Multiple alignment of membrane proteins for measuring residual dipolar couplings using lanthanide ions bound to a small metal chelator

Douglas E. Kamen, Sean M. Cahill, and Mark E. Girvin Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, 10461

Supporting Information

Figure S1. Decrease in deuterium splitting over time. Measurements were made at 47 ° C on a Bruker DRX 600. Sample conditions were 6% polyacrylamide, 50 mM potassium phosphate, 5% LPPG, 1 mM subunit c, pH 6.8. The curve is a simple trendline.

Figure S2. HSQC spectra of A79C mutant subunit c. Clockwise from top left are unmodified A79C, A79C with EDTA modification and no bound metal, and modified with Tm^{3+} , Tb^{3+} , or Yb^{3+} . Assignments are shown in the first panel, with red labels indicating resonances that do not shift on addition of lanthanide, and green identifying those that do.

Residue	Tm ³⁺ at 800 MHz		Yb ³⁺ at 800 MHz		Tb ³⁺ at 900 MHz	
	HN	$C'C^{\alpha}$	HN	$C'C^{\alpha}$	HN	$C'C^{\alpha}$
1		-0.2		-3.9		1.6
2	3.4	1.3	0.3	0.1	2.0	-0.1
3	-2.3	1.7	2.2	0.9	-4.1	1.1
4	-1.1	-3.8	-1.3	0.2	0.4	1.8
5	-0.1	2.6	2.0	0.4	2.4	0.9
6	-1.0	-0.6	2.0	-0.4	0.1	-3.4
7	0.6	-7.3	-0.6	0.0	0.7	1.1
8	-4.6	-1.8	-0.1	0.1	-5.0	0.8
9	-0.7	-0.5	-1.1	1.9	2.9	2.2
10	2.8	8.9	-3.4	4.4	5.9	3.0
11	-8.3	0.8	n.d.	2.1	n.d.	2.8
12	-6.4	0.9	-1.5	-0.1	-1.4	-4.3
13	-0.6	-1.1	-1.6	1.0	-3.1	2.3
14	-5.7	n.d.	2.3	n.d.	-0.8	n.d.
15	6.1	-5.2	-2.4	-0.4	-0.2	1.8
16	2.7	3.9	2.8	-0.8	-0.8	3.6
17	-1.5	3.1	-0.4	0.5	3.3	8.6
18	3.7	-2.9	4.3	-5.7	-2.0	-6.0
19	0.7	1.7	4.7	0.0	0.1	1.2
20	-1.8	3.4	-1.2	3.1	1.9	-4.1
21	-1.2	n.d.	5.1	n.d.	2.8	-0.6
22	-5.2	0.7	2.4	0.3	-6.8	5.8
23	3.9	-1.9	0.5	-0.5	2.7	-1.7
24	-2.3	n.d.	2.6	n.d.	-1.5	n.d.
25	5.7	n.d.	-0.3	n.d.	1.8	n.d.
26	-10.6	n.d.	-3.8	-2.2	-8.1	n.d.
27	5.0	-6.3	n.d.	-1.7	0.0	-8.2
28	-2.0	-0.9	2.3	-0.5	3.5	-4.3
29	-0.1	-1.8	5.2	3.3	0.1	5.2
30	-1.5	-2.0	-1.2	3.7	-2.7	-5.6
31	-1.9	-2.0	2.2	0.2	1.6	-3.9
32	1.3	0.9	2.4	-0.5	1.9	-2.3
33	2.6	1.0	1.8	-0.2	3.5	1.3
34	-2.4	-0.1	0.9	-0.4	-4.0	1.5
35	-0.1	1.9	-5.1	1.0	-1.0	0.1
36	1.3	2.3	0.8	0.4	-1.8	0.7
37	0.9	0.9	-0.4	0.4	0.5	-0.5
38	1.4	-0.7	5.3	-0.3	3.5	-4.5
39	-4.1	-0.4	-2.4	-0.1	-2.2	0.0
40	1.2	-1.3	-0.3	0.3	1.3	-1.8
41	-0.6	1.6	0.5	0.3	-2.8	-1.2
42	1.8	n.d.p.	2.8	n.d.p.	-2.4	n.d.p.
43	n.d.p.	-0.9	n.d.p.	0.1	n.d.p.	1.5
44	-0.8	-0.7	-1.1	0.4	3.0	-0.5
45	0.1	4.0	-2.0	1.7	0.0	3.3
46	-0.8	n.d.p.	3.3	n.d.p.	-3.2	n.d.p.
47	n.d.p.	2.6	n.d.p.	0.3	n.d.p.	-0.9
48	0.7	-1.8	2.4	0.7	-1.3	-4.2
49	-1.8	-2.5	-1.0	-1.8	1.8	-1.8

Table S1. Measured ${}^{1}H^{15}N$ and ${}^{13}C'^{13}C^{\alpha}$ RDC values for A79C with bound lanthanide ions.

50	1.7	0.6	2.4	0.5	5.1	0.3
51	0.1	-7.4	3.0	0.3	-0.6	-1.0
52	-2.5	-1.4	0.0	-1.3	2.7	-1.8
53	-2.5	3.5	2.8	2.4	-1.0	-5.2
54	-0.3	-2.2	-2.4	0.8	1.3	1.4
55	-5.3	2.2	-3.3	3.0	-1.6	-0.3
56	3.1	0.6	0.1	-0.3	1.2	-1.8
57	-2.4	0.7	-0.8	-0.4	-2.7	1.1
58	2.8	-0.9	-1.6	-0.2	1.5	-4.0
59	-2.9	-2.4	-6.6	-1.2	-0.8	-1.5
60	-4.1	0.6	-3.5	1.1	-2.1	3.5
61	-2.5	0.6	-2.1	0.4	-1.6	-8.9
62	4.4	-5.6	-1.9	n.d.	1.8	3.6
63	1.9	n.d.p.	n.d.	n.d.p.	-5.7	n.d.p.
64	n.d.p.	n.d.	n.d.p.	n.d.	n.d.p.	n.d.
65	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
66	n.a.	n.a.	1.4	n.a.	n.a.	2.8
67	1.4	n.a.	n.a.	n.a.	0.5	4.8
68	-2.1	n.a.	-1.7	n.a.	-1.2	-1.9
69	n.a.	n.a.	n.a.	n.a.	2.0	n.a.
70	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
71	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
72	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
73	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
74	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
75	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
76	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
77	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
78	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
79	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

n.a. – Not assigned due to large pseudocontact shift. n.d. – Not determined due to low signal to noise ratio. n.d.p. – Not assigned due to proline. Methods

Preparation of A79C. The mutation was generated using the Quickchange Site Directed Mutagenesis Kit (Stratagene). Purification and sample preparation was carried out as described¹⁻³, with some modifications. Protein samples in 1:1 CHCl₃:CH₃OH with 15 mg of LPPG were dried under a stream of argon. It was necessary to add DTT to 3-5 mM in order to prevent intermolecular disulfide bond formation.

- (2) Girvin, M. E.; Rastogi, V. K.; Abildgaard, F.; Markley, J. L.; Fillingame, R. H. Biochemistry 1998, 37, 8817-8824.
- (3) Krueger-Koplin, R. D.; Sorgen, P. L.; Krueger-Koplin, S. T.; Rivera-Torres, I. O.; Cahill, S. M.; Hicks, D. B.; Grinius, L.; Krulwich, T. A.; Girvin, M. E. *J Biomol NMR* **2004**, *28*, 43-57.

⁽¹⁾ Girvin, M. E.; Fillingame, R. H. Biochemistry 1995, 34, 1635-1645.