Cucurbit[10]uril – Supporting Information

Simin Liu, Peter Y. Zavalij, and Lyle Isaacs*

Department of Chemistry and Biochemistry, University of Maryland College Park, MD 20742

Table of Contents	Pages
Table of contents	 S1
Experimental section	 S2
¹ H NMR spectra of CB[10]•CB[5] in DCl / D_2O (0 – 35%)	 S 3
¹ H NMR Spectra for (<i>R</i>)- 2 , CB[10]•(<i>R</i>)- 2 ₂ and a mixture of CB[10]•(<i>R</i>)- 2 ₂ , CB[10]•(<i>S</i>)- 2 ₂ , and CB[10]•(<i>R</i>)- 2 •(<i>S</i>)- 2	 S4
Variable Temperature NMR for the mixture of CB[10]•1,3- <i>alt</i> - 3 and CB[10]• <i>cone</i> /1,2- <i>alt</i> / <i>partial cone</i> - 3	 S5
Molecular Models for CB[10]•1,3- <i>alt</i> -3, CB[10]• <i>cone</i> -3, CB[10]• <i>1</i> ,2- <i>alt</i> -3, and CB[10]• <i>partial cone</i> -3	 S6
¹ H NMR Spectra for CB[10]•3•Adamantanes $(5 - 8)$	 S7 - S10
Selected spectra for CB[10]•guest binding	 S11 - S20
Chemical structures of additional guests that remain soluble but do not form complexes with CB[10]	 S21
Chemical structures of additional guests that form insoluble precipitates with CB[10]	 S21
Details of the x-ray structure of $CB[10] \cdot 1_2$	 S22 - S24

Experimental Section.

General. The guests used in this study were purchased from commercial suppliers and were used without further purification. Compound **1** and CB[10]•CB[5] were prepared by the literature procedures.¹ Melting points were measured on a Meltemp apparatus in open capillary tubes and are uncorrected. IR spectra were recorded on a commercial spectrophotometers as KBr pellets and are reported in cm⁻¹. NMR spectra were measured on spectrometers operating at 400 or 500 MHz for ¹H and 100 or 125 MHz for ¹³C. Mass spectrometry was performed using a VG 7070E magnetic sector instrument by fast atom bombardment (FAB) using the indicated matrix or on a JEOL AccuTOF electrospray instrument. Computational results were obtained using Spartan 02 running on a Macintosh personal computer.

Preparation, Purification and Characterization of CB[10]. A mixture of CB[10]•CB[5] (2.10 g, 0.78 mmol) and **1** (2.20 g, 3.89 mmol) in water (500 mL) was heated at 90 °C for 30 min. The solution was allowed to cool and the solid (935 mg, contains CB[5]•**1**, CB[10]•CB[5], and CB[10]•**1**₂) removed by filtration. The solution was concentrated to 120 mL and allowed to stand in the refrigerator for 2 h and filtered to give CB[5]•**1** (40 mg). The solution was then concentrated to dryness. The resulting solid was repeatedly washed with MeOH (150 mL portions) which gave CB[10]•**1** as a white solid (1.18 g, 0.53 mmol, 68%). A suspension of CB[10]•**1** (1.12 g, 0.50 mmol) in acetic anhydride (30 mL) was heated at 100 °C for 16 h. The precipitate was removed by centrifugation and washed repeatedly with small portions of MeOH (20 mL portions), DMSO (20 mL portions), and H₂O (20 mL portions). Drying at high vacuum gave CB[10] (610 mg, 0.367 mmol, 73%).

CB[10]. White solid. M.p. > 300 °C. IR (KBr, cm⁻¹): 3445s, 2998w, 2924w, 2850w, 1724s, 1636m, 1468m, 1374m, 1313m, 1226s, 1189m, 1160w, 974m, 810s. ¹H NMR (400 MHz, 20% DCl / D₂O): 5.50 (d, *J* = 15.1, 20H), 5.44 (s, 20H), 4.10 (d, *J* = 15.1, 20H). ¹³C NMR (125 MHz, 20% DCl / D₂O): 159.2, 74.6, 56.9. MS (ES): *m/z* 831 (100, $[M + 2H]^{2+}$, *m/z* spacing = 0.5 confirmed for molecular ion). HR-MS (ES): *m/z* 831.2504 ($[M + 2H]^{2+}$, (C₆₀H₆₂N₄₀O₂₀)/2, calcd 831.2532).

References:

(1) (a) Liu, S.-M.; Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij, P.; Isaacs, L. J. Am. Chem. Soc. **2005**, 127, ASAP. (b) Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. J. Org. Chem. **2001**, 66, 8094-8100. (c) Day, A. I.; Blanch, R. J.; Arnold, A. P.; Lorenzo, S.; Lewis, G. R.; Dance, I. Angew. Chem. Int. Ed. **2002**, 41, 275-277.

Figure S1. ¹H NMR spectrum recorded CB[10]•CB[5] (400 MHz, RT) in DCl / D_2O (0 – 35%). We attribute the small additional set of peaks to the ability of CB[5] to bind chloride ion as demonstrated by Day and co-workers. TMSP = Me₃SiCD₂CD₂CO₂H.

Figure S2. ¹H NMR spectra recorded (400 MHz, 20 % DCl / D₂O, RT) for: a) (*R*)-2 alone, b) a mixture of free CB[10] and CB[10]•[(*R*)-2]₂ prepared from CB[10] and (*R*)-2, and c) a mixture of the racemate (CB[10]•[(*R*)-2]₂ and CB[10]•[(*S*)-2]₂) and the *meso*-complex CB[10]•(*R*)-2•(S)-2 (resonances indicted with "o") prepared from CB[10] and (±)-2. Integration indicates the racemate to *meso*-complex ratio is 3:1.

Figure S3. Variable temperature ¹H NMR spectra recorded CB[10]• $\mathbf{3}$ (400 MHz, D₂O / DCl). The subscript "dyn" refers to the dynamic mixture of cone, 1,2-alternate, and partial cone conformations.

Scheme S1. Cross-eyed stereoviews of the MMFF minimized structures of CB[10]•1,3-*alt*-3, CB[10]•*cone*-3, CB[10]•*1,2-alt*-3, and CB[10]•*partial cone*-3 rendered with CrystalMaker.

Figure S4. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for: (left) a mixture of **3** and **5**, and (right) CB[10]•**3**•**5** with excess **5**.

Figure S5. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for: (left) a mixture of **3** and **6**, (middle) CB[10]•**3**, and (right) CB[10]•**3**•**6** with excess **6**.

Figure S6. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for: (left) a mixture of **3** and **7**, (middle) CB[10]•**3**, and (right) CB[10]•**3**•7 with excess **7**.

Figure S7. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for: (left) a mixture of **3** and **8** and (right) CB[10]•**3**•**8** with excess **8**.

Figure S8. ¹H NMR spectrum recorded (400 MHz, RT, 20% DC1 / D₂O) for α -cyclodextrin and a mixture of α -cyclodextrin and CB[10]. The small resonances at \approx 3.2–3.3 and 4.6 ppm are impurities in the commercially available α -cyclodextrin. α -Cyclodextrin and CB[10] remain in their free states and do not form a complex.

Figure S9. ¹H NMR spectrum recorded (400 MHz, RT, 20% DCl / D_2O) for a 3:1 mixture of CB[6] and CB[10]. CB[6] and CB[10] remain in their free states and do not form a complex.

Figure S10. ¹H NMR spectrum recorded (400 MHz, RT, 20% DCl / D_2O) for a 1:2 mixture of purified CB[5] and CB[10]. Purified CB[10] retains the ability to bind CB[5]. Excess CB[10] is present as its free form.

Figure S11. ¹H NMR spectrum recorded (400 MHz, RT, 20% DC1 / D_2O) for a 2.4:1 mixture of purified CB[5] and CB[10]. Purified CB[10] retains the ability to bind CB[5]. Excess CB[5] is present as its free form.

Figure S12. ¹H NMR spectrum recorded (400 MHz, RT, D₂O) for tetracycline and a mixture of tetracycline and CB[10].

Figure S13. ¹H NMR spectrum recorded (400 MHz, RT, D_2O) for tetralysine and a mixture of tetralysine and CB[10].

Figure S14. ¹H NMR spectrum recorded (400 MHz, RT, 20% DC1 / D_2O) for coumarin 138 and a mixture of coumarin 138 and CB[10].

Figure S15. ¹H NMR spectrum recorded (400 MHz, RT, 20% DCl / D_2O) for nile blue and a mixture of nile blue and CB[10].

Figure S16. ¹H NMR spectrum recorded (400 MHz, RT, 20% DCl / D₂O) for a mixture of CB[10]•CB[5] and 3,5-dimethyl-1-aminoadamantane. The guest displaces CB[5] from the CB[10]•CB[5] complex. The CB[10]•3,5-dimethyl-1-aminoadamantane complex is insoluble, precipitates from solution, and is not seen in the ¹H NMR spectrum. Excess free guest and CB[5] remain in solution. * = small amount of CB[10]•CB[5]

Figure S17. ¹H NMR spectrum recorded (400 MHz, RT, D₂O) for CB[10]•CB[5] after addition of ≈ 0.8 eq. pyrenemethylamine hydrochloride. The guest displaces CB[5] from the CB[10]•CB[5] complex. The CB[10]•pyrenemethylamine complex is insoluble, precipitates from solution, and is not seen in the ¹H NMR spectrum. Displaced CB[5] and residual remain in solution. The broadness reflects chemical exchange between free and bound CB[5].

Figure S18. Chemical structures of some additional guests that do not form complexes with CB[10] in DCl / D_2O solution.

Figure S19. Chemical structures of some additional guests that form insoluble precipitates when mixed with CB[10] in DCl / D_2O solution.

Crystal Structure Information for UM # 1234

Issued by: Peter Y. Zavalij

Crystal No. & ID	: 1234: Isaacs/Liu 1050B+KI #2 @-40C redo from non-split crystal
Compound name	: CB10 @ bis-diammonium tetraidodide hydrate
Chemical formula	: (C60 H60 N40 O20), (C17 H21 N7 O)4, I8, (H2 O)65.87
Final R_1 [I>2 σ (I)]	: 8.74 %

Figure S20. A view of a molecule of CB10@diamine2.I4.nH2O from the crystal structure showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 25% probability level. Hydrogen atoms are displayed with an arbitrarily small radius.

A colorless prism of $C_{94}H1_{67.87}I_4N_{54}O_{54.94}$, approximate dimensions $0.200 \times 0.285 \times 0.315 \text{ mm}^3$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 233(2) K on a threecircle diffractometer system equipped with Bruker Smart1000 CCD area detector using a graphite monochromator and a MoK α fine-focus sealed tube (λ = 0.71073 Å) operated at 50 kV and 40 mA. The detector was placed at a distance of 4.99 cm from the crystal.

A total of 1868 frames were collected with a scan width of 0.3° in ω and an exposure time of 15 sec/frame using SMART (Bruker, 1999). The total data collection time was 11.5 hours. The frames were

integrated with SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Orthorhombic unit cell yielded a total of 41685 reflections to a maximum θ angle of 22.50°, of which 4924 were independent (completeness = 99.5%, $R_{int} = 8.87\%$, $R_{sig} = 5.06\%$) and 3619 were greater than 2 σ (I). The final cell dimensions of a = 19.476(4) Å, b = 20.192(4) Å, c = 18.567(4) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 7302(3) Å³, are based upon the refinement of the XYZ-centroids of 5532 reflections with 2.3 < θ < 21.0° using SAINT. Analysis of the data showed 1.52 % decay during data collection. Data were corrected for absorption effects with the Semi-empirical from equivalents method using SADABS (Sheldrick, 1996). The minimum and maximum transmission coefficients were 0.680 and 0.826.

The structure was solved and refined using the SHELXS-97 (Sheldrick, 1990) and SHELXL-97 (Sheldrick, 1997) software in the space group *Pnnm* with Z = 2 for the formula unit C₉₄H1_{67.87}I₄N₅₄O_{54.94}. The final anisotropic full-matrix least-squares refinement on F² with 623 variables converged at R₁ = 8.74 % for the observed data and wR₂ = 23.75 % for all data. The goodness-of-fit was 1.001. The largest peak on the final difference map was 2.632 \bar{e} /Å³ and the largest hole was -1.003 \bar{e} /Å³. On the basis of the final model, the calculated density was 1.565 g/cm³ and F(000), 3523 \bar{e} .

X-ray labbook No. Crystal ID	1234 Isaacs/Liu 1050B+KI #2 @-40C redo from non-split crystal		
Empirical formula	C94 H167.87 I4 N54 O54.94		
Formula weight	3441.25		
Temperature	233(2) K		
Wavelength	0.71073 Å		
Crystal size	$0.315 \times 0.285 \times 0.200 \text{ mm}^3$		
Crystal habit	colorless prism		
Crystal system	Orthorhombic		
Space group	Pnnm		
Unit cell dimensions	$a = 19.476(4) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 20.192(4) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 18.567(4) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	7302(3) Å ³		
Z	2		
Density, ρ_{calc}	1.565 g/cm^3		
Absorption coefficient, µ	0.957 mm^{-1}		
F(000)	3523ē		

Table S1. Sample and crystal data for CB10@diamine2.I4.nH2O.

Diffractometer		Bruker Smart1000 CCD area detector	
Radiation source		fine-focus sealed tube, MoK α	
Generator power		50 kV, 40 ma	
Detector distance		4.99 cm	
Detector resolution	1	8.33 pixels/mm	
Total frames		1868	
Frame size		512 pixels	
Frame width		0.3 °	
Exposure per fram	e	15 sec	
Total measuremen	t time	11.5 hours	
Data collection method		ωscans	
θ range for data co	ollection	2.19 to 22.50°	
Index ranges		$-20 \le h \le 20, -21 \le k \le 21, -19 \le l \le 19$	
Reflections collect	ed	41685	
Independent reflect	tions	4924	
Observed reflectio	n, I>2σ(I)	3619	
Coverage of indep	endent reflections	99.5 %	
Variation in check reflections		1.52 %	
Absorption correction		Semi-empirical from equivalents	
		SADABS (Sheldrick, 1996)	
Max. and min. transmission		0.826 and 0.680	
Structure solution technique		direct	
Structure solution program		SHELXS-97 (Sheldrick, 1990)	
Refinement technique		Full-matrix least-squares on F ²	
Refinement program		SHELXL-97 (Sheldrick, 1997)	
Function minimized		$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / p	parameters	4924 / 283 / 623	
Goodness-of-fit or	$1 F^2$	0.980	
Δ/σ_{max}		0.000	
Final R indices:	R_1 , $I>2\sigma(I)$	0.0874	
	wR ₂ , all data	0.2375	
	R _{int}	0.0887	
	R _{sig}	0.0506	
Weighting scheme		$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 122.7P],$	
		$P = [max(F_o^2, 0) + 2F_o^2]/3$	
Largest diff. peak and hole		2.632 and $-1.003\overline{e}/Å^3$	

Table S2. Data collection and structure refinement for CB10@diamine2.I4.nH2O.

 $R_1 = \Sigma IIF_oI - IF_cII / \Sigma IF_oI, \quad wR2 = [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{1/2}$