Supporting Information

Spectroscopic and Electronic Structure Study of the Enzyme-Substrate Complex of Intradiol Dioxygenases: Substrate Activation by a High Spin Ferric Non-Heme Iron Site

Monita Y. M. Pau¹, Mindy I. Davis¹, Allen M. Orville², John D. Lipscomb^{2*}, Edward I. Solomon^{1*}

¹ Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA; ² Department of Biochemistry, Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455

Email: edward.solomon@stanford.edu

[†]Current address: Biology Department, Brookhaven National Laboratory, Upton, New York, 11973

Table S1. Cartesian coordinates of PCD-PCA model optimized with Gaussian BP86 and LanL2DZ as basis set

Fe	3.153799	-0.396921	-0.092229
0	4.910209	0.264824	-0.416268
С	5.538830	1.385579	-0.905698
С	6.850401	1.282774	-1.457662
С	7.487417	2.422915	-2.000026
С	6.850649	3.693235	-2.006299
С	5.555158	3.787680	-1.425625
С	4.902708	2.665340	-0.882744
С	7.496111	4.912735	-2.645815
Н	7.344358	0.303476	-1.468238
Н	8.491048	2.321801	-2.435231
Н	8.571124	4.748354	-2.843876
Н	7.015247	5.159263	-3.613802
Н	7.403194	5.807760	-2.001317
Н	5.042459	4.759604	-1.415865
Н	3.888622	2.729154	-0.474971
Ν	3.688235	-2.317116	-0.928221
С	2.896297	-3.234967	-1.525813
Ν	3.664878	-4.307519	-1.953185
С	5.019521	-4.070667	-1.612723
С	5.006886	-2.822511	-0.981664
С	6.138150	-5.045851	-1.918085
Н	1.822556	-3.131601	-1.662323
Н	3.313853	-5.118289	-2.464058
Н	5.832410	-2.232254	-0.592929
Н	6.241548	-5.224152	-3.005216
Н	5.979804	-6.023442	-1.423796
Н	7.093387	-4.633471	-1.554668
Ν	3.443059	-0.978068	1.913149
С	3.610648	-0.174270	2.980075
Ν	3.881061	-0.939730	4.105041
С	3.886219	-2.301701	3.735117
С	3.610844	-2.299215	2.367454
С	4.170666	-3.429599	4.684489
Н	3.558962	0.910826	2.964727
Н	4.070669	-0.575307	5.039202
Н	3.573222	-3.139990	1.679590
Н	4.111260	-4.390386	4.147200
Н	5.185903	-3.356569	5.119322
Н	3.448561	-3.466771	5.522943
0	2.253424	1.392519	-0.151229
0	1.083311	-0.949608	-0.187433
С	1.024704	1.379485	-0.742430
С	0.371241	0.089187	-0.799606
С	-0.869613	-0.055820	-1.443270
С	-1.487873	1.081257	-2.035055
С	-0.856369	2.359041	-1.962273
С	0.393161	2.514230	-1.327804
С	-2.824574	0.916504	-2.743324
0	-3.134272	-0.313201	-3.075074
0	-3.548352	1.972754	-2.944609
Н	-1.362004	-1.028949	-1.544758
Н	-1.367660	3.207168	-2.430902

Η	0.907047	3.481914	-1.297516
0	-4.853903	-2.081642	-3.498131
С	-5.942608	-2.111673	-2.656224
С	-6.456755	-3.386942	-2.408135
С	-7.577110	-3.529495	-1.592559
С	-8.160085	-2.433463	-0.984183
С	-7.601487	-1.169157	-1.217557
С	-6.512092	-0.996452	-2.055972
С	-9.333103	-2.640931	-0.057484
н	-4.248230	-1.228269	-3.403276
н	-5.974803	-4.241316	-2.894317
н	-7.994060	-4.532317	-1.419437
н	-8.079526	-0.288513	-0.766091
н	-6.106736	-0.006916	-2.282773
н	-10.104626	-3.293012	-0.512191
Н	-9.027692	-3.123069	0.894837
Н	-9.824110	-1.684951	0.205516
N	0.209634	-1.701048	2.101788
N	-0.917180	-2.859871	3.727433
C	-0.751378	-1 713943	3 013267
N	-1 476095	-0 664187	3 306149
C	-1 505051	0 685734	2 857176
с н	0 405338	-1 172942	1 150376
н Н	0.915757	-2 439978	2 188493
и и	-0.667471	-3 753443	3 310628
п U		-2 9799/9	1 610240
и п	-2 319270	-0 896238	3 845155
и п	_0 539424	0.000200	2 408001
и п	-2 281864	0.974942	2.400001
и п	-1 709711	1 266122	2 701086
п С	-1.527262	2 961220	
C	-5 20705/	1 997051	
C	-5 9/2129	1 126785	0.245055
C	-5.042130	1 /15802	2 150695
C	1 622000	2 510206	2.130095
C	-4.033909	2.010200	1 2/2225
C	-3 208500	1 201706	1 795009
C	-3.290309	4.294790	2 159100
NT	1 000001	2 010025	2 100702
N	-4.000201	5.019935	3.400/02
	-2.555400	2 400001	1.003442
п u	-4.130700 E 602060	1 610002	1 262014
п u	-5.005000	1.019092	-1.203914
п 11	-0.4001/0	0.271309	0.030314
п тт	- 3.030721 1 260210	0.010992 0.750251	4 400461
n u	-4.300310 -2 764061	7.12022T	4.443401 2 096710
п u	-2.704901 _1 065106	T.000430	1 650070
п u	-1.905190 _1.905150	J. 999093 1 970071	1.0097/2 0.077010
п u	-T.032372	±.0/U0/1 E 060007	0.277010
п	-3.449340	0.20220/	0.419020

Figure S1. Gaussian resolution (---) of UV/VIS Abs spectra (—) at 4°C (A) PCD; red: Tyr408 \rightarrow Fe³⁺ CT, green: Tyr447 \rightarrow Fe³⁺ CT, (B) PCD-PCA; blue: PCA \rightarrow Fe³⁺ CT, red: Tyr408 \rightarrow Fe³⁺ CT.

Figure S2. Overlay of PCD-PCA models optimized with BP86/LanL2DZ (green), BP86 + 10% HF exchange / TZVP (orange) and BP86 + 10% HF exchange / 6-31G*/3-21G* (purple). 2nd sphere residues not presented in diagram for clarity purpose.

Figure S3. Graphical prediction of the signs of the C₀-parameters (= signs of C-terms) of the Tyr and PCA \rightarrow Fe³⁺ CT transitions.

Complete Reference for the Gaussian 03 program package in Ref 43:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.
Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A., *Gaussian 03, Revision C.02*, <u>http://www.gaussian.com</u>, Wallingford CT, **2004**.