Supplement 1a

Supplement 1b

Southern blots - Kcnq2

Southern blots - Kcnq3

Supplement 1c

Supplement 1d

Singh, et al.

Supplemental Figure 1: Genomic Southern analysis of BamH1 cut embryonic stem cell DNA hybridized with a probe 5' of the targeting vector (left panels) and probed with the neo gene (right panels) confirming homologous recombination in *Kcnq2* (Figure 1A) and *Kcnq3* (Figure 1B) embryonic stem cells. Analysis of PCR-amplified tail DNA on single strand conformational polymorphism (SSCP) gels detected the presence of the A306T mutation in *Kcnq2* exon 6 (Figure 1C left, arrow denotes mutant) and agarose gels detected the corresponding presence of a single loxP site in *Kcnq2* intron 5 (Figure 1C right, arrow denotes mutant). SSCP analysis of PCR-amplified mouse tail DNA demonstrating band shifts (denoted by arrows) caused by the G311V point mutation in *Kcnq3* knockin mice (Figure 1D left, arrows denote mutant). Agarose gel of PCR amplified tail DNA showing the post-excision loxP site in intron 6 of *Kcnq3* (Figure 1D right, arrow denotes mutant).

Singh, et al.

Supplemental Figure 2: An absence of NPY upregulation in the stratum lucidum of young homozygous mutant mice. No expression of NPY in the stratum ludicum or hilar mossy fibers of a P30 B6.129 *Kcnq2*^{A306T/A306T} homozygous mutant mouse (top panel). In a P11 FVB.129 *Kcnq3*^{G311V/G311V} homozygous mutant mouse a few hours following a documented seizure, no upregulation of NPY in the stratum lucidum is seen, although a slight increase in expression of NPY is seen in the hilar mossy fibers (bottom panel). In both cases, normal NPY expression is seen in hilar interneurons. Scale bars, 100μm.

T٤	ble S1.	Numb	er of be	ehavio	ral seiz	ures ov	ver a 12	2-hour	light pe	eriod a	s a fun	ction of	f age ir	IFVB.	129-Ko	enq3 ^{G3}	11V/G311	^v mice	
	age	P21-	P26-	P31-	P36-	P41-	P46-	P51-	P56-	P61-	P66-	P71-	P76-	P81-	P86-	P91-	P96-	P100-	P106-
	(days)	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110
1		9*	5*																
2		1*	0	4	7	0*													
3			6*	6*															
4				1*	2	5	6	25	9	21	40*								
5				0*	2	4	21	0	6*										
6				2*	16	19	4	0	15	19	32	67	110	24*					
7					5*	18	18	0	0*										
8						0*	7	19	21	21	23	40	39	25*					
9								0*	18	25	0	0	0	0	0	7	0	5	6*

mice correspond to Figure 4A; *, monitoring was incomplete over the 5-day period

		(see ref 16)
1	rapid running	stage 8-running and jumping
2	bilateral forelimb clonus, orofacial	stage 1-mouth clonus
	automatisms, jaw chomping, head	stage 2 head clonus
	clonus, occasional rearing	stage 4- bilateral forelimb clonus
		with rearing
3	Forelimb and hindlimb clonus	stage 5-bilateral forelimb clonus
		with falling
		stage 9-running and jumping
		followed by a tonic clonic seizure
4	Forelimb tonic extension and hindlimb	stage 9-running and jumping
	clonus	followed by a tonic clonic seizure
5	Forelimb and hindlimb tonic extension	stage 9- running and jumping
		followed by a tonic clonic seizure

Table S2. Comparison of our grading scale of seizure characteristics to the Racine scale

approximate Racine Equivalent

Grade

Features

Singh et al

	Mouse genotype						
Membrane property _	<i>Kcnq2</i> ^{+/+}	Kcnq2 ^{A306T/+}	Kcnq2 ^{A306T/A306T}				
Input Resistance	107 ± 4	103 ± 5	103 ± 4				
(MΩ)	(n = 17)	(n = 9)	(n = 10)				
Series Resistance	14.6 ± 0.3	13.9 ± 0.3	14.3 ± 0.3				
(MΩ)	(n = 15)	(n = 9)	(n = 8)				
Resting Membrane	-61.1 ± 0.7	-59.9 ± 0.7	-59.97 ± 0.8				
Potential (mV)	(n = 7)	(n = 8)	(n = 10)				
Capacitance	131 ± 5	134 ± 13	137 ± 11				
(pF)	(n = 11)	(n = 9)	(n = 10)				

Table S3. The *Kcnq2* A306T mutation does not affect the passive membrane properties of CA1 neurons.

All values expressed as mean \pm S.E.M. Input resistance, series resistance, and resting membrane potential were taken from values reported by SealTest and MultiClamp Commander functions.

Singh et al

Mambuana nuonautu	Mouse genotype						
Memorane property _	B6;129-Kcnq3 ^{+/+}	B6;129-Kcnq3 ^{G311V/+}	B6;129-Kcnq3 ^{G311V/G311V}				
Input Resistance	107 ± 4	105 ± 6	100 ± 4				
(MΩ)	(n = 17)	(n = 18)	(n = 16)				
Series Resistance	14.6 ± 0.3	14.0 ± 0.2	14.3 ± 0.3				
(MΩ)	(n = 15)	(n = 19)	(n = 25)				
Resting Membrane	-61.1 ± 0.7	-59.3 ± 0.5	-59.3 ± 0.8				
Potential (mV)	(n = 7)	(n = 15)	(n = 15)				
Capacitance	131 ± 5	140 ± 4	132 ± 7				
(pF)	(n = 11)	(n = 21)	(n = 21)				

Table S4. The *Kcnq3* G311V mutation does not affect the passive membrane properties of B6;129 CA1 neurons.

All values expressed as mean \pm S.E.M. Input resistance, series resistance, and resting membrane potential were taken from values reported by SealTest and MultiClamp Commander functions.

Table S5. The *Kcnq3* G311V mutation does not affect the passive membrane properties of FVB;129 CA1 neurons.

Mambuana nuonantu	Mouse genotype							
	FVB;129- <i>Kcnq3</i> ^{+/+}	FVB;129-Kcnq3 ^{G311V/+}	FVB;129-Kcnq3 ^{G311V/G311V}					
Input Resistance	93 ± 6	93 ± 5	95 ± 4					
(MΩ)	(n = 6)	(n = 7)	(n = 14)					
Series Resistance	13.5 ± 0.5	13.8 ± 0.3	13.8 ± 0.3					
(MΩ)	(n = 7)	(n = 7)	(n = 16)					
Resting Membrane	-60.1 ± 2.4	-61.3 ± 1.5	-58.35 ± 1.58					
Potential (mV)	(n = 5)	(n = 6)	(n = 10)					
Capacitance	160 ± 15	162 ± 7	155 ± 6					
(pF)	(n = 6)	(n = 6)	(n = 15)					

All values expressed as mean \pm S.E.M. Input resistance, series resistance, and resting membrane potential were taken from values reported by SealTest and MultiClamp Commander functions.

Supplementary Videos 1 & 2

Spontaneous seizures in N1F2 B6.129- $Kcnq2^{A306T/A306T}$ (video 1) and N1F2 B6.129- $Kcnq3^{G310V/G310V}$ (video 2) adult mice. Note that in each mutant, behavioral signs of seizure activity precede the onset of abnormal synchronization and cortical epileptic discharges, and may outlast them, consistent with a subcortical origin. Electrode montages are as described in Figure 3.

Supplementary Video 3

Spontaneous generalized tonic clonic seizure in a P24 N5F2 FVB.129- $Kcnq2^{A306T/A306T}$ mouse. Note the almost instantaneous onset of a forelimb and hindlimb tonic extension seizure.

Supplementary Videos 4 and 5

Recurrent generalized seizures in a P48 N5F2 FVB.129-*Kcnq3*^{G311V/G311V} mouse. Compared to N5F2 FVB.129-*Kcnq2*^{A306T/A306T}, FVB.129-*Kcnq3*^{G311V/G311V} exhibit a longer duration to onset of a forelimb and hindlimb tonic extension seizure. From P33 to P82, over 600 seizures were recorded in this homozygous knockin mouse, including grade 5 (video 4) and grade 3 (video 5) seizures and no mossy fiber sprouting was seen after Timm staining.