-3-(dimethyl methylenephosphonate)-2,6-O-

bis(methoxymethylene)-*myo*-inositol (G). At 0 °C TBAF (1 M in THF, 1.2 mL, 1.2 mmol) was added to inositol **10** (430 mg, 0.49 mmol) in 4 mL THF, then warmed to rt. The reaction mixture was stirred at rt for 1 h, TLC showed the end of the reaction. The reaction system was diluted with EtOAc, and washed with water, 1 N HCl, then saturated aqueous NaCl solution. The organic solvents were dried with Na₂SO₄, then concentrated and flash chromatographed (hexanes/acetone, 1:4) to afford diol G (280 mg, 90%). $[\alpha]^{20}_{D} = + 42.9 (c \ 1.2 \ CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta \ 7.67 (td,$ *J*= 8.0, 1.6 Hz, 4H), 7.42-7.32 (m, 6H), 4.75 (d,*J*= 6.4 Hz, 1H), 4.62 (d,*J*= 6.4 Hz, 1H), 4.50 (d,*J*= 6.4 Hz, 1H), 4.19 (d,*J*= 7.2 Hz, 1H), 3.87-3.57 (m, 15H), 3.32 (s, 3H), 3.25 (s, 3H), 3.11 (t,*J*= 8.4 Hz, 1H), 3.00 (dd,*J* $= 10.0, 2.4 Hz, 1H), 1.04 (s, 9H); {}^{31}P NMR (162 MHz, CDCl_3) \delta 25.10 (1P); {}^{13}C NMR (101 MHz, CDCl_3) \delta 136.1, 135.9, 134.1, 133.7, 130.2, 129.8, 127.9, 127.7, 98.4, 97.7, 84.5, 82.0, 81.9, 75.1, 74.2, 73.2, 72.7, 64.3, 62.7, 55.8, 55.79, 53.4, 53.36, 53.2, 53.1, 27.2, 19.5; MALDI-HRMS [M + Na]⁺ calcd for C₂₉H₄₅O₁₁PSiNa 651.2361, found 651.2343.$

1D-1-O-(tert-Butyldiphenylsilyl)-3-(dimethylmethylenephosphonate)-2,6-O-

bis(methoxymethylene)-4,5-bis(dimethylphosphate)-myo-inositol (11). A solution of diol G (210 mg, 0.33 mmol) and 1-H tetrazole (80 mg, 1.0 mmol) in CH_2Cl_2 (4 mL) was treated with dimethyl N,N-diisopropylphosphoramidite (0.3 mL, 1.38 mmol) under Ar. After 12 h the result mixture was cooled to -20 °C and treated with *m*-CPBA (460 mg). After warm-up to rt, saturated aqueous $Na_2S_2O_3$ and $NaHCO_3$ were added and stirred for 30 min. The reaction mixture was extracted with CH_2Cl_2 and dried with Na_2SO_4 . The organic phase was concentrated, and the residue was chromatographed on silica gel (MeOH/acetone, 1:2) giving pure product **11** (270 mg, 95%) as a liquid. $[\alpha]_{D}^{20} = +13.8$ $(c 1.1, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.0, 1.6 Hz, 2H), 7.62 (dd, J= 8.0, 1.6 Hz, 2H, 7.38-7.28 (m, 6H), 4.97 (d, J = 6.0 Hz, 1H), 4.76 (d, J = 6.4 Hz, 1H), 4.55 (t, J = 9.2 Hz, 1H), 4.50 (d, J = 6.4 Hz, 1H), 4.40 (d, J = 6.8 Hz, 1H), 4.22-4.16 (m, 1H), 4.04 (t, J = 9.6 Hz, 1H), 3.77-3.57 (m, 18H), 3.42 (s, 3H), 3.21-3.14 (m, 5H), 3.10 (s, 1H), 2.84 (dd, J = 10.0, 2.0 Hz, 1H), 1.04 (s, 9H); ³¹P NMR (162 MHz, CDCl₃) δ 23.27 (1P), 1.67 (1P), 1.09 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 136.1, 134.2, 132.5, 130.5, 130.2, 128.3, 128.0, 98.9, 97.6, 80.0, 79.8, 79.0, 78.9, 78.89, 78.0, 76.1, 73.5, 73.2, 63.6, 62.0, 57.2, 55.9, 54.8, 54.7, 54.6, 54.5, 54.46, 54.4, 53.43, 53.36, 53.0, 52.9, 27.4, 19.3; MALDI-HRMS $[M + Na]^+$ calcd for $C_{33}H_{55}O_{17}P_3SiNa 867.2314$, found 867.2324.

1D-3-(dimethylmethylenephosphonate)-2,6-*O***-bis(methoxymethylene)-4,5bis(dimethylphosphate)-***myo***-inositol (H).** Phosphonate **11** (270 mg, 0.32 mmol) was

dissolved in 3 mL DMF, to the mixture was added TBAF•3H₂O (168 mg, 0.53 mmol), stirred at room temperature for 3 h. The mixture was concentrated, the crude product was chromatographed on silica gel (MeOH/acetone, 1:2) to give phosphonate **H** (145 mg, 75%) as colorless oil. $[\alpha]^{20}_{D} = -18.7$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.78 (d, *J* = 6.8 Hz, 1H), 4.75-4.70 (m, 3H), 4.65 (d, *J* = 7.2 Hz, 1H), 4.30 (t, *J* = 8.8 Hz, 1H), 4.23 (s, 1H), 4.01-3.87 (m, 2H), 3.79-3.67 (m, 19H), 3.45 (dd, *J* = 9.2, 2.4 Hz, 2H), 3.41 (s, 3H), 3.38 (s, 3H); ³¹P NMR (162 MHz, CDCl₃) δ 24.01 (1P), 1.65 (1P), 1.53 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 99.1, 98.0, 83.2, 80.4, 80.3, 79.2, 79.15, 79.1, 78.0, 77.99, 77.9, 74.4, 70.3, 65.1, 63.4, 56.4, 56.0, 54.9, 54.87, 54.86, 54.8, 54.6, 54.59, 54.5, 54.4, 53.3, 53.2, 53.16; MALDI-HRMS [M + Na]⁺ calcd for C₁₇H₃₇O₁₇P₃Na 629.1136, found 629.1144.

1D-O-(1,2-Di-O-butanoyl-sn-(2S)-glycerol-3-O-cyanoethylphospho)-3-

(dimethylmethylenephosphonate)-2,6-O-bis(methoxymethylene)-4,5-

bis(dimethylphosphate)-*myo*-inositol (12a) was obtained from H in 68% yield analogously as described for compound 9a. $[\alpha]^{20}_{D} = -28.0$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.27 (m, 1H), 4.85 (d, *J* = 7.2 Hz, 1H), 4.79-4.67 (m, 4H), 4.47 (m, 1H), 4.37-4.25 (m, 5H), 4.24-3.96 (m, 5H), 3.94-3.87 (m, 1H), 3.82-3.74 (m, 18 H), 3.44 (t, *J* = 2.4 Hz, 1H), 3.41 (s, 3H), 3.37 (s, 3H), 2.80 (q, *J* = 5.6 Hz, 2H), 2.33-2.26 (m, 4H), 1.66-1.58 (m, 4H), 0.92 (m, 6H); ³¹P NMR (162 MHz, CDCl₃) δ 23.86 (d, 1P), 1.83 (d, 1P), 1.71 (d, 1P), -1.05 and -1.36 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 172.9, 116.9, 116.8, 99.0, 98.97, 98.1, 98.0, 80.6, 80.5, 78.8, 76.5, 76.3, 75.9, 75.7, 73.8, 73.7, 69.58, 69.56, 69.51, 69.47, 66.45, 66.40, 66.28, 66.22, 65.82, 64.17, 62.58, 62.53, 62.51, 62.46, 61.68, 57.03, 57.00, 56.92, 56.16, 56.13, 55.04, 55.02, 54.97, 54.96, 54.72, 54.65, 54.60, 53.28, 53.22, 36.18, 36.03, 19.86, 19.83, 19.79, 19.75, 18.50, 13.82, 13.78; MALDI-HRMS [M + Na]⁺ calcd for C₃₁H₅₉O₂₄NP₄Na 976.2270, found 976.2293.

1D-O-(1,2-Di-O-octanoyl-sn-(2S)-glycerol-3-O-cyanoethylphospho)-3-

(dimethylmethylenephosphonate)-2,6-O-bis(methoxymethylene)-4,5-

bis(dimethylphosphate)-*myo*-inositol (12b) was obtained from **H** in 66% yield analogously as described for compound **9a**.[α]²⁰_D = - 19.9 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.26 (m, 1H), 4.84 (d, *J* = 7.2 Hz, 1H), 4.79-4.66 (m, 4H), 4.46 (s, 1H), 4.35-4.25 (m, 5H), 4.24-3.96 (m, 5H), 3.90 (dd, *J* = 14.0, 8.0 Hz, 1H), 3.81-3.75 (m, 18 H), 3.44 (m, 1H), 3.41 (s, 3H), 3.37 (s, 3H), 2.80 (q, *J* = 5.6 Hz, 2H), 2.33-2.26 (m, 4H), 1.57 (q, *J* = 6.8 Hz, 4H), 1.25 (m, 16H), 0.84 (t, *J* = 6.8 Hz, 6H); ³¹P NMR (162 MHz, CDCl₃) δ 23.88 (d, 1P), 1.81 (d, 1P), 1.69 (d, 1P), -1.04 and -1.33 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.1, 116.9, 116.8, 99.0, 98.9, 98.1, 98.0, 80.5, 80.4, 78.7, 76.5, 76.4, 76.3, 76.2, 76.0, 75.7, 73.9, 73.8, 69.55, 69.50, 69.47, 66.4, 66.38, 66.3, 66.2, 65.8, 64.2, 62.6, 62.6, 62.55, 62.50, 61.7, 57.0, 56.99, 56.2, 56.1, 55.0, 55.02, 54.97, 54.96, 54.7, 54.67, 54.6, 53.3, 53.2, 34.3, 34.2, 31.8, 29.2, 29.22, 29.1, 29.11, 25.03, 25.01, 22.8, 19.86, 19.8, 19.78, 19.7, 14.3; MALDI-HRMS [M + Na]⁺ calcd for C₃₉H₇₅O₂₄NP₄Na 1088.3522, found 1088.3499.

1D-*O*-(1,2-Di-*O*-palmitoyl-*sn*-(2*S*)-glycerol-3-*O*-cyanoethylphospho)-3-(dimethylmethylenephosphonate)-2,6-*O*-bis(methoxymethylene)-4,5bis(dimethylphosphate)-*myo*-inositol (12c) was obtained from H in 78% yield analogously as described for compound 9a. $[\alpha]_{D}^{20} = -14.1$ (*c* 0.5, CHCl₃); ¹H NMR (400

MHz, CDCl₃) δ 5.25 (m, 1H), 4.84 (d, J = 6.8 Hz, 1H), 4.77-4.66 (m, 4H), 4.46 (m, 1H), 4.35-3.97 (m, 10H), 3.91 (dd, J = 14.0, 8.0 Hz, 1H), 3.78 (m, 18 H), 3.44 (m, 1H), 3.41 (s, 3H), 3.37 (s, 3H), 2.80 (q, J = 6.0 Hz, 2H), 2.33-2.26 (m, 4H), 1.57 (q, J = 6.8 Hz, 4H), 1.23 (m, 48H), 0.84 (t, J = 6.8 Hz, 6H); ³¹P NMR (162 MHz, CDCl₃) δ 23.92 (d, 1P), 1.76 (d, 1P), 1.66 (s, 1P), -1.08 and -1.39 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 173.1, 116.85, 116.8, 99.0, 98.96, 98.1, 98.0, 80.5, 80.4, 78.8, 76.3, 75.9, 75.7, 73.8, 73.7, 69.5, 66.4, 66.3, 65.7, 64.1, 62.6, 62.5, 62.49, 61.7, 57.0, 56.99, 56.2, 56.1, 55.0, 54.98, 54.96, 54.7, 54.67, 54.6, 53.3, 53.2, 34.3, 34.2, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.49, 29.3, 29.31, 25.0, 22.9, 19.8, 19.78, 14.3; MALDI-HRMS [M + Na]⁺ calcd for C_{s5H107}O₂₄NP₄Na 1312.6026, found 1312.6058.

1D-O-(1,2-Di-O-oleoyl-sn-(2S)-glycerol-3-O-cyanoethylphospho)-3-

(dimethylmethylenephosphonate)-2,6-*O*-bis(methoxymethylene)-4,5bis(dimethylphosphate)-*myo*-inositol (12d) was obtained from H in 72% yield analogously as described for compound **9a**. $[\alpha]^{20}{}_{D} = -15.0 (c \ 0.3 \ CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) δ 5.36-5.30 (m, 4H), 5.27 (m, 1H), 4.85 (d, *J* = 6.8 Hz, 1H), 4.78-4.67 (m, 4H), 4.49 (m, 1H), 4.36-3.98 (m, 10H), 3.92 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.79 (m, 18 H), 3.47 (m, 1H), 3.42 (s, 3H), 3.39 (s, 3H), 2.81 (q, *J* = 6.4 Hz, 2H), 2.30 (q, *J* = 7.6 Hz, 4H), 1.98 (m, 6H), 1,78 (m, 1H), 1.58 (m, 5H), 1.24 (m, 40H), 0.86 (t, *J* = 7.2 Hz, 6H); ³¹P NMR (162 MHz, CDCl₃) δ 23.91 (d, 1P), 1.79 (s, 1P), 1.59 (s, 1P), -1.04 and -1.39 (1P); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 173.1, 130.2, 129.9, 129.89, 116.9, 116.8, 99.0, 98.97, 98.1, 98.0, 80.5, 80.4, 78.8, 76.5, 76.4, 76.3, 76.0, 75.8, 73.9, 69.6, 69.5, 66.4, 65.8, 64.1, 62.5, 61.8, 59.2, 57.0, 57.0, 56.2, 56.1, 55.1, 55.0, 54.8, 54.7, 54.6, 53.4, 39.4, 39.37, 34.3, 34.2, 32.8, 32.79, 32.1, 32.06, 30.0, 29.9, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.43, 29.36, 29.3, 29.29, 29.2, 27.8, 27.4, 27.39, 25.0, 22.9, 19.9, 19.85, 19.80, 19.77, 14.3; MALDI-HRMS [M + Na]⁺ calcd for C₅₉H₁₁₁O₂₄NP₄Na 1364.6339, found 1364.6318.

1D-O-(1,2-Di-O-butanoyl-sn-(2S)-glycerol)-3-methylenephosphonate-4,5-

bisphosphate-*myo*-inositol (2a) was obtained from 12a in 92% yield analogously as described for compound 1a. $[\alpha]_{D}^{20} = +3.6 (c \ 0.5, CH_{3}OH)$; ¹H NMR (400 MHz, CD₃OD) δ 5.18 (m, 1H), 4.54 (q, *J* = 9.6 Hz, 1H), 4.37-4.28 (m, 2H), 4.15-4.01 (m, 5H), 3.91 (m, 2H), 3.75 (t, *J* = 11.2 Hz, 1H), 3.46 (d, *J* = 10.0 Hz, 1H), 2.27-2.20 (m, 4H), 1.58-1.51 (m, 4H), 0.86 (m, 6H); ³¹P NMR (162 MHz, CD₃OD) δ 20.58 (s, 1P), 0.62 (s, 1P), 0.28 (s, 1P), -0.50 (s, 1P); ¹³C NMR (101 MHz, CD₃OD) δ 178.6, 84.6, 84.5, 83.7, 81.7, 81.1, 76.6, 75,7, 74,9, 74.6, 74.1, 72.5, 71.9, 71.3, 70.0, 69.2, 68.4, 67.1, 65.5, 65.2, 39.4, 22.2, 16.6; MALDI-HRMS [M - H] calcd for C₁₈H₃₅O₂₂P₄ 727.0570, found 727.0605.

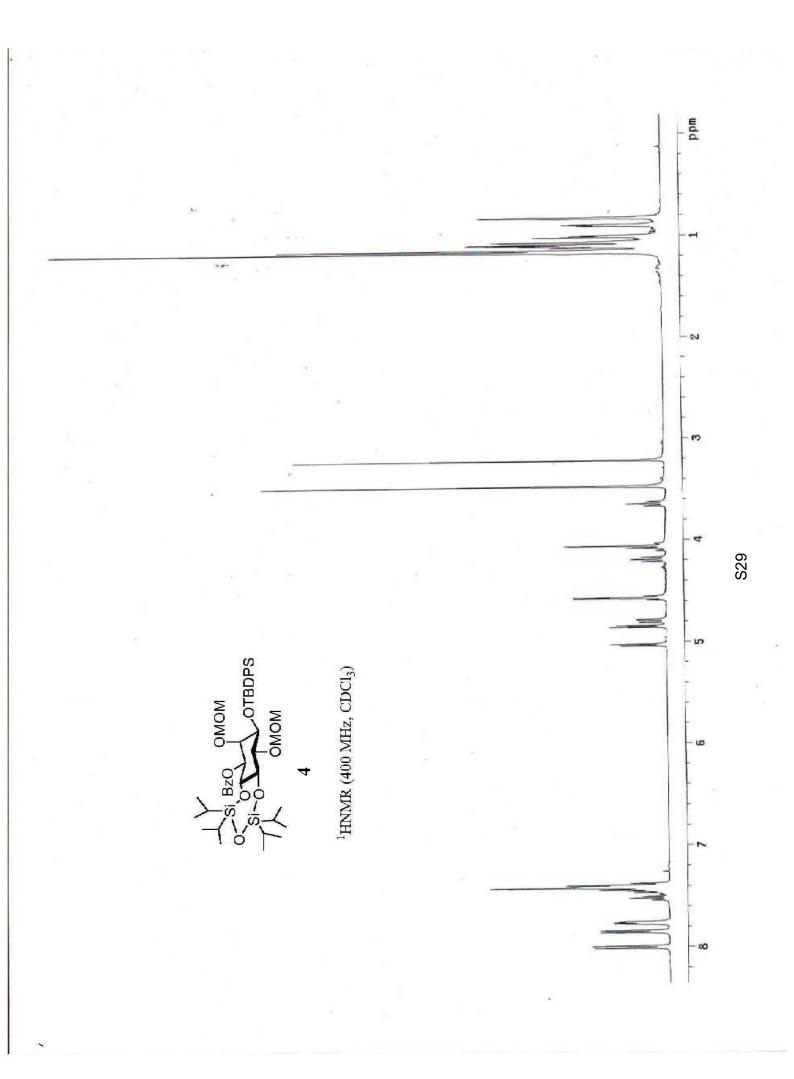
1D-*O*-(**1**,**2**-**D**i-*O*-octanoyl-*sn*-(**2***S*)-glycerol)-**3**-methylenephosphonate-**4**,**5**bisphosphate-*myo*-inositol (**2b**) was obtained from **12b** in 96% yield analogously as described for compound **1a**. $[\alpha]^{20}{}_{D} = + 3.4 (c \ 0.5, CH_{3}OH); {}^{1}H NMR (400 MHz, CD_{3}OD) \delta 5.17 (m, 1H), 4.52 (q,$ *J*= 9.2 Hz, 1H), 4.36-4.28 (m, 2H), 4.14-4.00 (m, 5H),3.92 (m, 2H), 3.72 (dd,*J*= 12.8, 10.4 Hz, 1H), 3.43 (dd,*J*= 10.0, 2.4 Hz, 1H), 2.28-2.21 (m, 4H), 1.51 (m, 4H), 1.22 (m, 16H), 0.80 (t,*J* $= 6.8 Hz, 6H); {}^{31}P NMR (162 MHz, CD_{3}OD) \delta 21.06 (s, 1P), 0.90 (s, 1P), 0.88 (s, 1P), -0.54 (s, 1P); {}^{13}C NMR (101 MHz,$ CD₃OD) & 177.7, 177.3, 84.7, 84.6, 83.8, 81.7, 81.4, 81.3, 74.0, 73.9, 71.2, 70.0, 69.2, 69.1, 68.3, 66.0, 37.8, 37.6, 37.5, 35.6, 32.9, 32.9, 32.8, 28.8, 28.7, 26.4, 26.41, 17.2; MALDI-HRMS [M - H]⁻ calcd for C₂₆H₅₁O₂₂P₄ 839.1822, found 839.1819.

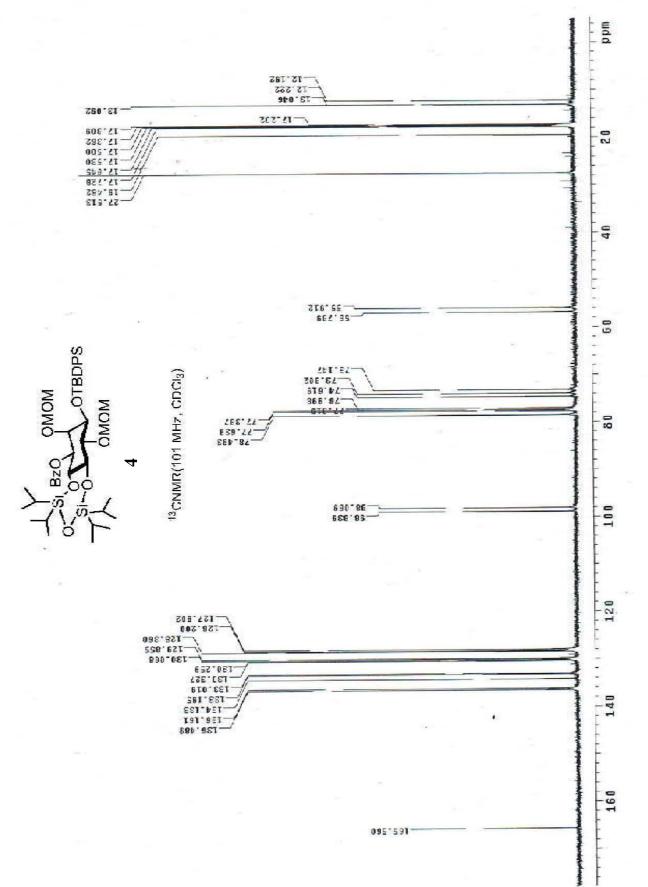
1D-O-(1,2-Di-O-palmitoyl-sn-(2S)-glycerol)-3-methylenephosphonate-4,5-

bisphosphate-*myo*-inositol (2c) was obtained from 12c in 90% yield analogously as described for compound 1a. $[α]^{20}_{D} = +2.2$ (*c* 0.95, CH₃OH/CHCl₃ 1:1); ¹H NMR (400 MHz, CD₃OD/CDCl₃ 3:1) δ 5.20-5.17 (m, 1H), 4.52 (q, *J* = 9.2 Hz, 1H), 4.34-4.28 (m, 2H), 4.14-4.00 (m, 5H), 3.90 (m, 2H), 3.77-3.67 (m, 1H), 3.56-3.38 (m, 2H), 2.27-2.18 (m, 4H), 1.51 (m, 4H), 1.17 (m, 48H), 0.78 (t, *J* = 6.8 Hz, 6H); ³¹P NMR (162 MHz, CD₃OD/CDCl₃ 3:1) δ 20.29 (s, 1P), 0.42 (br, 2P), -0.61 (s, 1P); ¹³C NMR (101 MHz, CD₃OD/CDCl₃ 3:1) δ 177.9, 177.5, 84.6, 84.4, 83.6, 81.1, 74.4, 74.2, 74.0, 73.9, 71.3, 70.1, 69.2, 68.5, 67.2, 66.2, 38.0, 37.9, 37.8, 35.91, 35.9, 33.7, 33.6, 33.6, 33.58, 33.5, 33.46, 33.4, 33.3, 33.31, 33.2, 33.21, 33.1, 33.07, 33.0, 28.9, 26.6, 17.6; MALDI-HRMS [M - H]⁻ calcd for C₄₂H₈₃O₂₂P₄ 1063.4332, found 1063.4382.

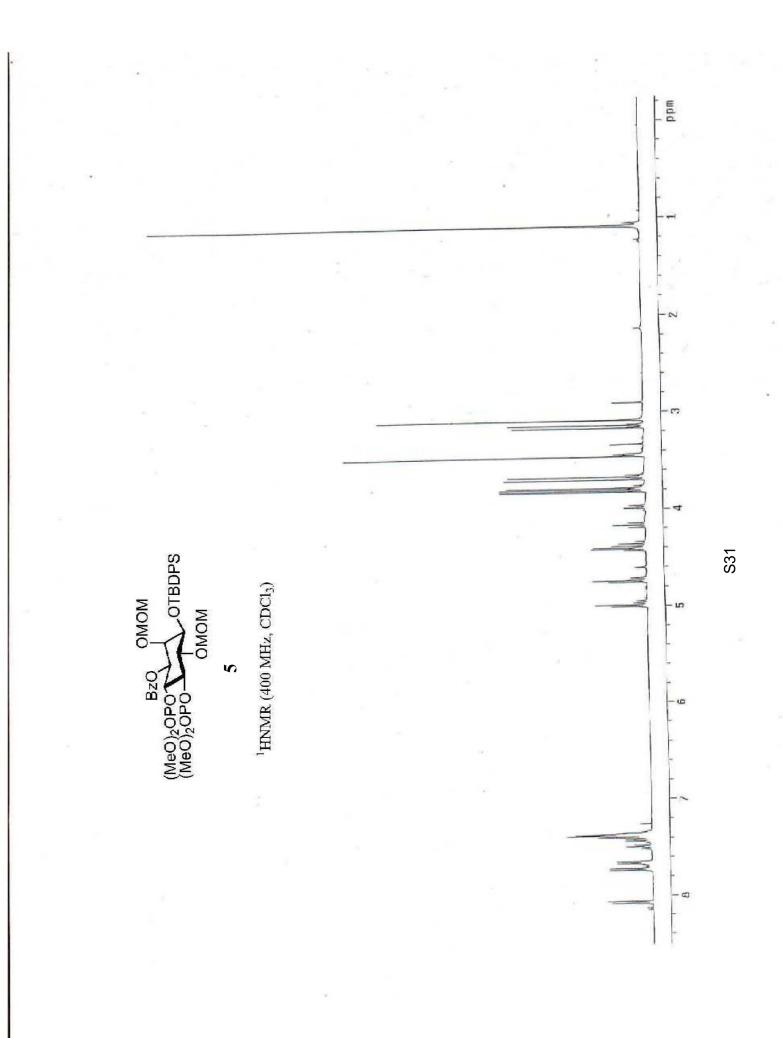
1D-*O*-(**1**,**2**-Di-*O*-oleoyl-*sn*-(**2***S*)-glycerol)-**3**-methylenephosphonate-**4**,**5**-bisphosphate*myo*-inositol (**2d**) was obtained from **12d** in 95% yield analogously as described for compound **1a.** $[\alpha]^{20}{}_{D} = + 1.7$ (*c* 0.4, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 5.29-5.12 (m, 5H), 4.53 (q, *J* = 9.2 Hz, 1H), 4.36-4.29 (m, 2H), 4.17-3.99 (m, 5H), 3.96-3.88 (m, 2H), 3.72 (t, *J* = 10.8 Hz, 1H), 3.43 (dd, *J* = 9.6, 2.4Hz, 1H), 2.27-2.19 (m, 4H), 1.94-1.93 (m, 6H), 1.70 (m, 1H), 1.50 (m, 5H), 1.20 (m, 40H), 0.80 (t, *J* = 6.0 Hz, 6H); ³¹P NMR (162 MHz, CD₃OD) δ 21.05 (s, 1P), 0.92 (s, 1P), 0.90 (s, 1P), -0.53 (s, 1P); ¹³C NMR (101 MHz, CD₃OD) δ 177.6, 177.3, 133.7, 133.5, 84.8, 84.6, 83.8, 81.7, 81.3, 74.0, 71.2, 70.0, 68.3, 67.1, 66.0, 62.4, 43.1, 37.8, 37.6, 37.6, 35.8, 35.8, 33.6, 33.6, 33.5, 33.4, 33.37, 33.3, 33.2, 33.19, 33.1, 33.0, 32.98, 32.94, 32.9, 31.4, 30.9, 30.88, 30.8, 28.8, 17.3; MALDI-HRMS [M - H]⁻ calcd for C₄₆H₈₈O₂₂P₄ 1115.4645, found 1115.4646.

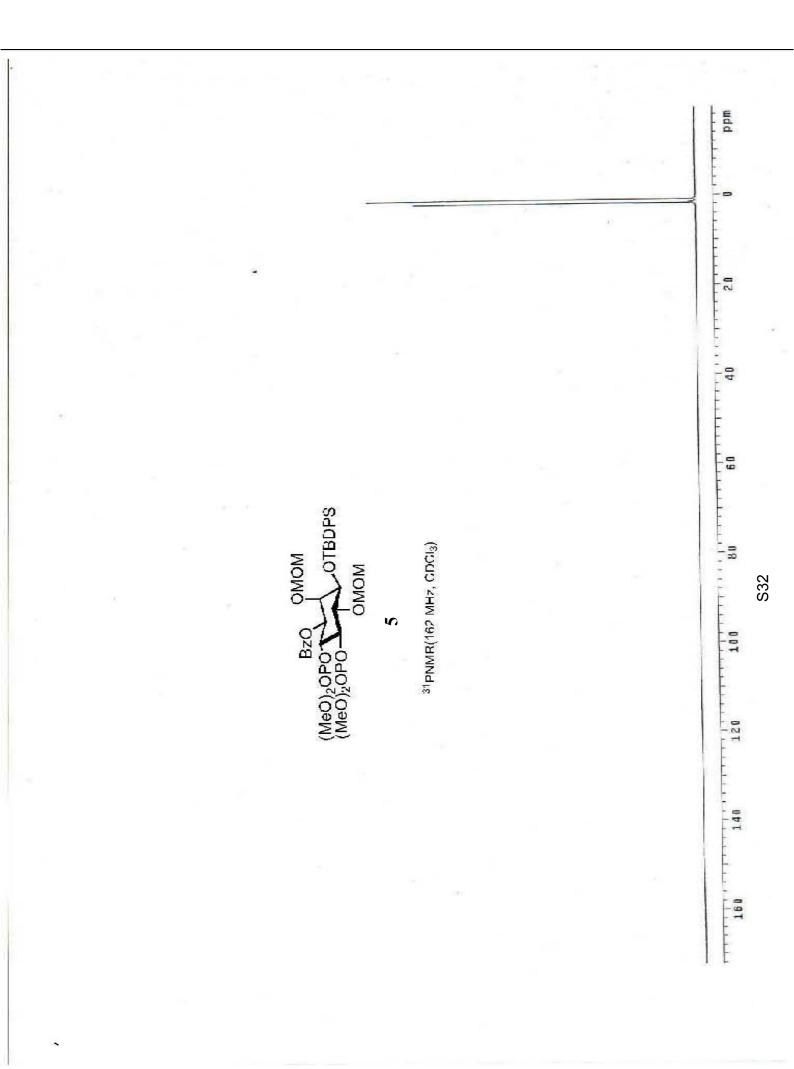
Experimental determination and evaluation of sodium transport $(I_{Na}+, \mu A/cm^2)$.¹

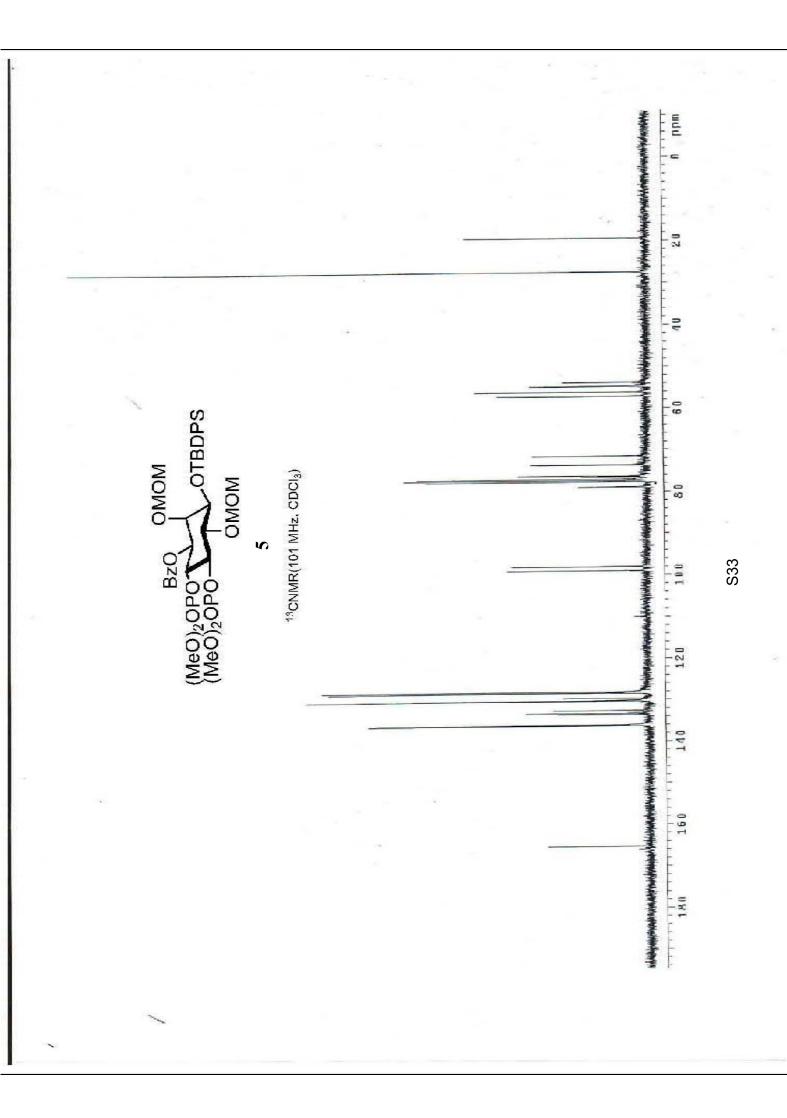

Briefly, A6 cells were subcultured onto 24-mm Millicell inserts (Millipore, Bedford, MA) for 10 days and the day before the experiment, incubated overnight in a serum-free 260 mosmol/kg H₂O amphibian Ringer solution. DiC₁₆-PtdIns(3,4,5)P₃, analogue **1c** and analogue **2c** (50 μ M) were complexed by histone H1 carrier (50 μ M) and then added to the apical side of the monolayer. Results were compared with insulin basolateral stimulation (100 nM) and control (histone H1 alone). This experiment is representative of three independent experiments.

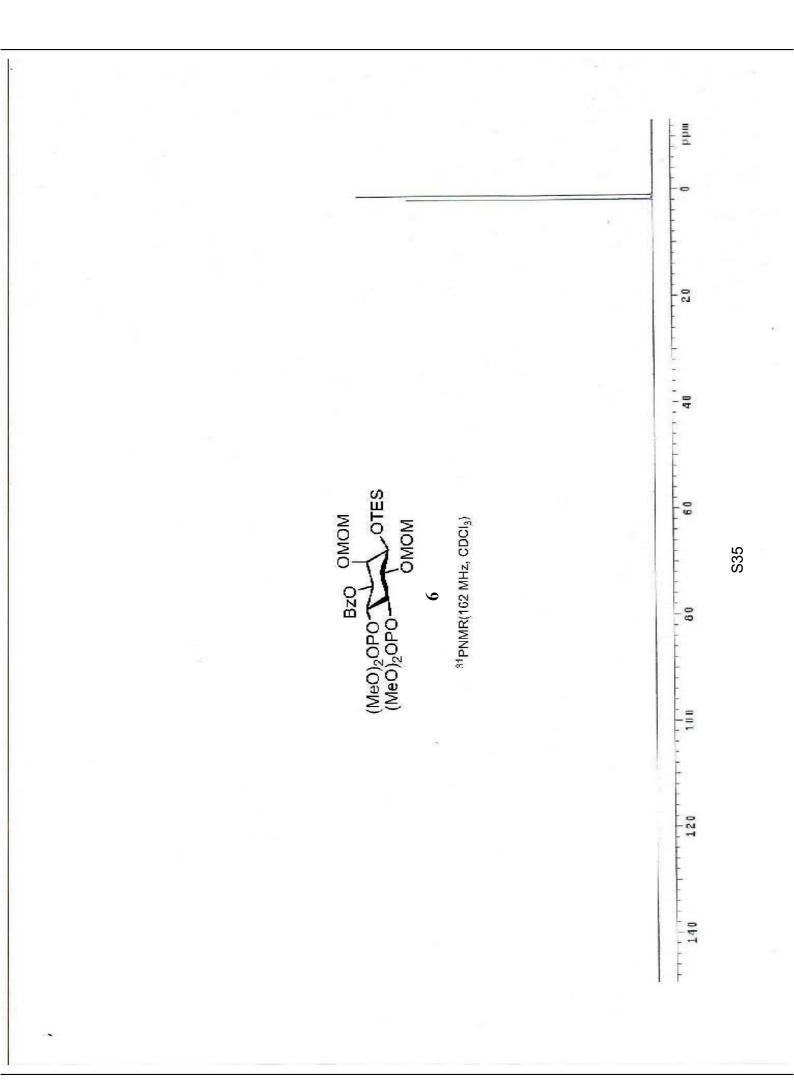

Binding of analogues 1b and 2b to Grp1.² Competitive displacement of biotinylated-PtdIns(3,4,5)P₃ (10 nM) from Grp1 (10 nM) binding by diC₈-PtdIns(3,4,5)P₃ and analogues **1b** and **2b** (4000, 800, 160, 32, 6.4, 1.28 nM) in 50 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-20, 0.1% BSA. Alphascreen[®] assays were performed on a Fusion instrument (Perkin Elmer, Inc.) using standard settings and the recommended buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-20, 0.1% BSA). In a 384-well microplate was added 5 μ L buffer followed by 5 μ L each of the Grp1 PH domain (50 nM), biotinylated PtdIns(3,4,5)P₃ (50 nM), and the respective competitor (20, 4, 0.8, 0.16, 0.032, 0.0064 μ M). A solution of anti-GST acceptor beads and streptavidin donor beads $(5 \ \mu L, 100 \ \mu g/mL)$ was added, the plate gently shaken and stored for 2 hours in the dark, and read on the Fusion instrument.

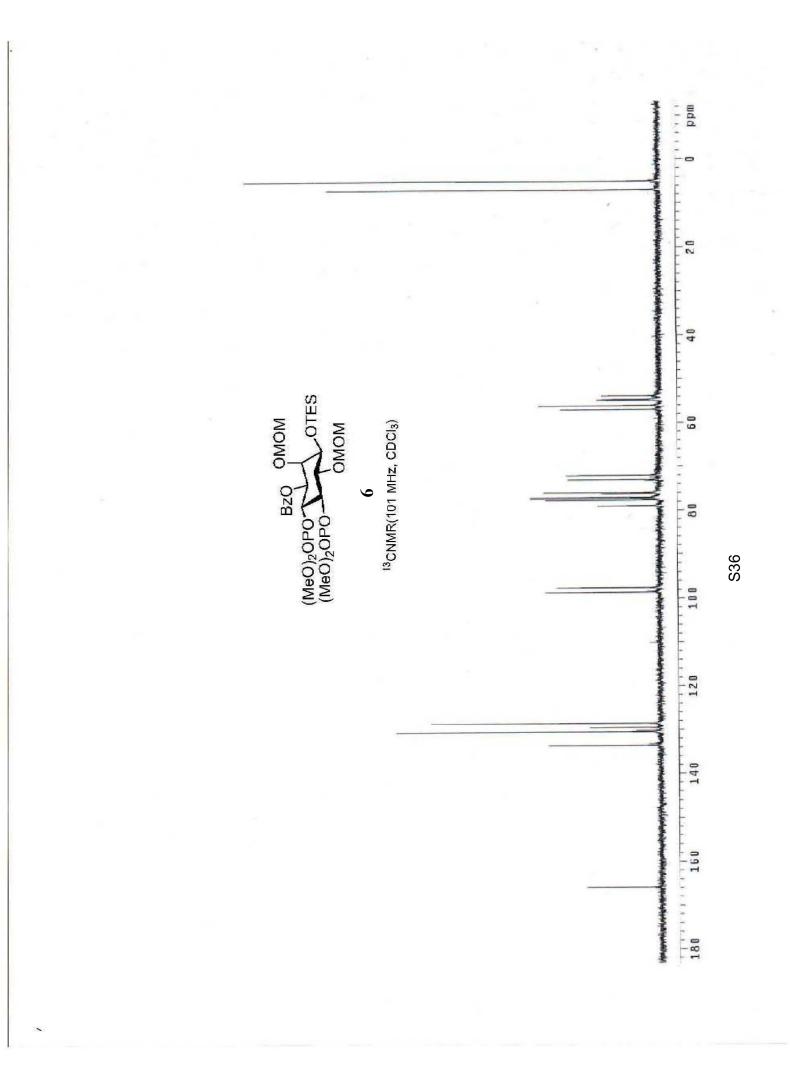
- Markadieu, N.; Blero, D.; Boom, A.; Erneux, C.; Beauwens, R. Am. J. Physiol. Renal. Physiol. 2004, 287, F319-328.
- Drees, B. E.; Weipert, A.; Hudson, H.; Ferguson, C. G.; Chakravarty, L.;
 Prestwich, G. D. Comb. Chem. High Throughput Screen 2003, 6, 321-330.

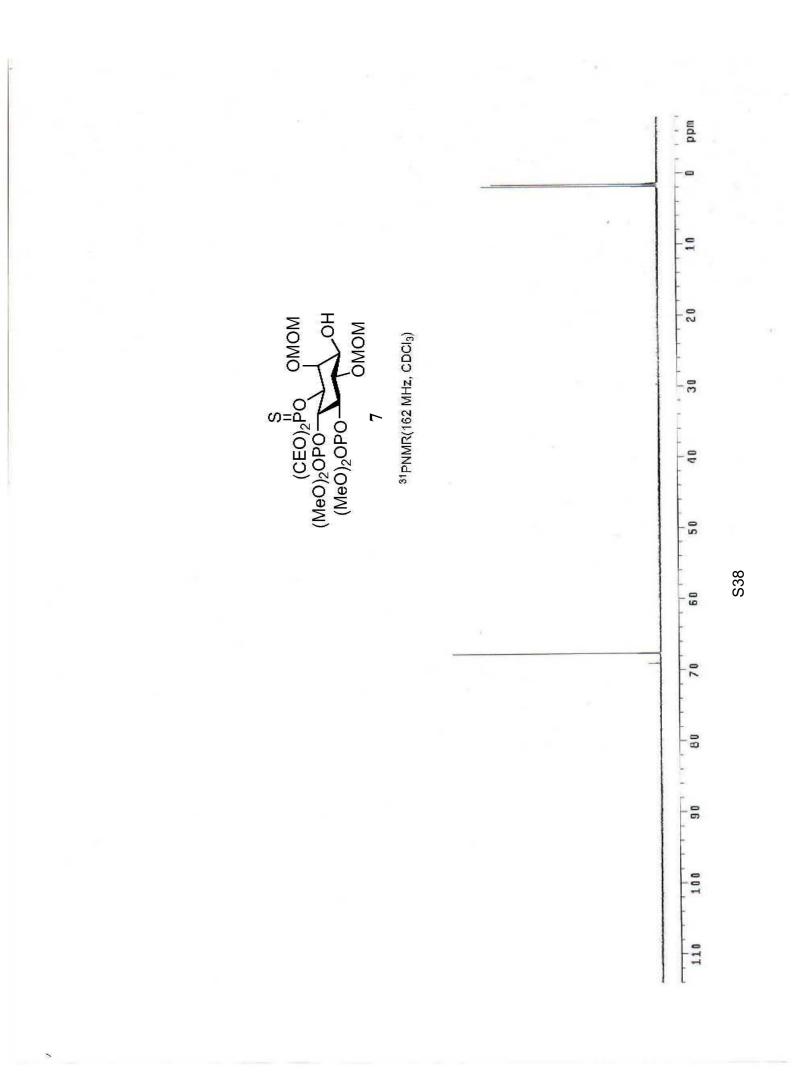

PTEN Malachite Green Assay Protocol. This experimental procedure was adapted from the PTEN Malachite Green assay protocol (Echelon Biosciences, Inc.), and the reaction buffer was also prepared according to this protocol. The PTEN enzyme reactions were performed in triplicate wells using the amounts in the table below. The buffer and enzyme were added first, and then the addition of the substrate solution (diC₈-PI(3,4,5)P₃, **1b** or **2b**) initiated the reaction. The plates were sealed to prevent evaporation, mixed on plate shaker for 30 sec, and then incubated at 37 °C for 15 min. The enzyme reaction was quenched by addition of 100 μ l/well of Malachite Green solution to each well of reactions of the table above. The plate was re-sealed, covered with Al foil to protect from light, and then incubated on a plate shaker for 15 min at rt to develop color. The absorbance was read at 620 nm, and the relative absorbances are shown in Supplementary Figure 3 (Page S4).

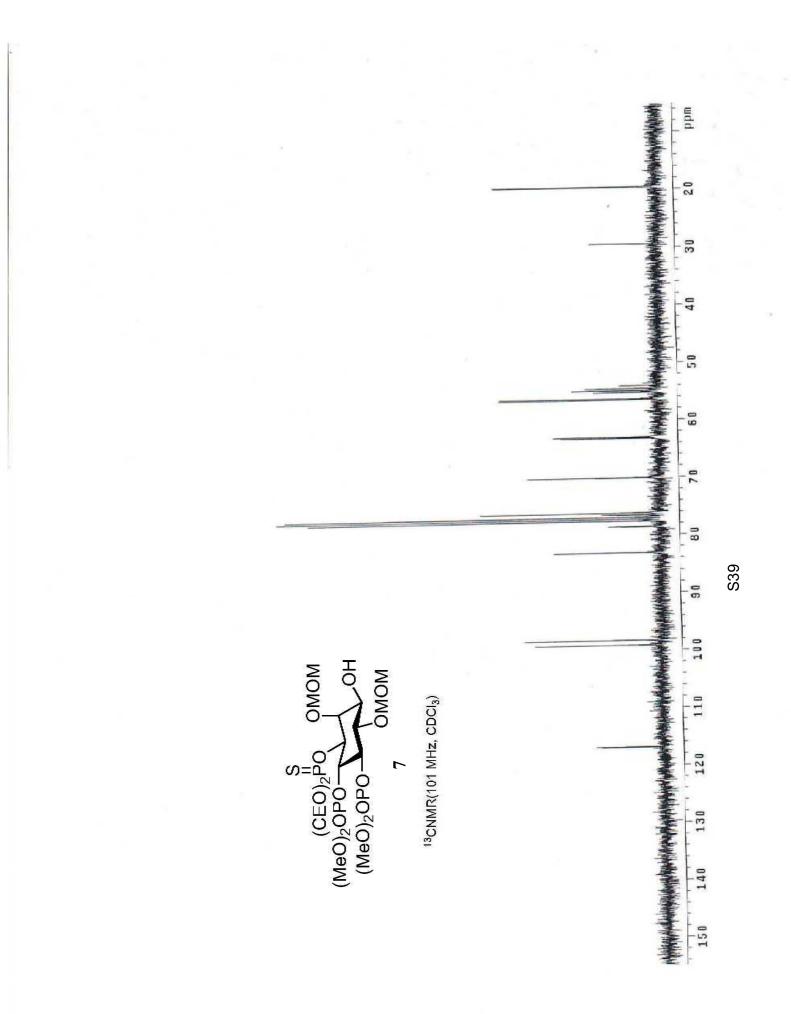

Sample	Reaction	PTEN (20	Substrate (1	Reaction
	buffer, µl	ng/μl), μl	mM), μl	volume, µl
PTEN+PIP ₃	17	5	3	25
PTEN+1b	17	5	3	25
PTEN+2b	17	5	3	25
Background 1	25	0	0	25
Background 2	20	5	0	25
Background 3	22	0	3 (PIP ₃)	25
Background 4	22	0	3 (1b)	25
Background 5	22	0	3 (2b)	25

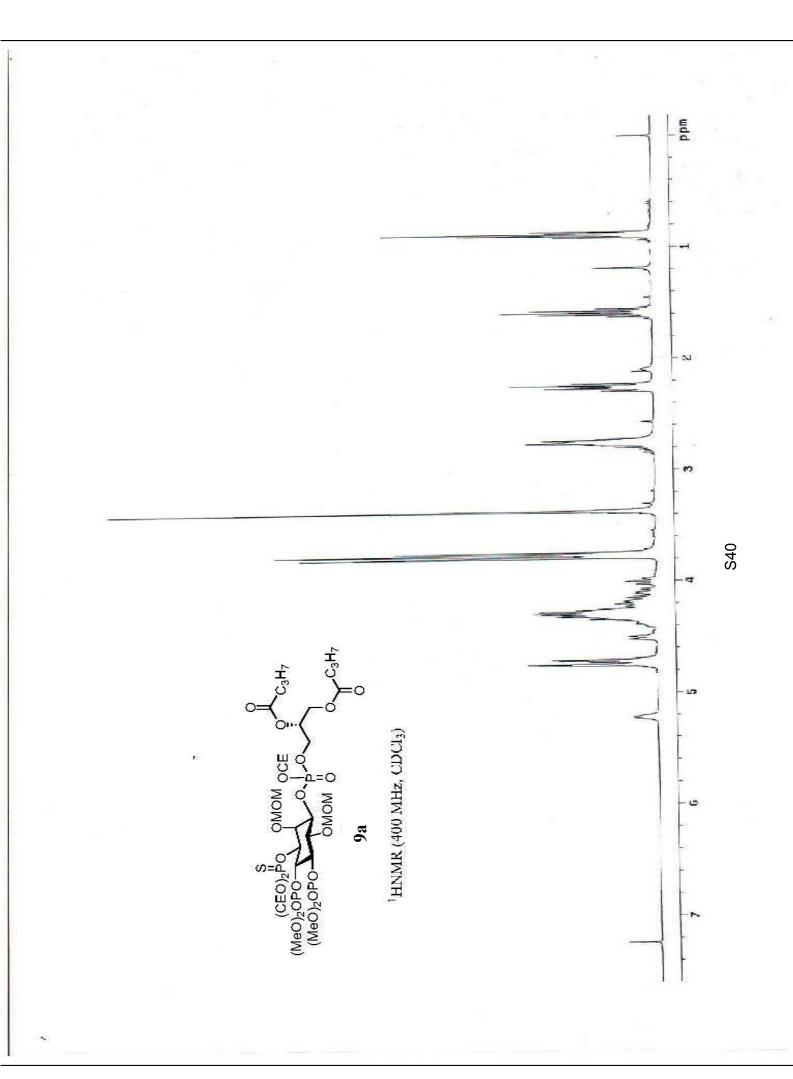


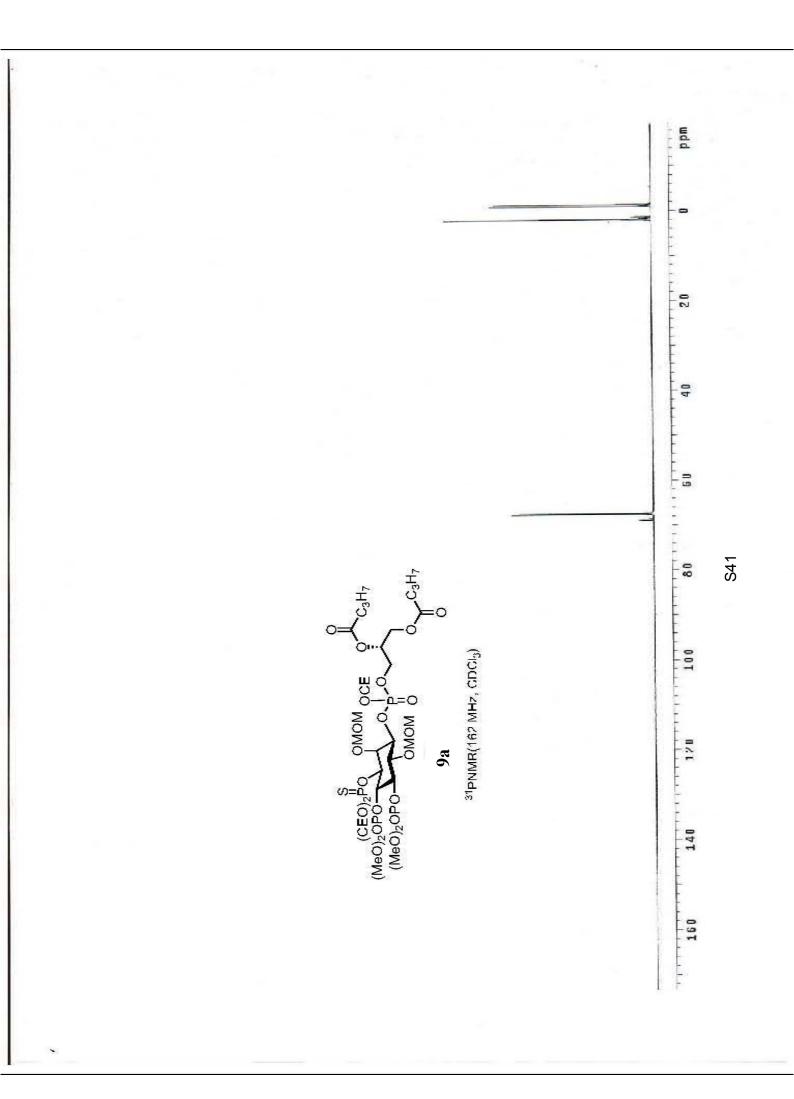

S30

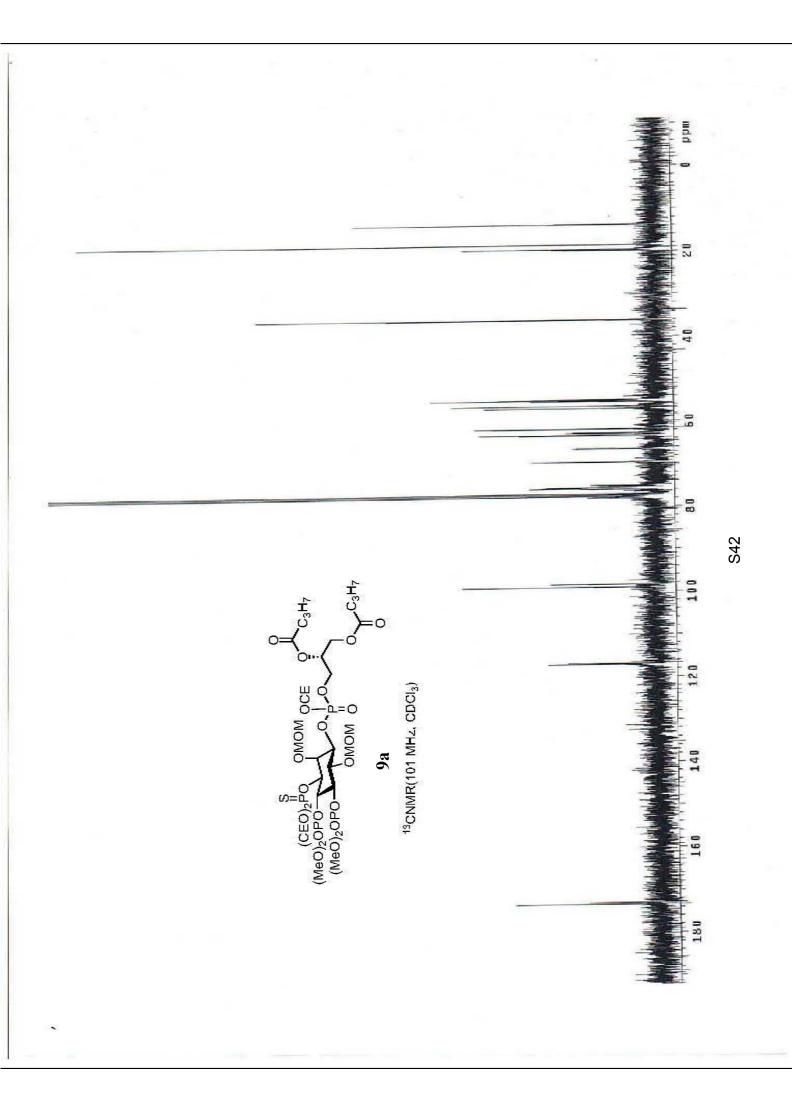


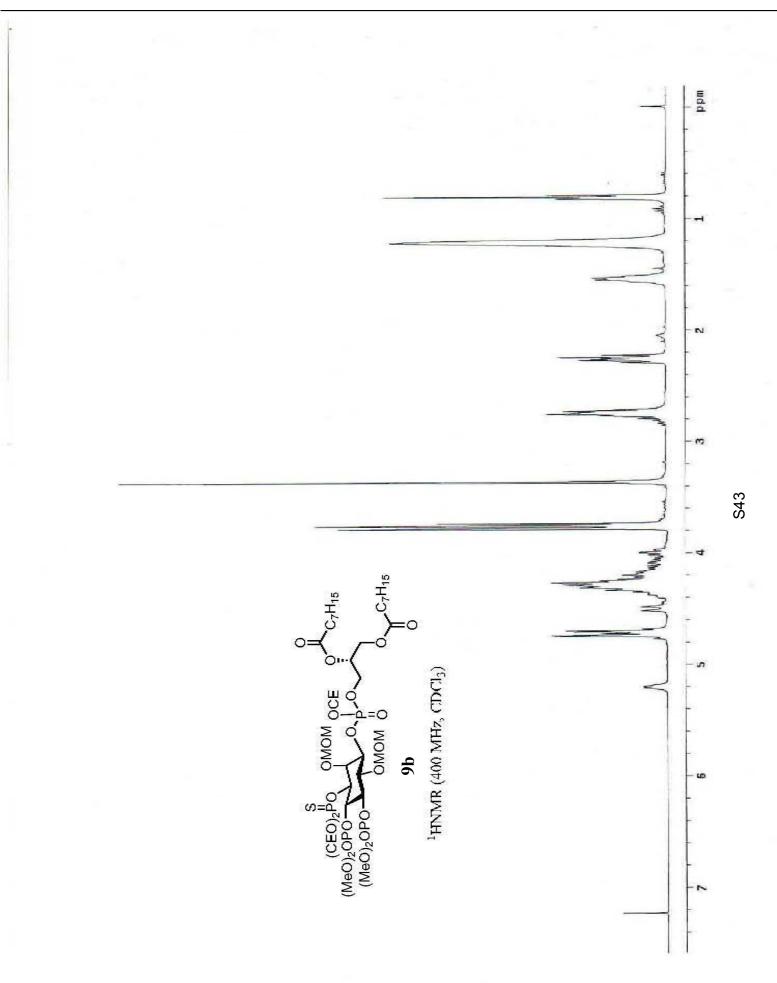


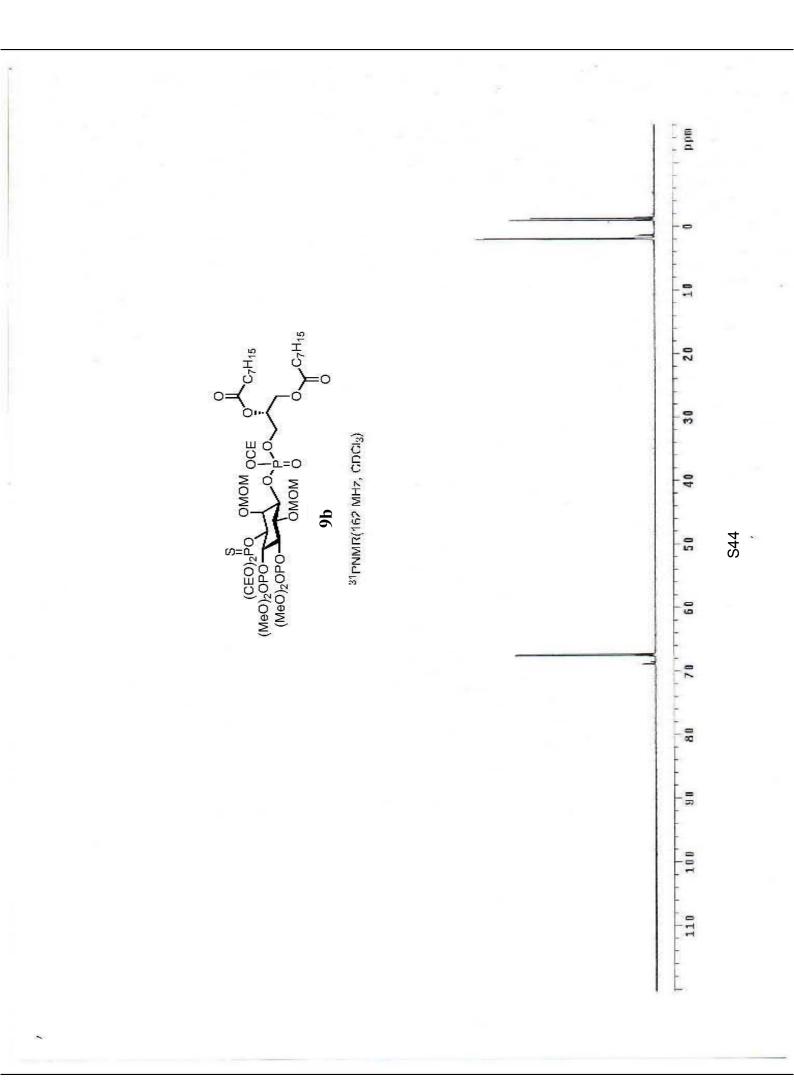

mqq N 3 S34 ÓMOM ŝ ¹TI NWR (400 MITZ, CDCl₃) MOMO (MeO)2OPO BZO (MeO)2OPO D 9 0

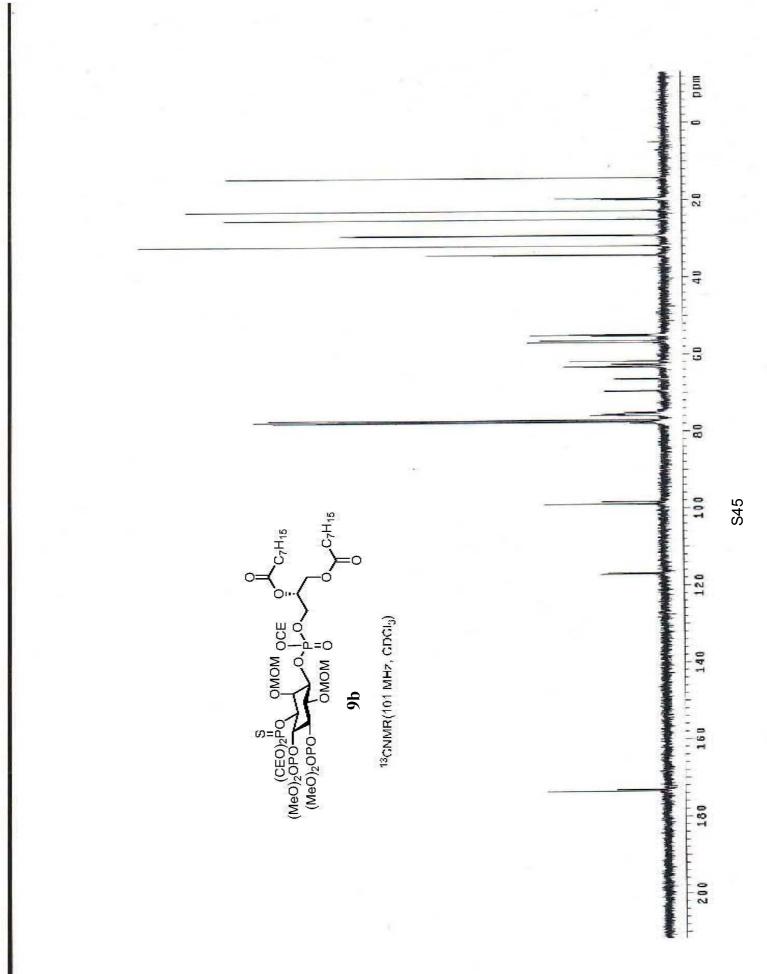


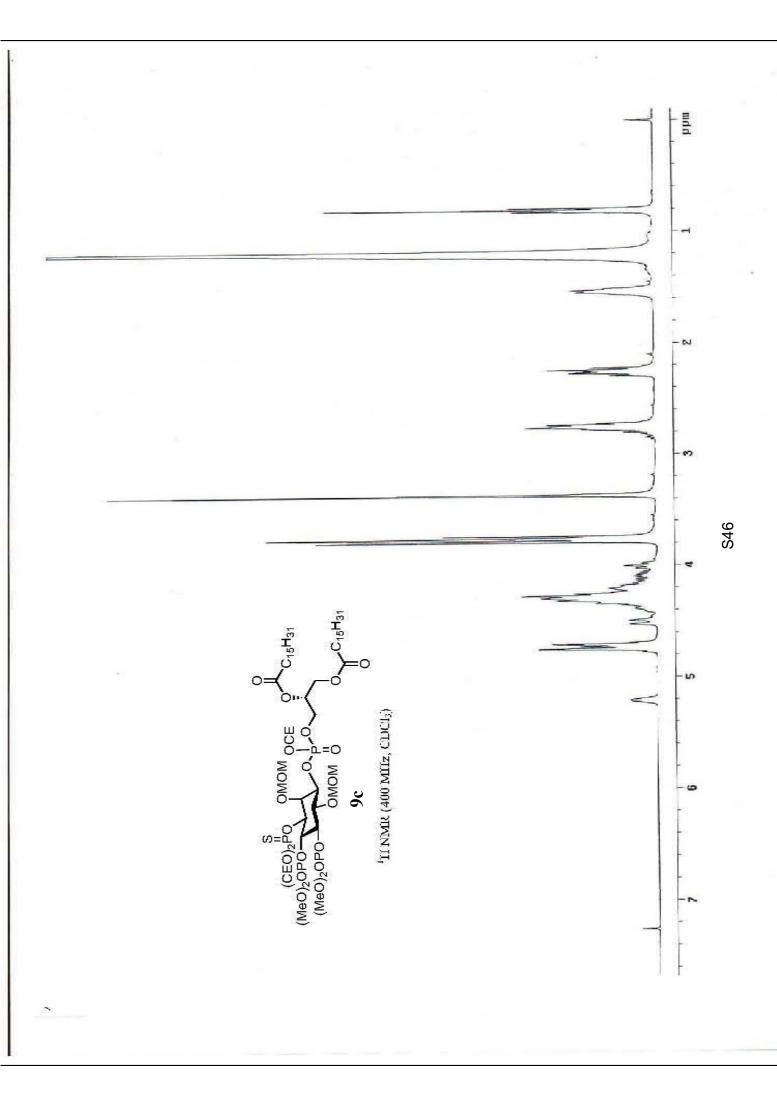

bpm 3 S37 HOMO OMOM ŝ ¹HNMR (400 MHz, CDCl₁) (MeO)2OPO G

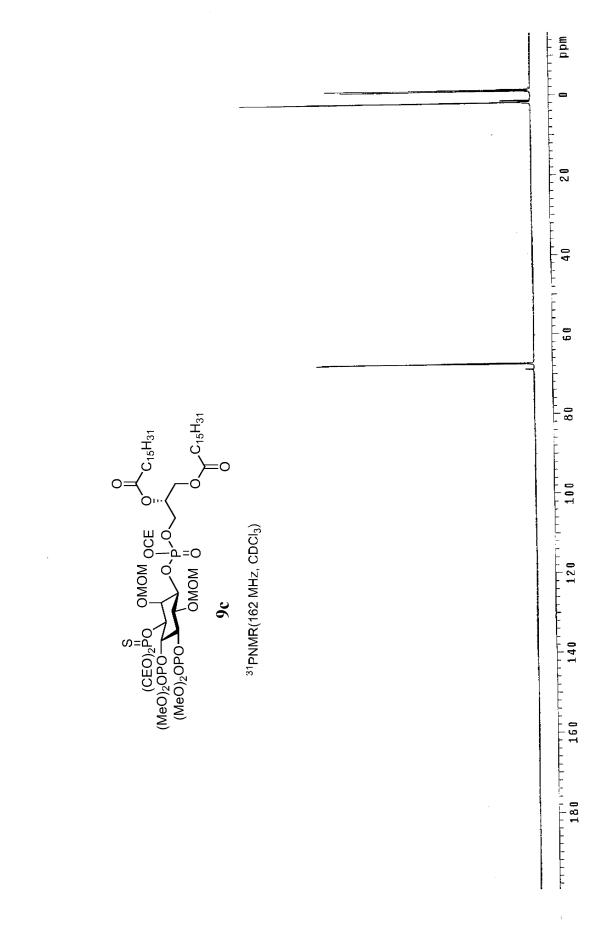


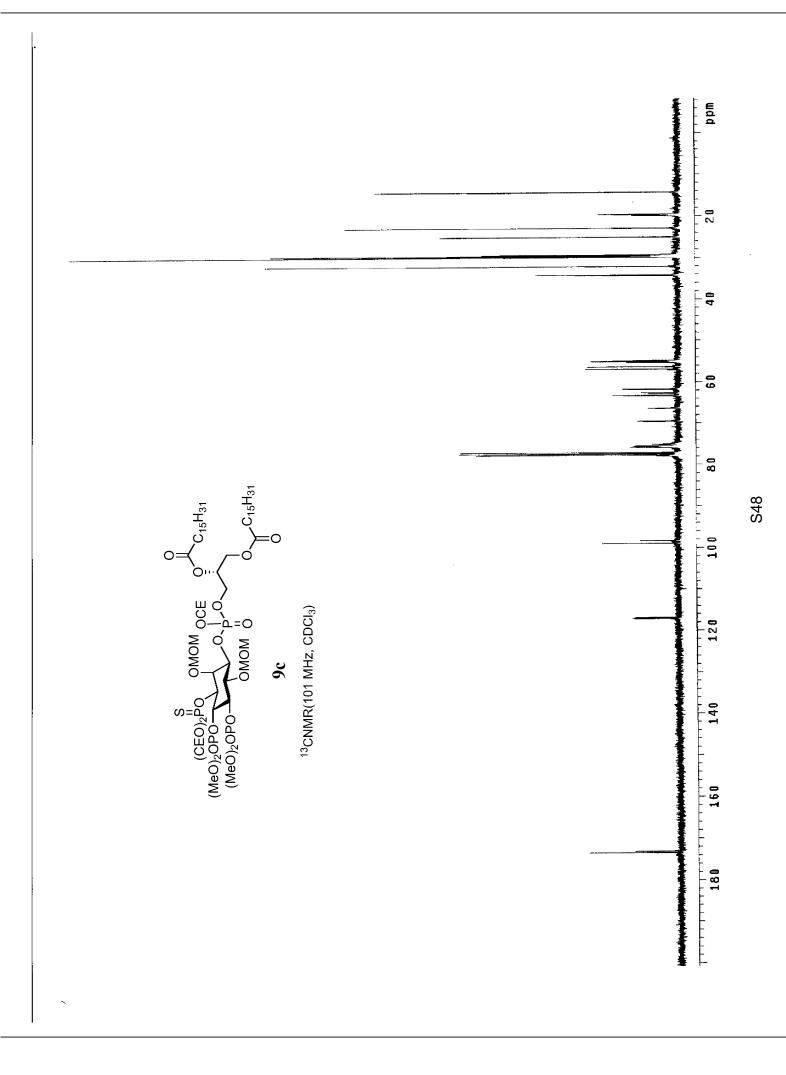


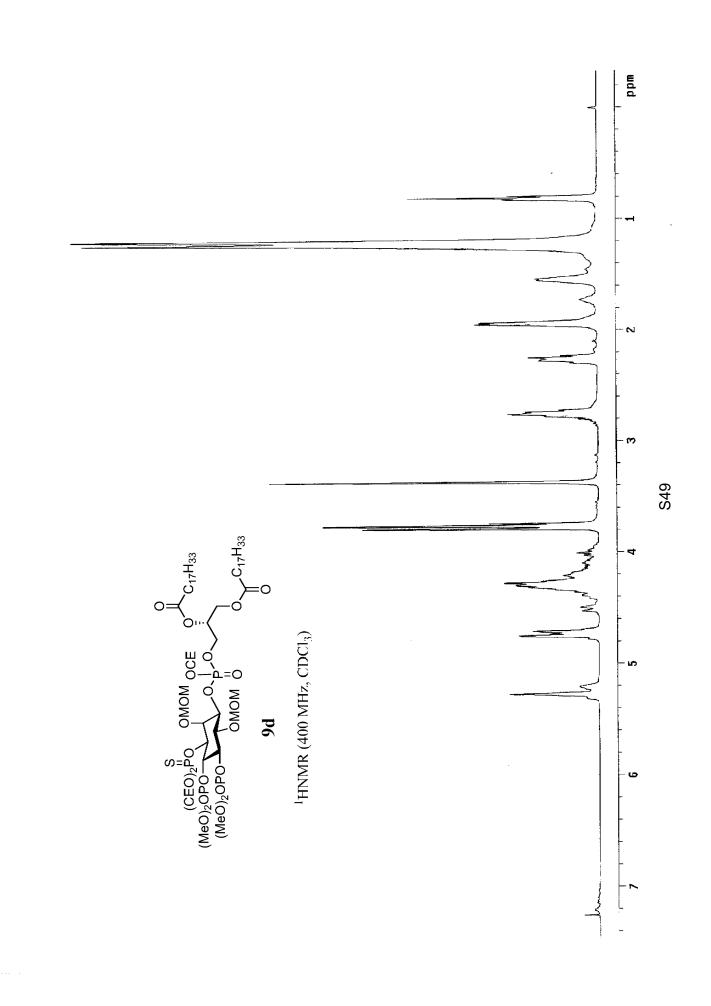

~

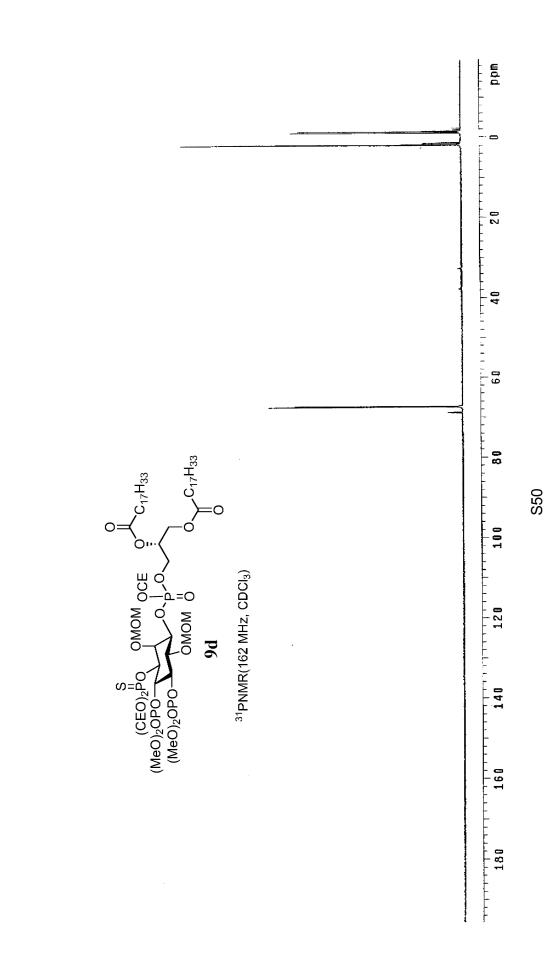


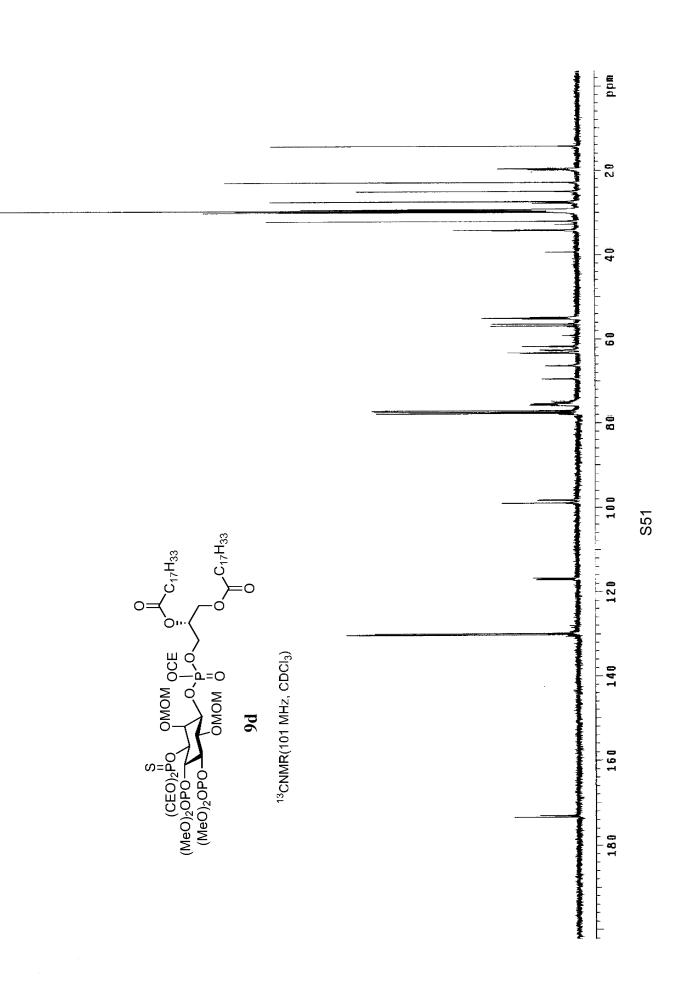


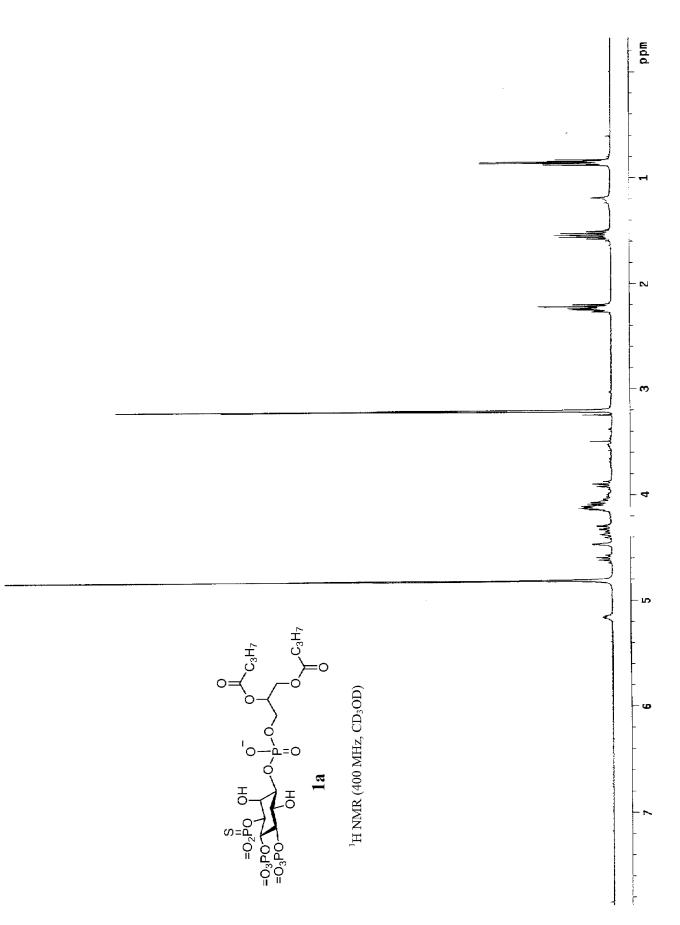


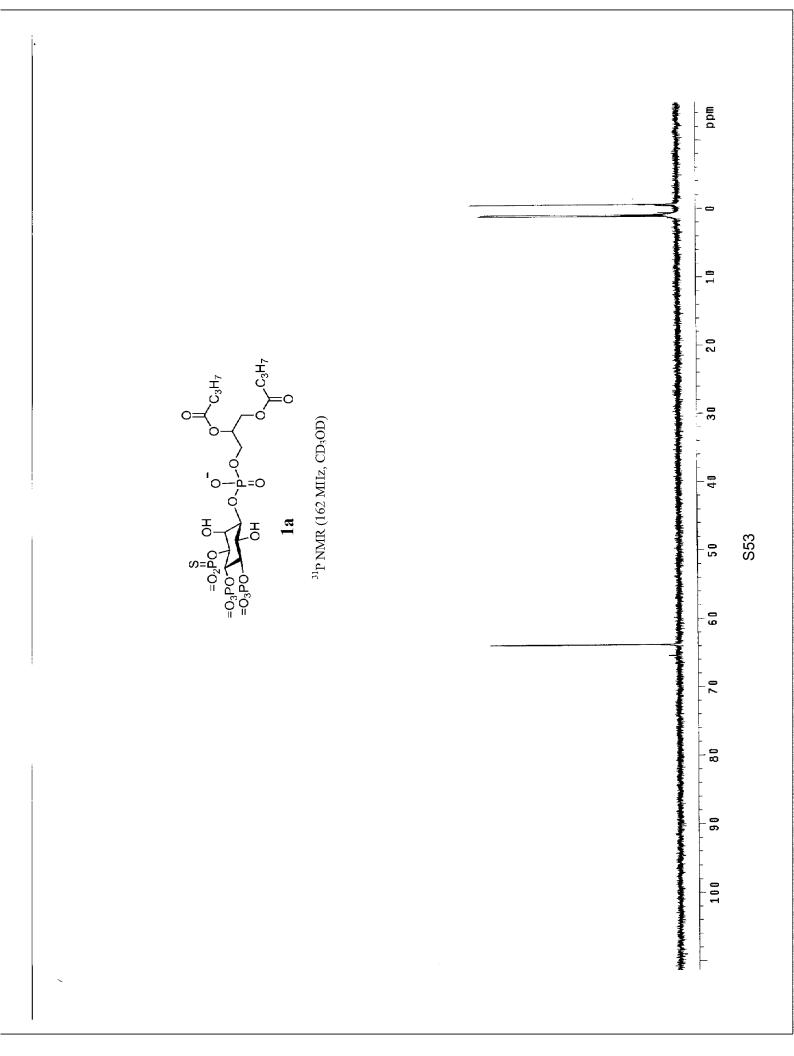


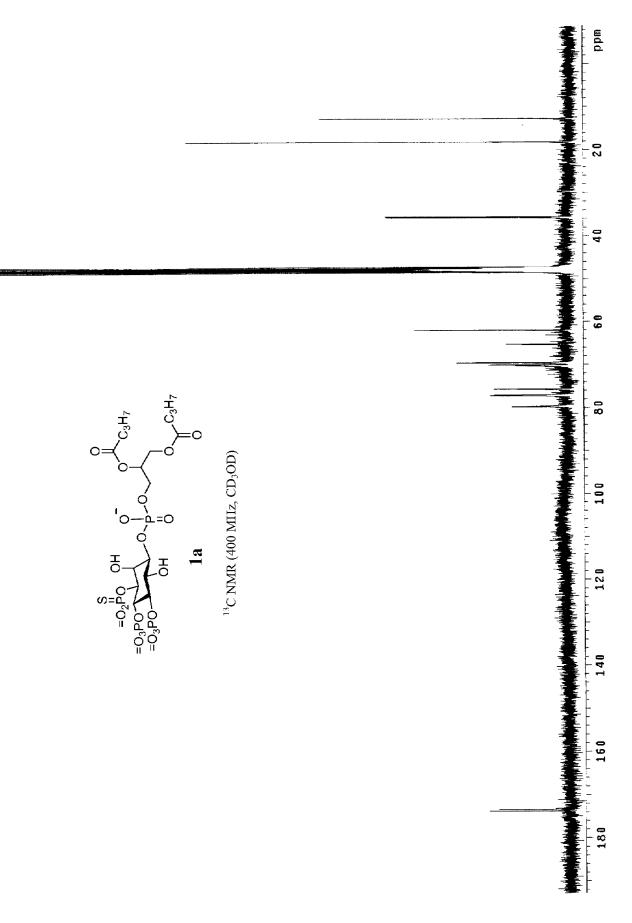


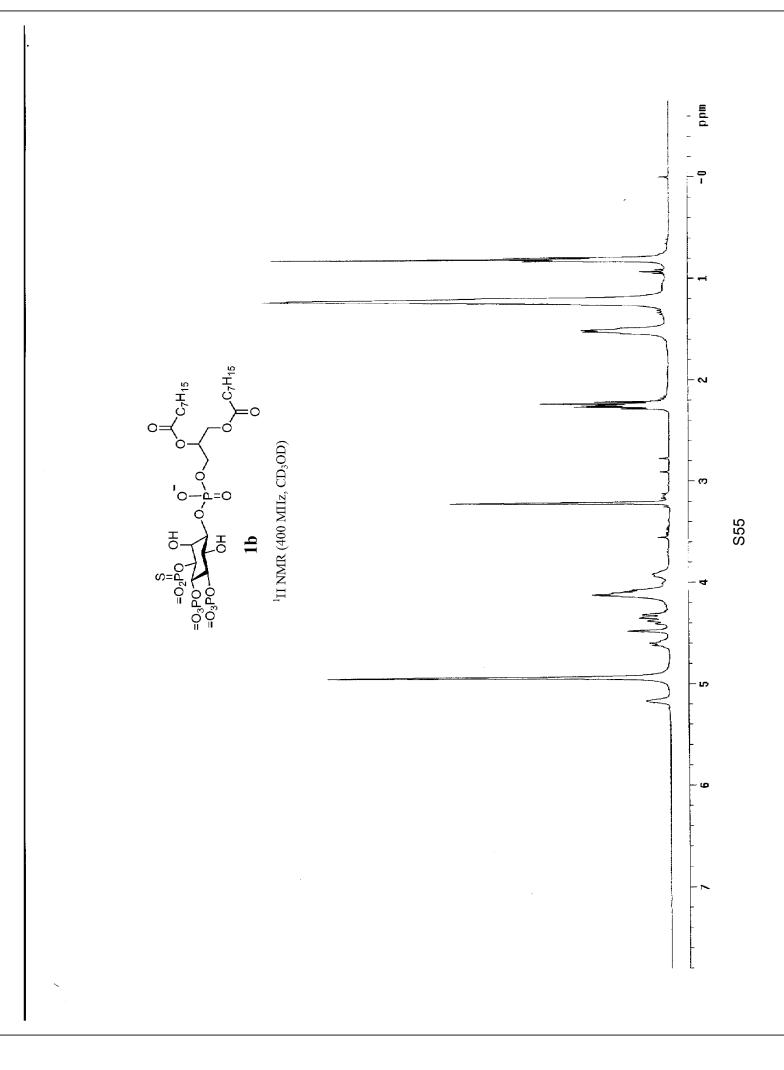


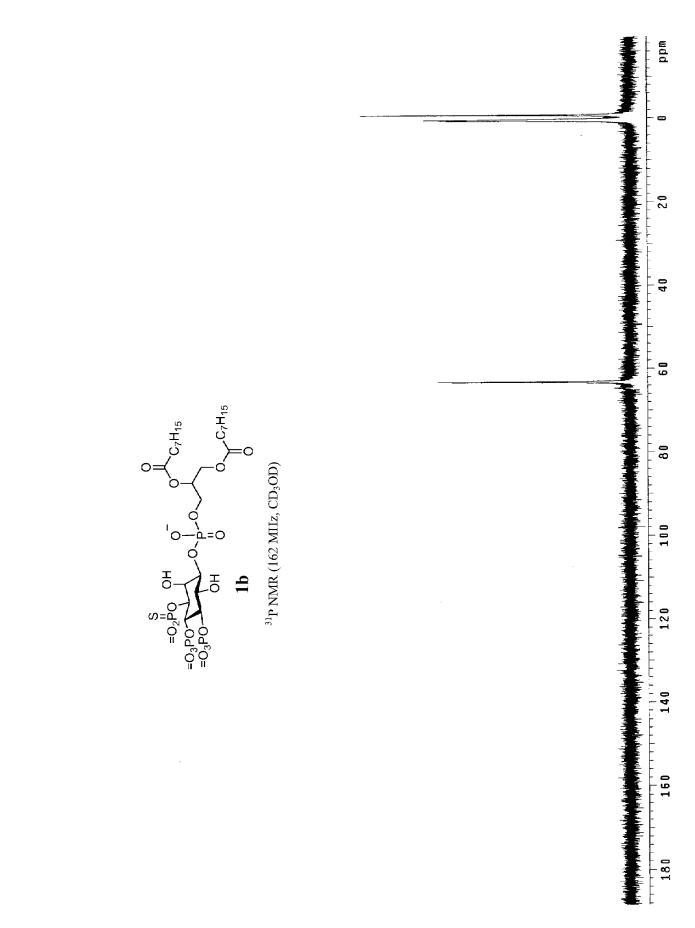


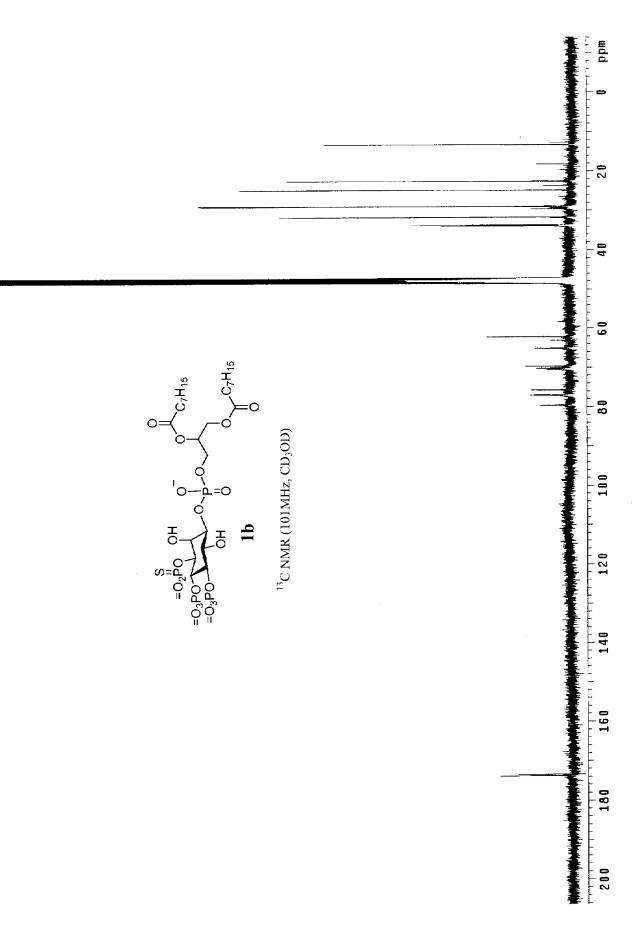


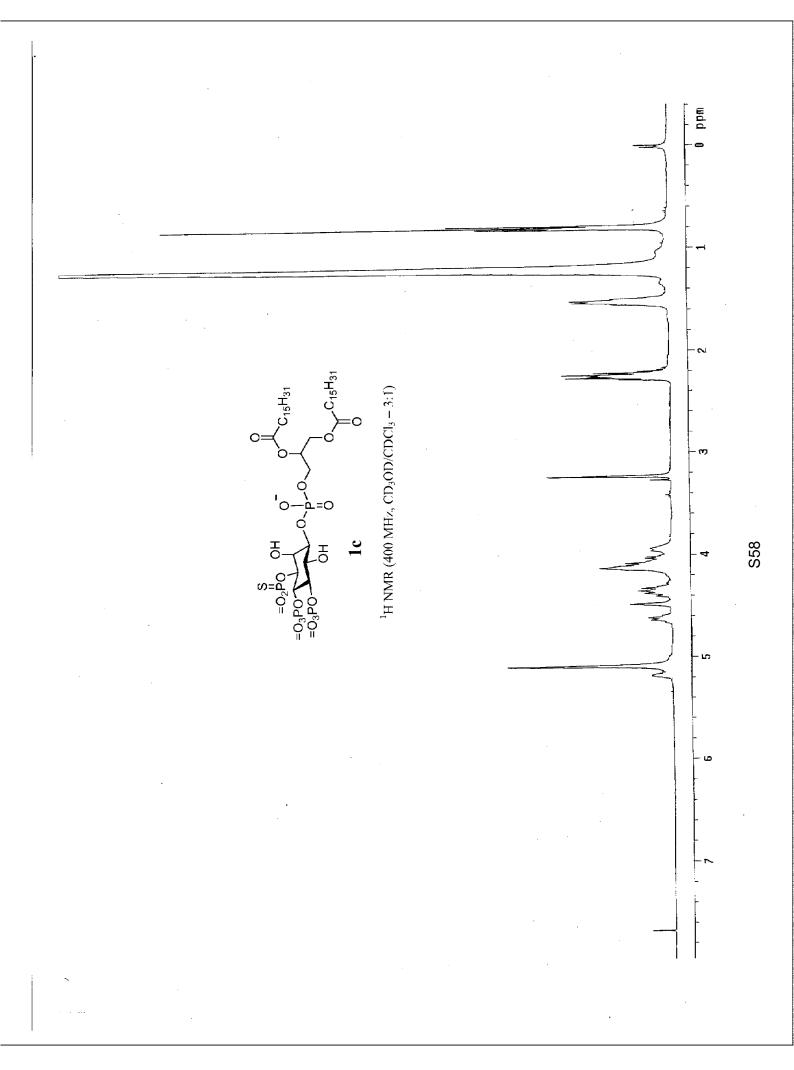


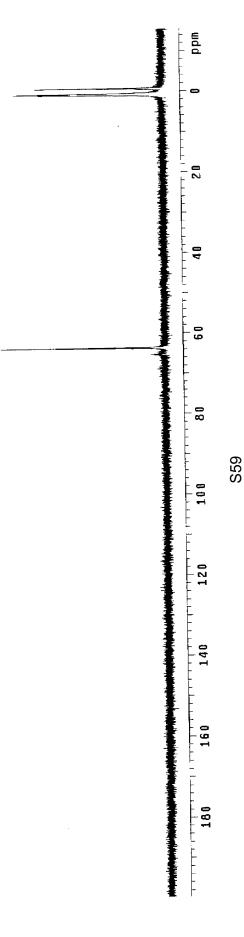


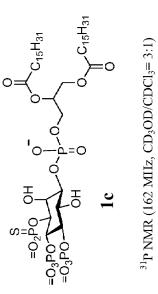


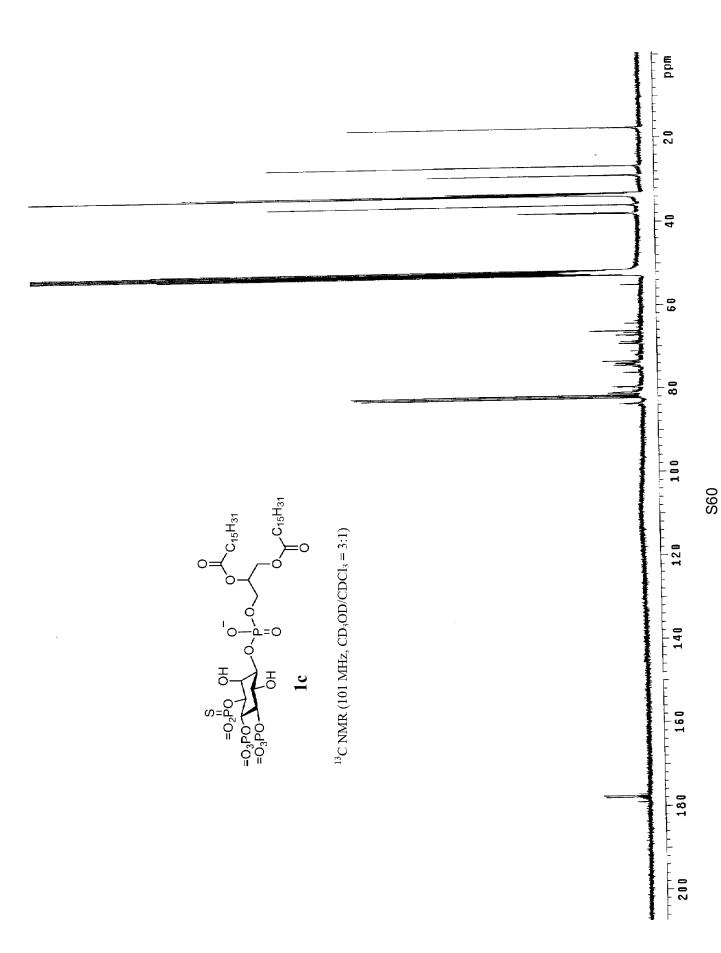


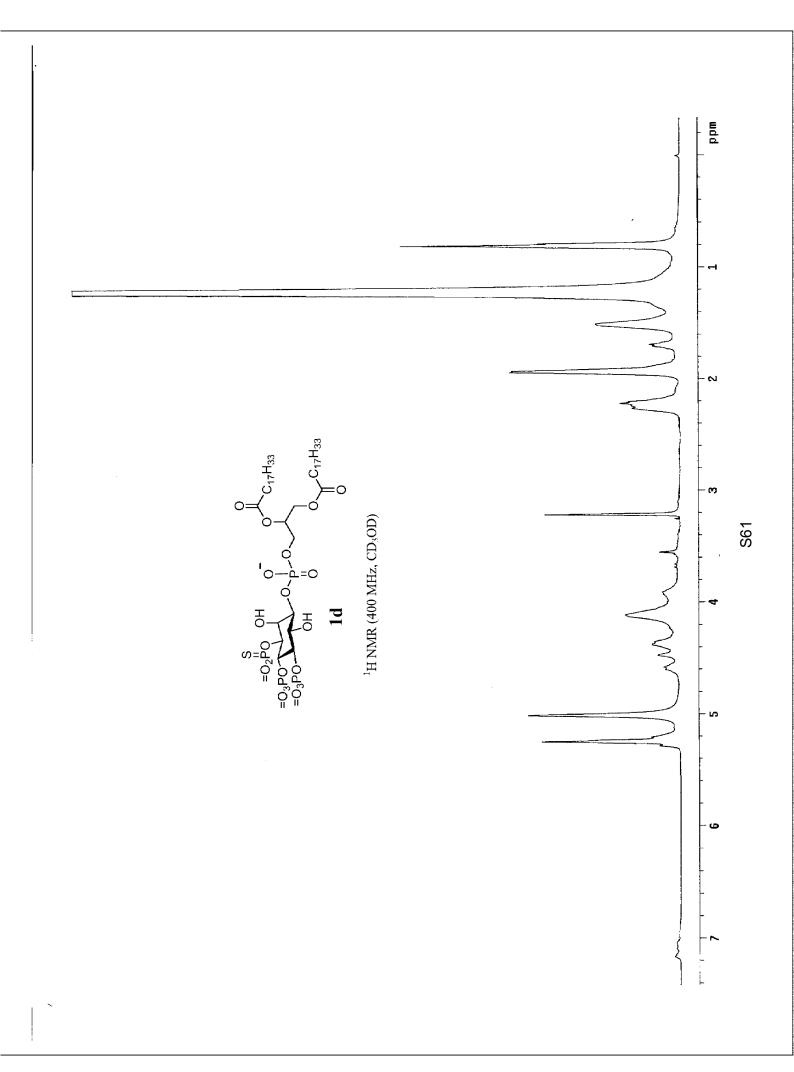

~

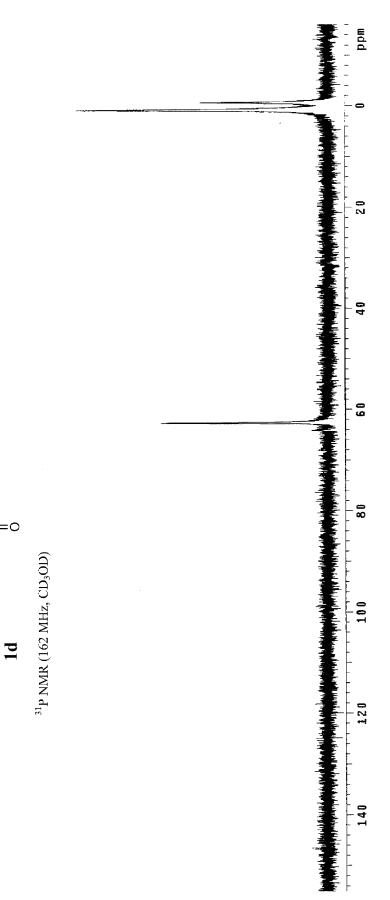


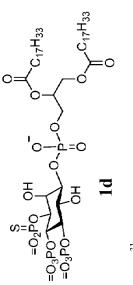




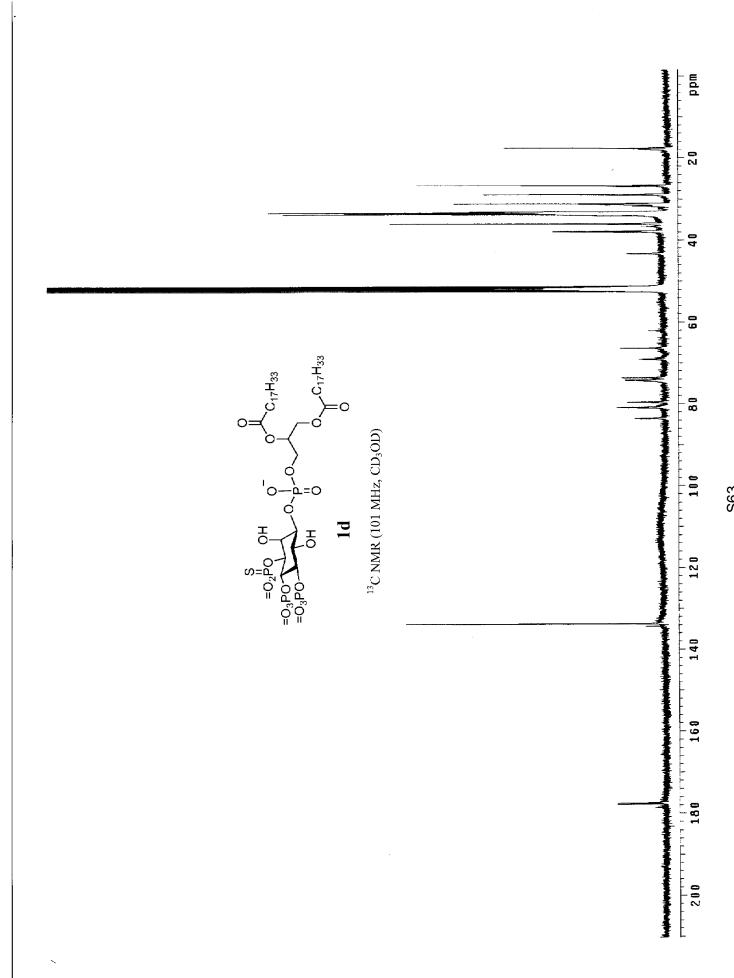


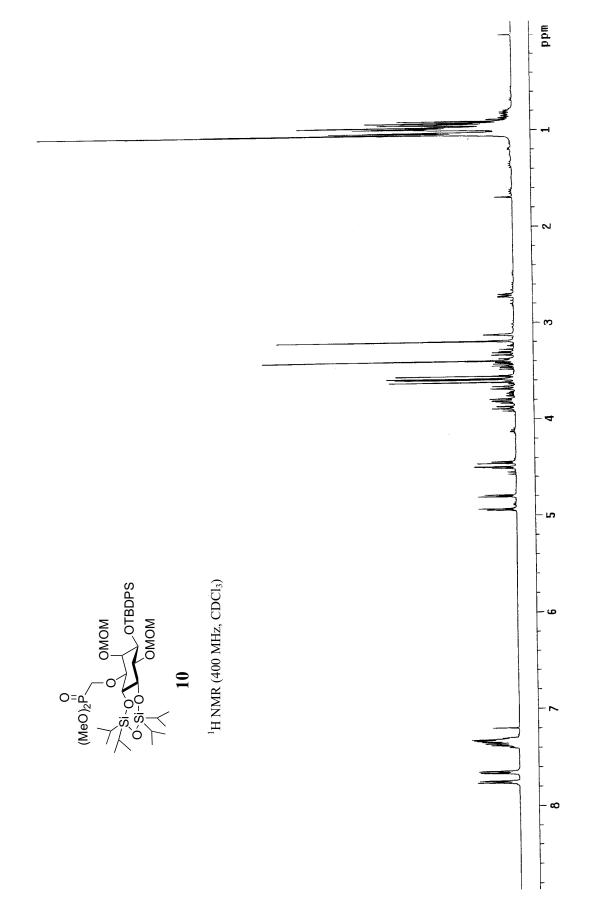


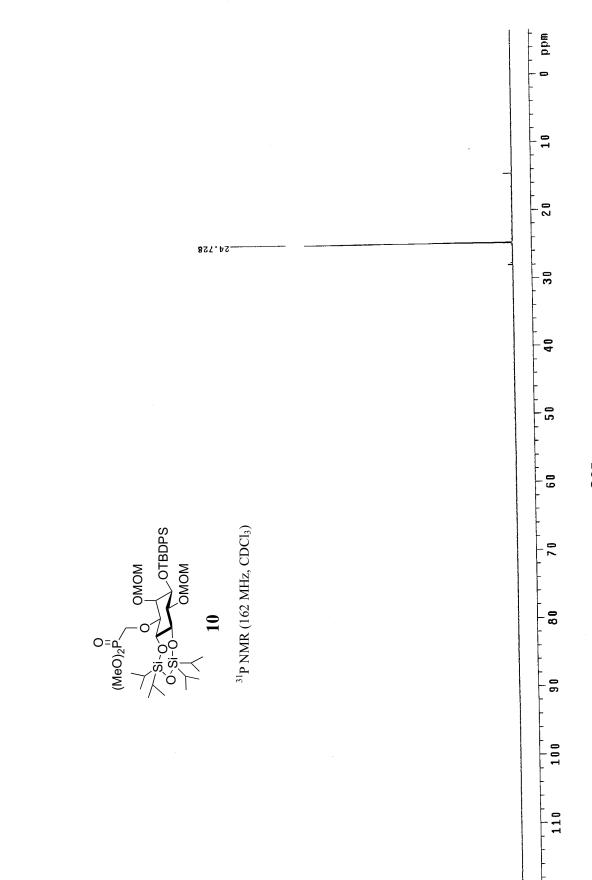


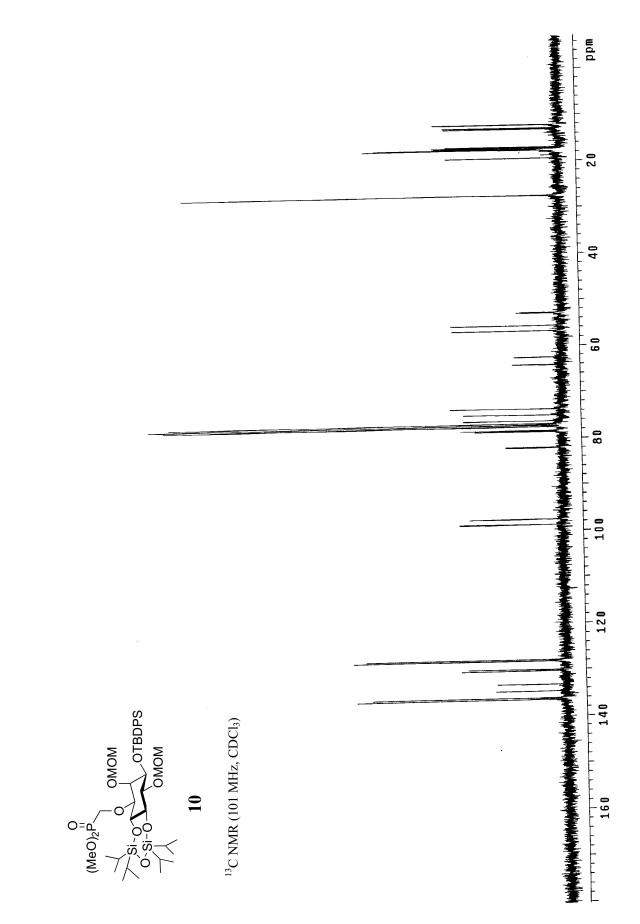

0=

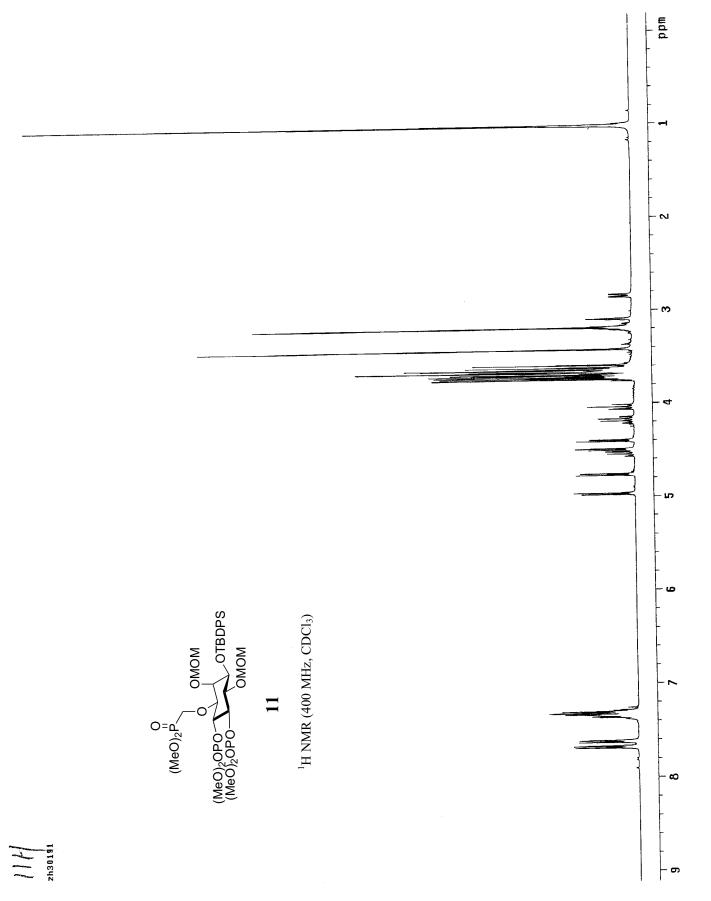
~



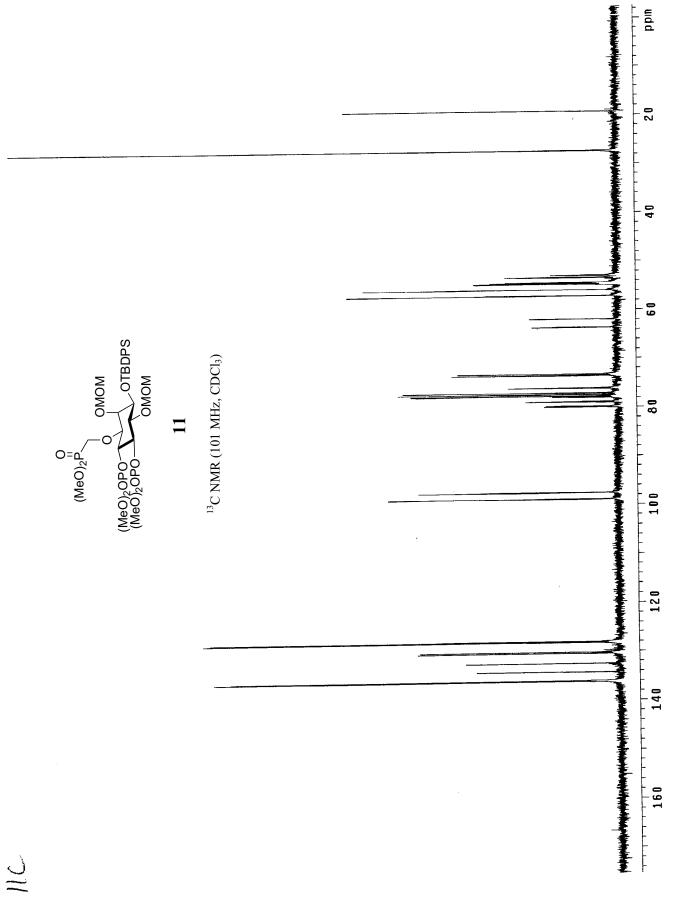


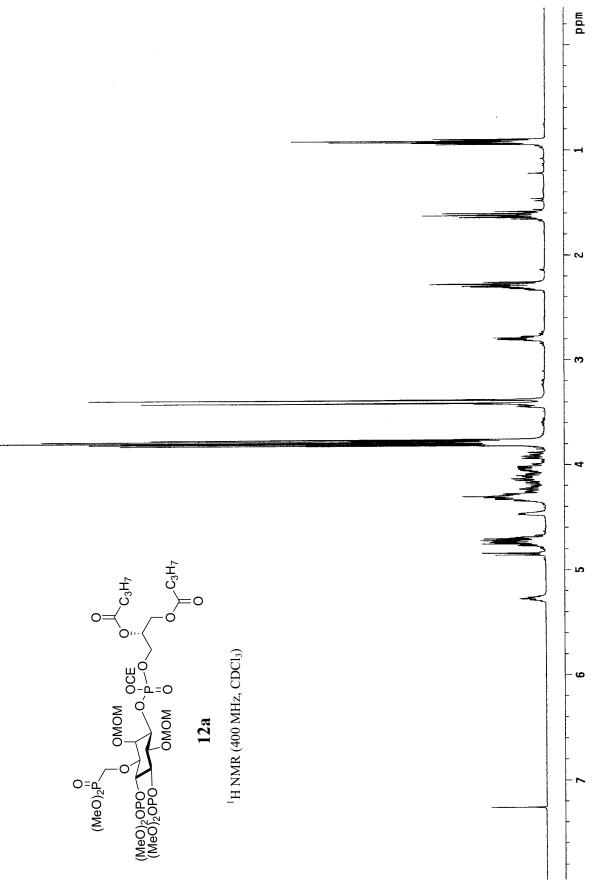




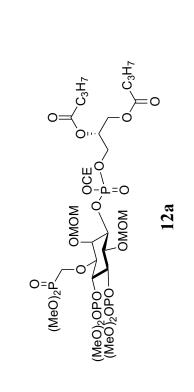


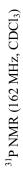



/2 {/ zh22611P

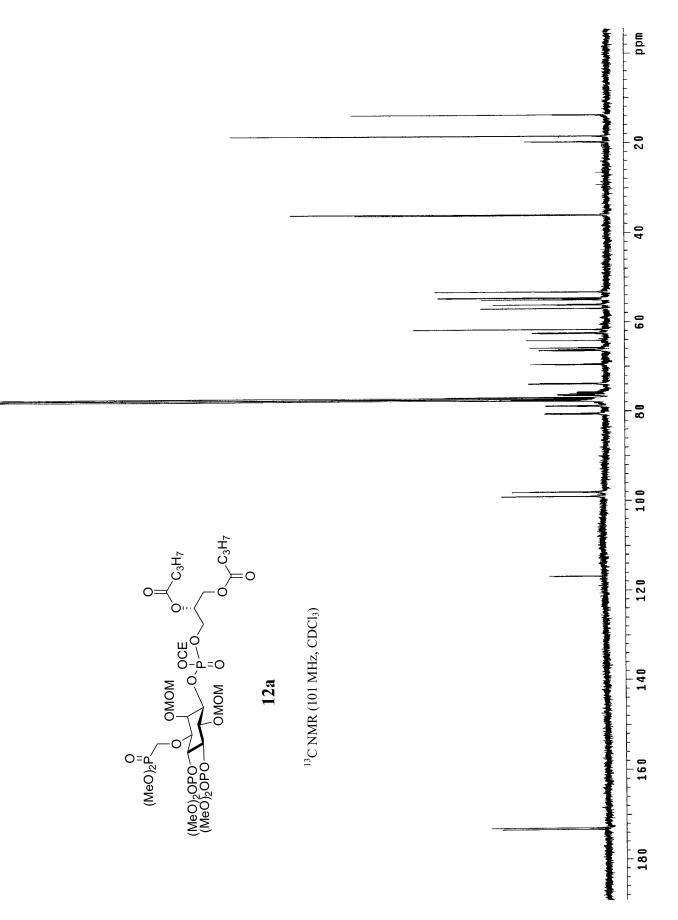


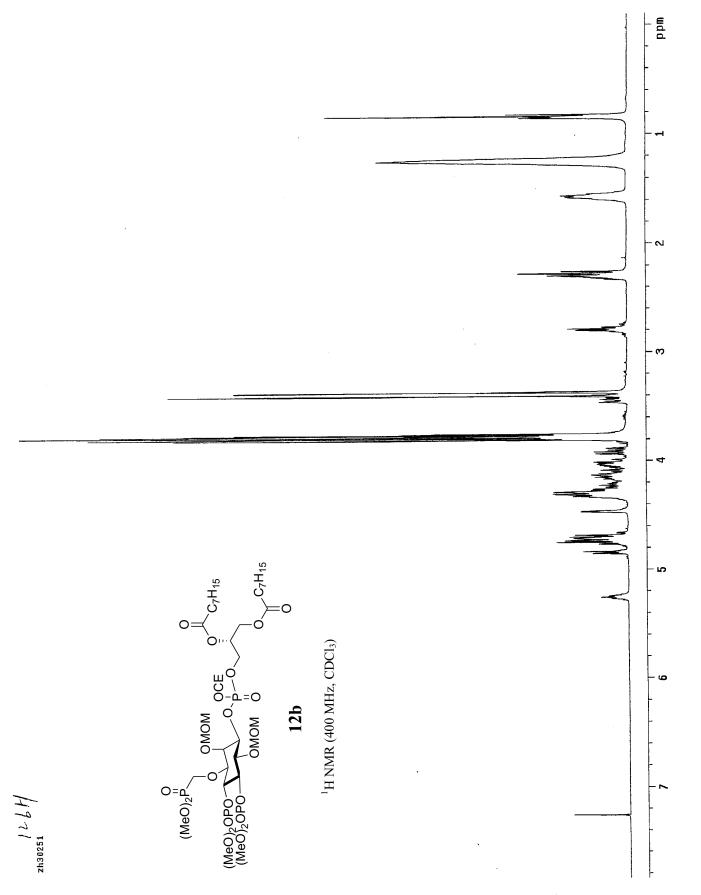
/0C zh22611C

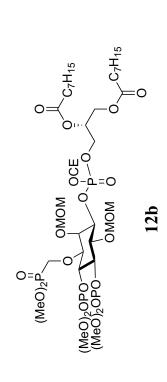


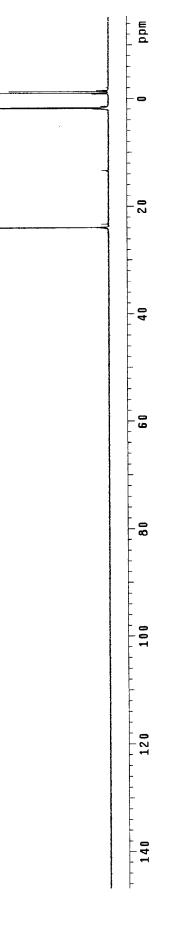


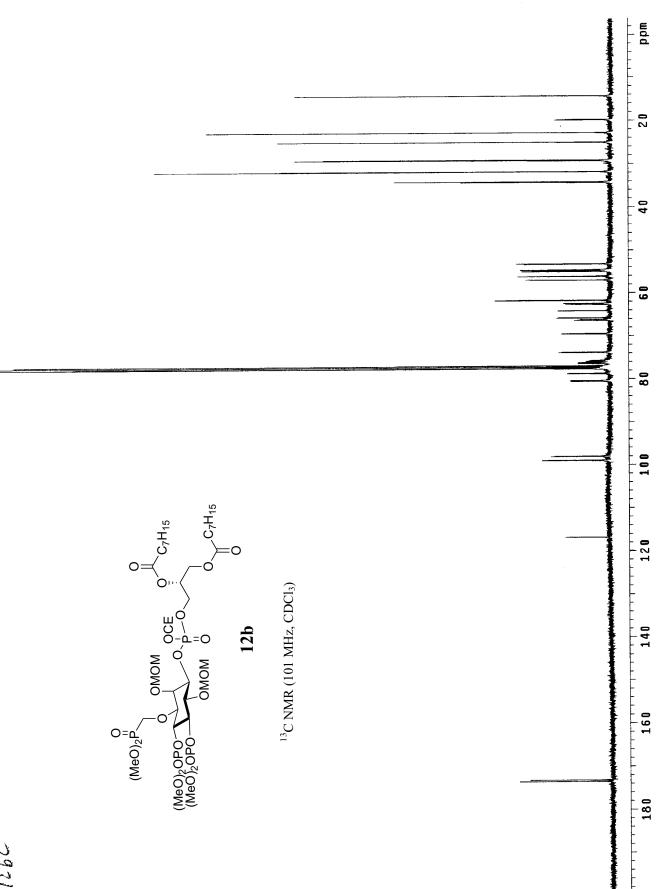


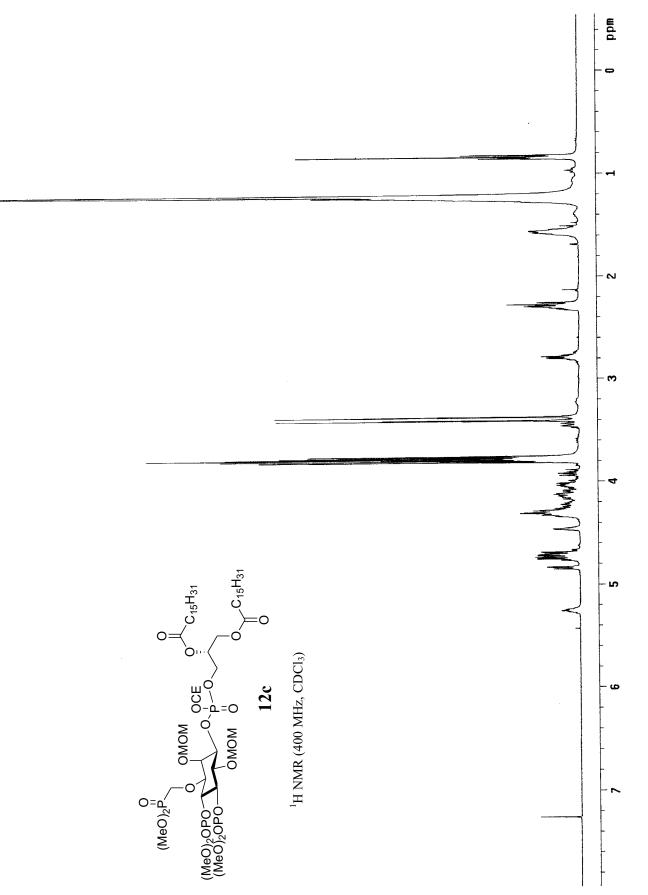

12.0.1/ zh30231



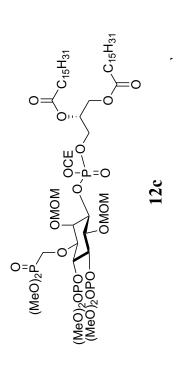




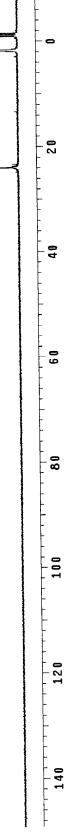


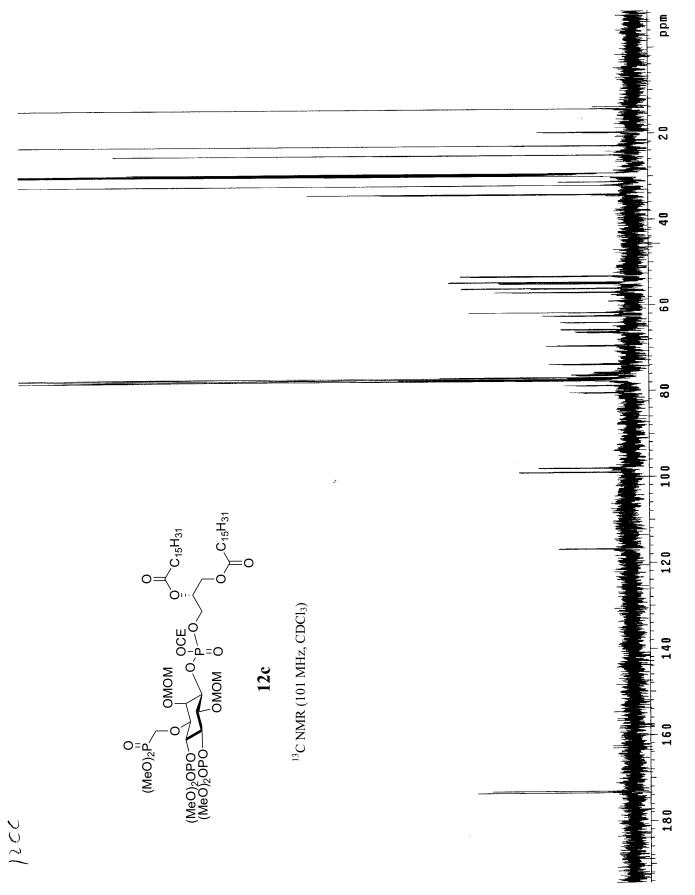

ı

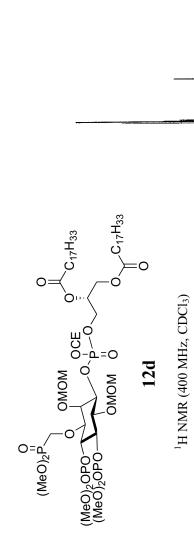
³¹P NMR (162 MHz, CDCl₃)

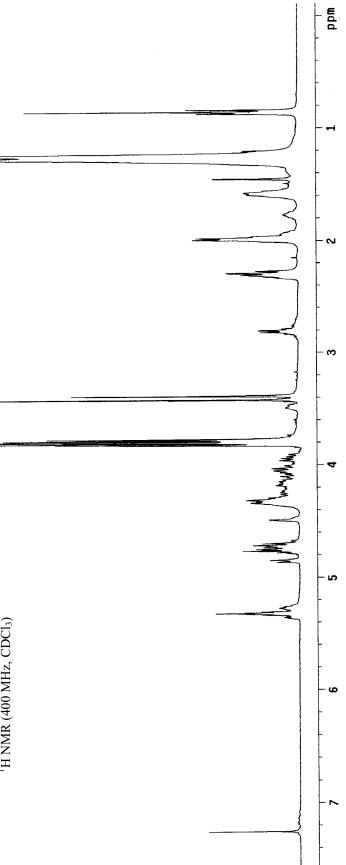


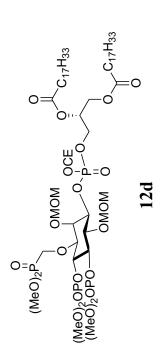
いして

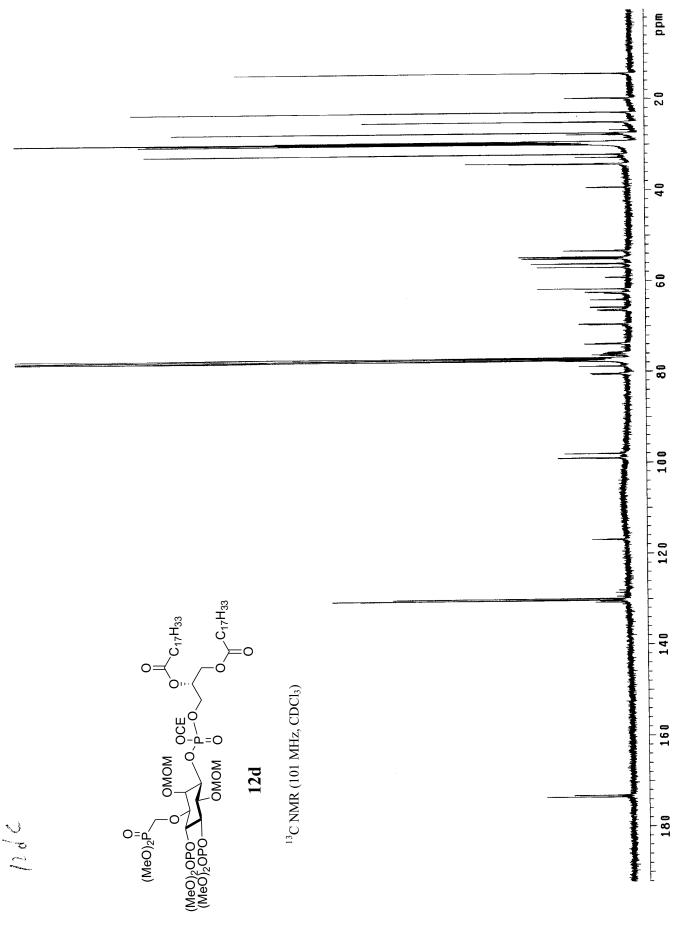


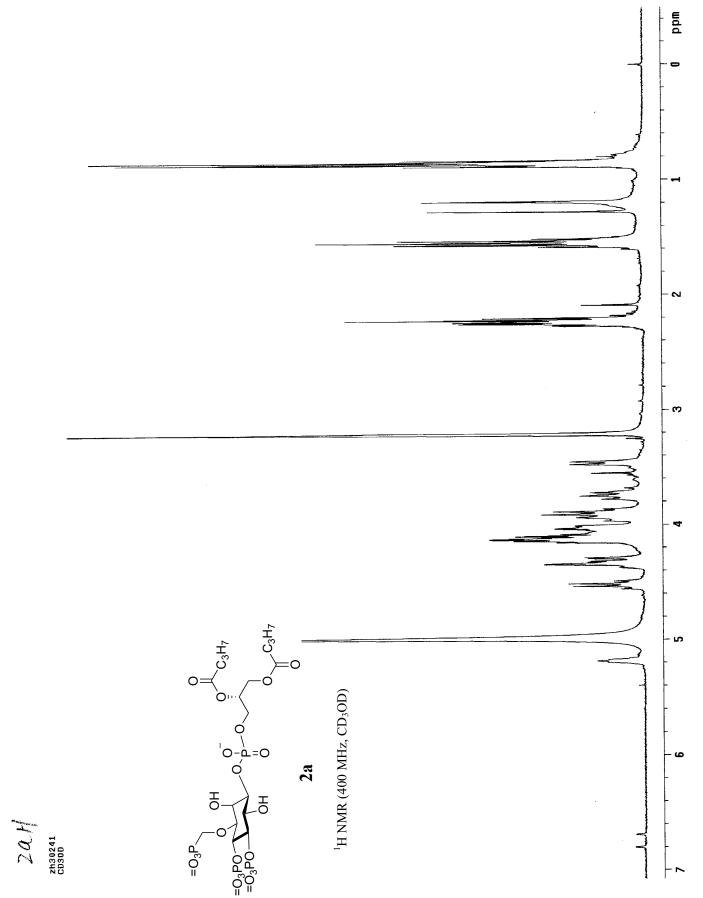



udd

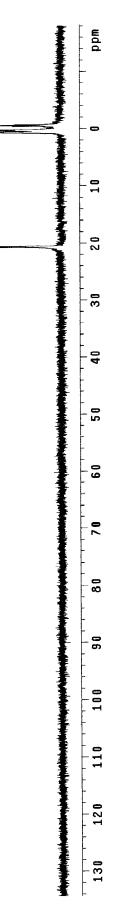


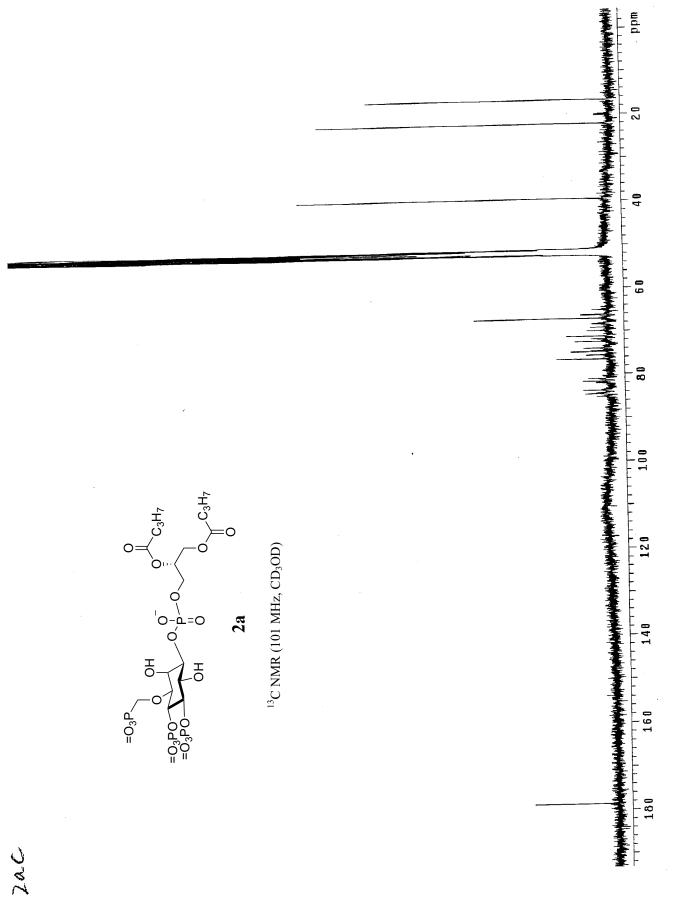


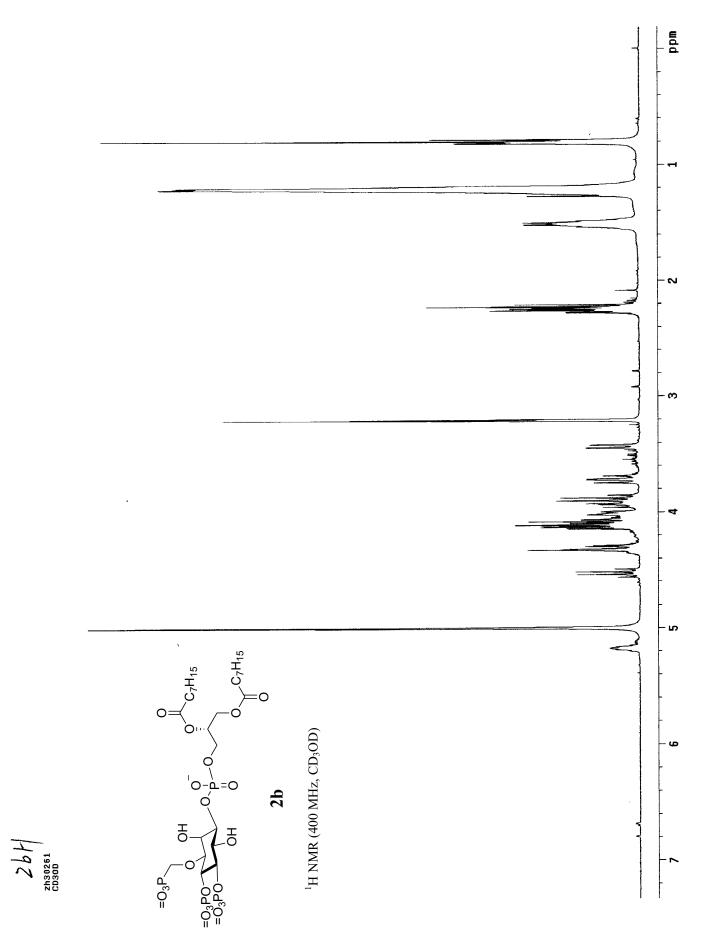


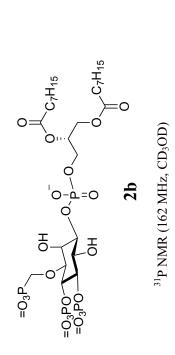


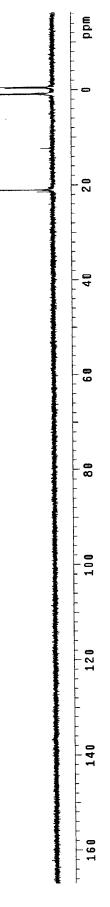
³¹P NMR (162 MHz, CDCl₃)

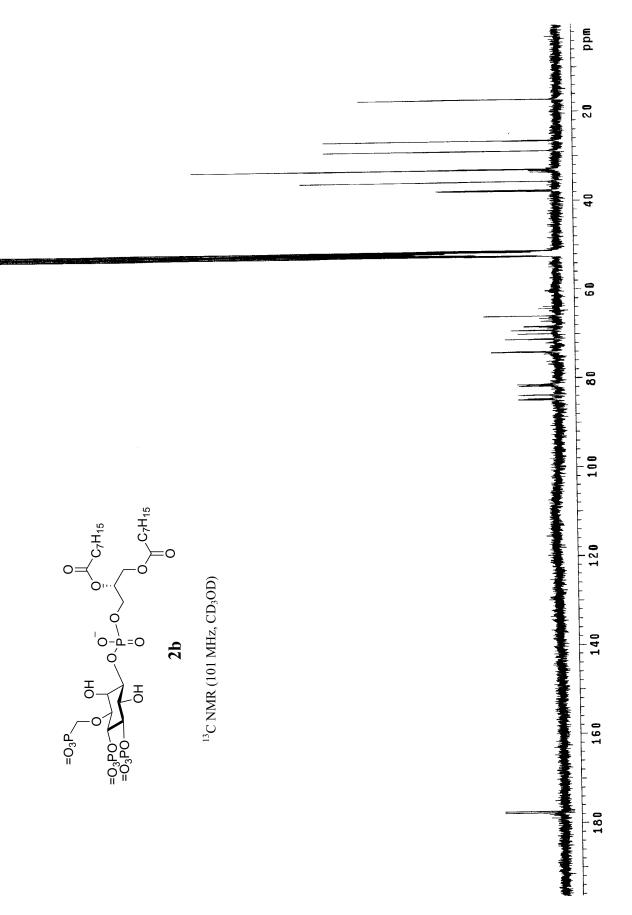


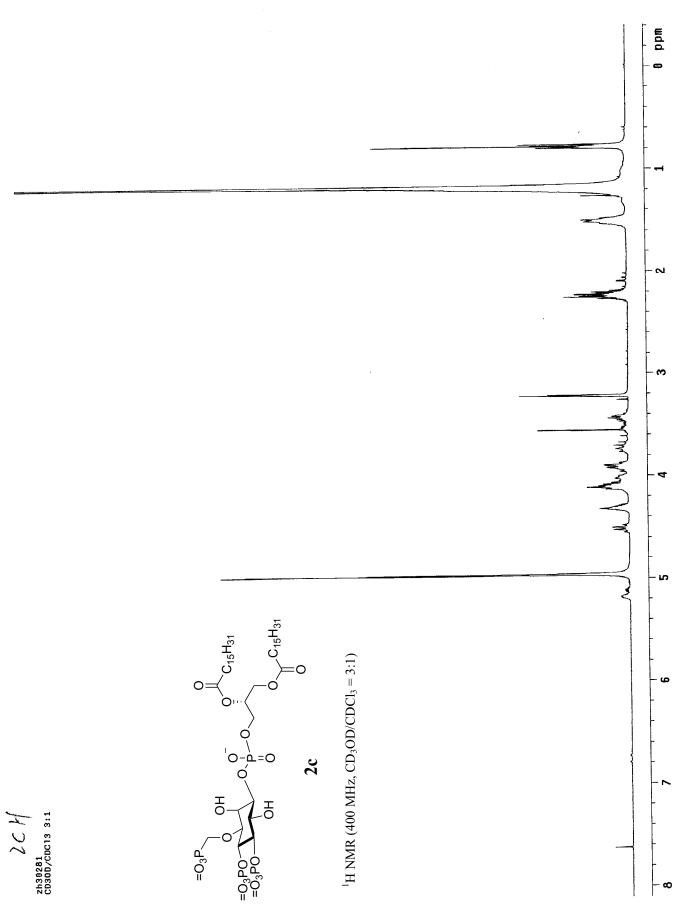


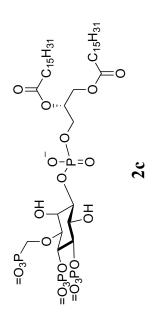


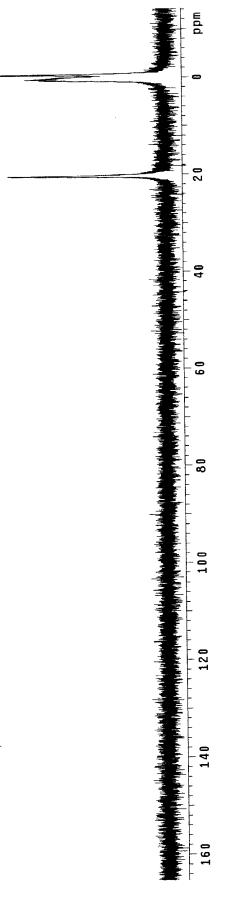

³¹P NMR (162 MHz, CD₃OD)

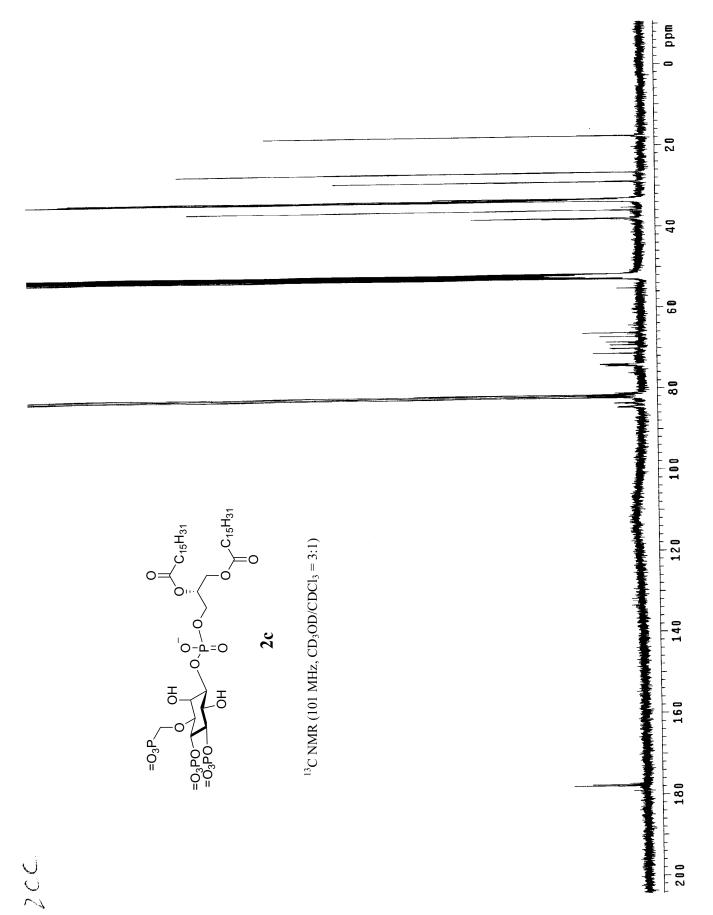


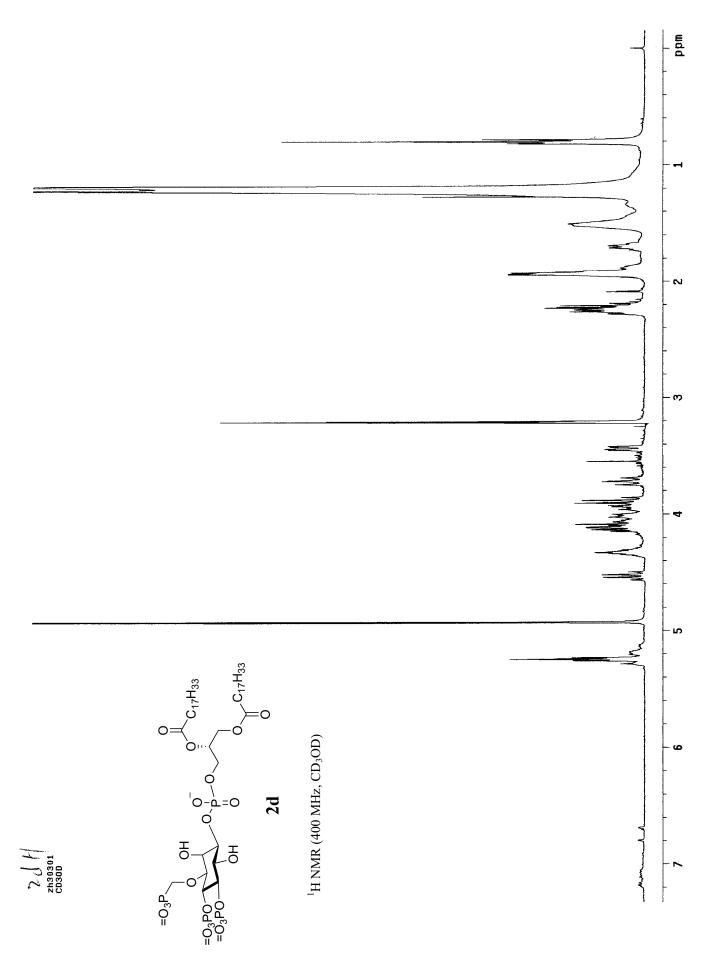


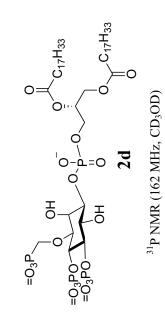











¹³C NMR (101 MHz, CD₃OD/CDCl₃ = 3:1)

