
JOURNAL OF VIROLOGY, JUlY 1987, p. 2063-2070
0022-538X/87/072063-08$02.00/0
Copyright C) 1987, American Society for Microbiology

The 160,000-Mr Virion Protein Encoded at the Right End of the
Herpesvirus Saimiri Genome Is Homologous to the 140,000-Mr
Membrane Antigen Encoded at the Left End of the Epstein-Barr

Virus Genome
KEITH R. CAMERON,' THOMAS STAMMINGER,2 MOLLY CRAXTON,' WALTER BODEMER,2

ROBERT W. HONESS,1* AND BERNHARD FLECKENSTEIN2
Division of Virology, National Institute for Medical Research, Mill Hill, London NW7 JAA, United Kingdom,1 and

Institut fur Klinische Virologie, Universitat Erlangen-Nurnberg, Erlangen, Federal Republic of Germany2
Received 3 December 1986/Accepted 14 March 1987

The sequence of 4.4 kilobase pairs (kbp) from the conventional right terminus of the A+T-rich light-DNA
(L-DNA) sequences of the herpesvirus saimiri (HVS) genome contains a leftward-directed open reading frame
(ORF) for a 1,299-residue protein. The molecular weight predicted for the protein (143,000) is in good
agreement with the estimates of 150,000 to 160,000 for the major nonglycosylated polypeptide of the virion
tegument (the 160K polypeptide), previously shown to be encoded by this region of the genome. The first
initiation codon of the ORF is only 250 nucleotides from the junction of the L-DNA component with the
G+C-rich terminal reiterations (i.e., heavy or H-DNA) of the genome. An unusually A+T-rich sequence (43
of 45 nucleotides are A or T, relative to a mean composition of 40% G+C for the ORF) occurs some 75 bp 5'
to this initiation codon, and the first adenylation signal (AATAAA) on this DNA strand occurs 18 bp 3' to the
termination codon. The amino acid sequence predicted for the 160K protein of HVS is homologous over most
of its length to the 1,318-residue protein encoded by the leftmost major ORF of the G+C-rich genome of
Epstein-Barr virus (BNRF1, the 140K nonglycosylated membrane antigen). No homology to either of these
proteins is evident among the products predicted from the complete sequence of the alpha herpesvirus
varicella-zoster virus. Thus gamma herpesviruses with coding sequences which differ in mean nucleotide
composition by some 20% G+C have homologous proteins encoded at similar positions with respect to genome
termini, with the right end of HVS being homologous to the left end of Epstein-Barr virus.

Herpesvirus genomes are all double-stranded DNA mole-
cules of >100 kilobasepairs (kbp), but the mean nucleotide
composition of genomes from different members of the
group ranges from 36 to 75% G+C. Herpesviruses are also
diverse in their biological properties, and a subdivision into
alpha, beta, and gamma herpesvirus subgroups based upon

general differences in these biological properties is proving
useful and is supported by more quantitative measures of
relatedness. Thus, the alpha herpesviruses are neurotropic
viruses with either G+C-rich (a, subgroup; e.g., herpes
simplex viruses, 66 to 68% G+C) or A+T-rich (a2 subgroup;
e.g., varicella-zoster virus, 46% G+C) coding sequences.
The beta herpesviruses are synonymous with the salivary
gland inclusion agents, or cytomegaloviruses (55 to 60%
G+C), and the gamma herpesviruses include the G+C-rich
lymphotropic herpesviruses of humans and old-world mon-

keys (e.g., Epstein-Barr virus [EBV], 60% G+C; -yl sub-
group) and the lymphotropic herpesviruses of new-world
monkeys and lower vertebrates, which have A+T-rich cod-
ing sequences (e.g., herpesvirus saimiri [HVS], 36% G+C;
Y2 subgroup) (20, 23, 43).
We have undertaken an analysis of the prototype virus of

the distinctive Y2 subgroup of lymphotropic herpesviruses,
HVS. Although many general features of the biological
properties of this virus are similar to those of EBV, the gross
composition and structure of the genomes of these viruses
differ markedly (1, 16, 26). The EBV genome is G+C-rich
(60% G+C) and is characterized by large- and small-scale
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internal redundancy, notably in the form of multiple (more
than nine) tandem reiterations of a >3-kbp sequence, the
BamHI-W repeats (1, 26). The herpesvirus saimiri genome

has an A+T rich coding sequence (112 kbp; 36% G+C; i.e.,
L-DNA) with no large-scale internal redundancy, but with
>30 reiterations of a 1.44-kbp sequence of 71% G+C at the
termini of the genome (H-DNA; 3, 16, 27). However, studies
of the gene products of HVS have revealed a marked
similarity between many of the structural and nonstructural
proteins of this virus and the proteins of EBV (41). For
example, among their structural proteins, both viruses en-

code a nonglycosylated, or poorly glycosylated, protein of
molecular weight 140,000 to 160,000, which is one of the
major components which surrounds the capsid but is be-
neath the lipid envelope of their respective virions (i.e., the
tegument [13, 14, 25, 39, 40]). In virions of EBV, this protein
has an apparent size of 140,000, i.e., somewhat less than the
major capsid protein. It has been termed the 140K
nonglycosylated membrane antigen and is thought to be
encoded by nucleotides 1736 to 5689 of the sequence of the
B95-8 genome (1) (i.e., BNRF1). The functionally analogous
polypeptide from virions of HVS has been designated the
152K (20) or 160K (39-42) polypeptide. By using polyclonal
and monoclonal antibodies to the 160K polypeptide of HVS
(40, 42) in conjunction with in vitro translation of RNA
selected by cloned restriction endonuclease fragments of the
genome, the 152/160K product has been mapped to the
conventional right-hand end of HVS DNA (KpnI-SmaI-E;
EcoRI-SmaI-J-EcoRI-K-EcoRI-M-EcoRI-O) (20; W. Hell,
H. Wolf, R. Randall, and R. W. Honess, unpublished
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FIG. 1. Sequence of 4,400 bp from the right end of the L-DNA component of H-VS strain 11 DNA with the predicted amino acid sequence

of the 1,299-residue product of the major ORF. The DNA sequence begins at the SmaI site which has conventionally defined the right-hand

boundary of the L-DNA component of the HVS genome with the terminal, H-DNA, repeats (the first base of L-DNA is nucleotide 39 of this

sequence) and ends 4 nucleotides beyond the EcoRI site which separates EcoRI-M and EcoRI-N (see reference 5 and Fig. 2 for maps of

relevant restriction endonuclease cleavage sites). Positions of the recognition sites for selected restriction endonucleases are annotated, as

is the position of the first consensus polyadenylation signal (AATAAA, poly-A) on this DNA strand (see Fig. 2).

results). In this paper we present an analysis of the sequence KpnI-SmaI-E (9 kbp) fragment of HVS strain 11 (15) DNA.

of this region of the HVS genome and provide proof that The fragment was purified from plasmid pWD11 (27) and

these functionally analogous proteins are homologous gene used to produce three libraries of fragments: (i) random

products. fragments, created by sonication of the KpnI-SmaI-E frag-

MATERIALS AND METHODS ment, cloned into the SmaI site of M13mpl8 (35); (ii)
METHODS products of partial digestion with Sau3A cloned into the

DNA sequencing. The DNA sequence was obtained as part BamHI site of M13mpl8; and (iii) EcoRI fragments (N, M,

of the determination of the complete sequence of the 0, and K) cloned into the EcoRI site of M13mpl8. All these

J. VIROL.
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FIG. 2. Measures of the positional base preference (continuous tracings) relative to positions of stop codons and potential initiation codons
(ATG) in each of the three reading frames of the sequence given in Fig. 1. The positions of a number of restriction endonuclease cleavage
sites and the single polyadenylation (POLY-A) site on this DNA strand are indicated against the scale at the base of the figure. The display
was obtained with the ANALYSEQ programs of Staden (49, 50), with the positional base preference averaged over a sliding window of 67
codons. The location of the sequences isolated by Schirm et al. (46) as a substitute for the simian virus 40 enhancer is indicated (enh'r) in frame
1, the reading frame of the 160K protein.

clones were sequenced by the M13 dideoxynucleotide meth-
ods of Sanger et al. (44, 45), by using the techniques
described in detail by Bankier and Barrell (2), with buffer
gradient electrophoresis and adenosine 5'-[35S]thiotriphos-
phate (>400 Ci/mmol; The Radiochemical Centre, Amer-
sham, U.K.) as the labeled nucleotide (4). The region from
nucleotides 1 to 2272 of the sequence given in Fig. 1 was

TABLE 1. Observed and expected frequencies of dinucleotides

Dinucleotide No. % Observed % Expecteda

AA 426 9.7 10.0
AC 309 7.0 6.8
AG 326 7.4 5.8
AT 329 7.5 9.1
CA 374 8.5 6.8
CC 164 3.7 4.6
CG 60 1.4 3.9
CT 343 7.8 6.1
GA 255 5.8 5.8
GC 223 5.1 3.9
GG 120 2.7 3.4
GT 210 4.8 5.3
TA 336 7.6 9.1
TC 244 5.5 6.1
TG 302 6.9 5.3
TT 378 8.6 8.2

a Given the following mononucleotide frequencies and assuming random
associations: A, 1,391 (31.6%); G, 808 (18.4%); C, 941 (21.4%); T, 1,260
(28.6%).

sequenced independently in our two laboratories, including
the 377-bp sequence that was previously reported to serve as
a substitute for the simian virus 40 enhancer (46) (nucleo-
tides 1896 to 2272 of the present sequence). There was only
a single discrepancy between the two sequences (Schirm et
al. [46] report a T at nucleotide 2200, whereas a C is given in
Fig. 1; the assignment of a C was confirmed by resequencing
clones across this region).
Assembly and analysis of the DNA sequence. Sequences

were assembled by using the DB programs of Staden (48),
DBUTIL and DBAUTO, and the corrected consensus se-

quence was analyzed by using the ANALYSEQ programs
(49, 50) and the Molecular Genetics and Sequencing (MGS)
suite of programs developed by W. Greer and P. Gillett,
National Institute for Medical Research, London. Protein
compositional analyses, structure prediction (6, 17), and
data base searches also involved the use of options in the
MGS programs and in ANALYSEP (51). All these compu-
tations were performed on a DEC 20-60 computer. Searches
with the MGS programs have been performed with issues of
public data bases up to issue 8 of the European Molecular
Biology Organization nucleic acids data base (April 1986;
6,396 entries) and issue 10 of the NBRF protein sequence
data base (August 1986; 4,248 entries) and with local data
bases containing translations of all major reading frames of
EBV (1) and of published sequences of other herpesvirus
genes (9). In addition, searches for homologies to the HVS
protein sequence were performed with the FASTP program
of Lipman and Pearson (30) and the PROTSEQ library

Framel

'stop:

ATG.

N
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MGS Dot-Matrix Comparison
160K.AAC (1 to 1299) vs EBNRFI.AAC (1 to 1318)

K-tuple = 41 Mismatoh = 0 TheshId = 10.68
Matching : Weights

I 131 261 391 E2 ail 781 911 1&41 1171

EBV READING FRAME (Rrge ! 1736 - 5689)

FIG. 3. Comparisons of the predicted amino acid sequences of the 160K polypeptide of HVS (ordinate) and the 140K product of the
BNRF1 reading frame of EBV (abscissa; the translation of nucleotide 1736 to 5689 from the EBV sequence of Baer et al. [1]) by a dot-matrix
representation of all homologous subsequences which exceed a threshold score. The figure shows the output from a program (MGS
dot-matrix) similar to the DIAGON program of Staden (47). The program compares all sequential combinations ofK residues (K = 41 residues
in the case illustrated) from one sequence with the other by using a weight matrix (the weight matrix was based on a minimum mutation
distance matrix [47], with values ranging from 2 for W versus C to 27 for W versus W) and places a point at each position for which the sum
of the weights of paired residues exceeds a value of K multiplied by the threshold weight. The threshold weight was set at 10.6 (per residue).

(810,584 residues in 3,557 sequences) on a VAX 11/780
computer at the Laboratory for Molecular Biology, Univer-
sity of Cambridge, Cambridge, U.K. Independent analyses
of the properties of the DNA sequence and its predicted
protein product in Erlangen were done with the Wisconsin
package (12) implemented on a VAX 11/780 computer.

RESULTS

The DNA sequence: composition and general properties.
The sequence presented in Fig. 1 comprises 4,400 nucleo-
tides and extends from the SmaI site, which has convention-
ally defined the junction with the H-DNA repeat units at the
right of the genome, through the EcoRI site, which separates
the EcoRI M and N fragments of the L-DNA component of
HVS strain 11. The sequence has a mean composition of
39.8% G+C, and the occurrence of CpG dinucleotides is
much lower than would be expected on the basis of this
mean composition and a random distribution between
dinucleotides (Table 1: CpG/GpC = 1.4/5.1). An estimate of
the significance of the deviation of observed from expected
occurrences ofCpG was obtained by analyses of randomized
samples of the current sequence. From 35 randomized
versions of the current sequence, the mean observed occur-

rences of CpG is the same as that of GpC, i.e., 155, with a

standard deviation of 9.4. The number of occurrences of
CpG in the real sequence (i.e., 60; Table 1) thus deviates
from the expected mean value by more than 10 standard
deviations. However, the specific suppression of CpG

TABLE 2. Comparison of predicted amino acid compositions for
the 160K polypeptide of HVS and the 140K product of the

BNRF1 reading frame of EBV

Amino No. in: % in: % 160K/
acida BNRF1 160K BNRF1 160K % BNRF1l

Asp 55 56 4.17 4.31 1.03
Asn 42 65 3.19 5.00 1.57
Thr 69 96 5.24 7.38 1.41
Ser 91 118 6.90 9.08 1.31
Glu 71 67 5.39 5.15 0.96
Gln 59 51 4.48 3.92 0.82
Pro 91 70 6.90 5.38 0.78
Gly 126 67 9.56 5.15 0.54
Ala 128 104 9.71 8.00 0.82
Cys 25 39 1.90 3.00 1.58
Met 31 26 2.35 2.00 0.85
Val 92 84 6.98 6.46 0.93
Ile 38 68 2.88 5.23 1.81
Leu 153 138 11.61 10.62 0.91
Tyr 32 44 2.43 3.38 1.39
Phe 53 43 4.02 3.31 0.82
Trp 18 13 1.37 1.00 0.73
His 34 45 2.58 3.46 1.34
Lys 23 50 1.75 3.85 2.2
Arg 87 55 6.60 4.23 0.64
a Amino acid totals: BNRF1, 1,318; 160K, 1,299. Molecular weights:

BNRF1, 142,681; 160K, 143,067.
b Major differences in the gross composition of the two polypeptides are

underlined.
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dinucleotides is a general property of the HVS genome, not
a specific feature of this sequence, and will be documented
and discussed in detail elsewhere (R. W. Honess, U. A.
Gompels, K. R. Cameron, B. G. Barrell, and R. Staden,
manuscript in preparation). The positions of stop codons and
of potential initiation codons (ATG) in each of the three
frames of this DNA strand are summarized in Fig. 2,
together with a measure of the positional base preference in
each of these three frames. A consistent bias in the posi-
tional base preference is a general property of coding se-
quences (50, 52). The sequence of this DNA strand contains
a single major open reading frame (ORF), and a consistent
bias in the positional base preference is specific to the region
of this ORF (Fig. 2). The sequence of the 1,299 amino acids
making up the predicted product of this reading frame is
given in Fig. 1. The longest ORF on the opposite strand is
363 bp, and no consistent positional bias is associated with
this or the other ORFs on this other strand (not shown).
Results comparable to the general measure of positional bias
illustrated in Fig. 2 were obtained by measurements of
conformity to a table of codon usages derived from other
recently characterized genes of HVS (22; data not shown).
The expected bias in the use of A+T-rich synonyms of
degenerate codons is the main feature of the coding se-
quence, but superimposed upon this general property is the
additional reduction in codons containing the suppressed
dinucleotide, CpG (e.g., there are 65 occurrences of CCA or
CCT versus 5 occurrences of CCC or CCG and 76 occur-
rences of TCA or TCT versus 8 occurrences of TCC or
TCG).
A region of 377 bp (from nucleotides 1896 to 2272 of the

sequence in Fig. 1) from the present sequence was previ-
ously isolated from HVS DNA as a functional substitute for
the simian virus 40 enhancer in the enhancer-trap assay (46).
This sequence is in the middle of the large ORF. If a major
part of this sequence served an essential function as an
enhancer (or any other cis-recognition function) in addition
to encoding for protein, we would expect significant depar-
tures in composition and codon usage from those observed
for portions of the reading frame with no such dual function.
No significant departures from the average patterns of
dinucleotide frequencies, positional base preference (Fig. 2),
or codon usage (not shown) are evident across this region.
A markedly A+T-rich sequence (51 of 58 nucleotides are

A or T in the region from nucleotides 172 to 229; Fig. 1) is
located some 60 nucleotides 5' to the major ORF. The first
occurrence of the consensus polyadenylation signal,
AATAAA, begins 18 nucleotides 3' to the translational stop
codon which ends this frame (Fig. 1 and 2); there are three
further occurrences of this signal within the next 600 bp (not
shown).

Properties of the protein product. The protein encoded by
the major ORF (Fig. 1) is predicted to have a molecular
weight of about 143,000 (Table 2), which is in good agree-
ment with experimental estimates of 152,000 to 160,000 for
the major protein of the virion tegument (the 160K protein).
The protein has an unusually high content of serine and
threonine (16.4%).

Searches for homologous protein sequences in a library of
the major reading frames predicted from the complete se-

quence of the Epstein-Barr virus genome (1) revealed a

highly significant homology to the product of the BNRF1
reading frame (nucleotides 1736 to 5689) at the left end of
EBV. This protein was also the only significant extended
homology among sequences of the NBRF/PIR and
PROTSEQ databases (QQBE1; probable membrane antigen,

1IMAAN8HGGHLPLPEGLAAPTHRTVIVVAKCDFSPSEERCVNRFTGRPGPLTLMRDRSNVEHMVLI
:I :: I II III

MEERGRETOMPVARVGG-PFIMvRLFGQDGEANIOEERLVELLSDPRSALGLDPGPLIAENLLLV

TVKTDEEDRNTAEQNQARARSRS------QOETKKILTLLAPQIDVNPLTLDSLDHNLGORAVIF
:: II I I:: I I :I

65 ALRGTNNDPRPQRQERARELALVGILLGNGEQOEHLGTESALEA------ SGNNYVVAVGPDW
124 SVGPNLHQRLTTSALELORACKTLKLHSILRIESGRHFTSKAOQVVVENEDDILTAALIGENNLV 188

I Il I ::
122 MARPSTWSAEIOQFLRLLGATVVLRVEMGROFGFEVHRSRPSFROFQAINHLVLFDNALRKVDSG 186

189 QINTETLSATRLVTDALSWAEVKPLDVTCNAVMKPPREGVOPMCLVASSPVSDVNFNKVLMI
1: ::I :I :: 1

187 QVAAGFQRALLVAGPETADTRPDLRKLNEWVFGGRAAGGRQLADELKIVSAL8DTVSGHLVLOPT
254 CTAISLHMGHPVPRVSQGIFHVHSSTRTMGRQCCDVLF----HSSLLPNGNTTAFACGVVVTSTT

: I II lI 1I 1ETLDTWKVLSRDTRTAHSLEHGFIHAAGTIQANCPQLFMRROHPGLFPFVNAIASSLGWVVOTAT
315 GSGSIPTSVNE-OILHAASAQGRSLNNLGVPVVSGFLKPLPRCSEVPNNVITHvS--OLRTASER
317 GPGADARAAARR8OAFOTRAAAECHAKSGVPVVAGFVRTINATLKGGEGLOPTMFNGELGAIKHQ 381

377 DLNLCRVRAGOFVAAVGAVDPTSGPDKSPYLVRDSIOSLNRAIQATKLFVQMCETPCVSSVOREF
1:1 1: :1: 1 II:II1:1 11

382 ALDTVRVDVGHVLIMLGPFQPwSGLTAPPCPVAESSWAOAAVOTALELFSALVPAPCISGVARPP 446

442 GSCSTLHHLLALVSPKGMTVHISRLPEEITKALRSVPVLEEDT--VCAFVSGVFFNCFSSOLFLV
II 11: :1 :1 1 :1 II :1

447 GPSAVIEHLGSLVPKGGLLLFLSHLPDDVKDGLGEMGPARATGPGMOQFVSSVFLNPACSNVFIT

505 IDDKVKTTPSGQIHFTDILKKAGNLCGAPVVILGRTCNDIGIHCVNDLVHPRDLSVLDSOATSSM

512 VRORGEKINGRTVLOA--LGRACDMAGCQHVVLGSTVPLGGLNFVNDLASPvSTAEMMDDFSPFF
570 TLT----VOPHASVVSATL0PQEPHEEDESIDWAMFGTSSTISNILSHPAVASKSN IIRRLDRCGN

1: :1 I:1111 1 11 :1 1
575 TVEFPPIOEEGASSPVPLDVDESMDISPSVELPWLSLESCLTSILSHPTVGSKEHLVRHTDRVSG 639

632 GLIAQQPGIGPSDAPVSDVAI ICDSSMFPARLENDAQSIKKISKQEAQRAVAQIHKWFGTEKLFL 696

I:I I II :::

640 GRVAQQPGVGPLDLLPADVAFVAHSQVWTRPGGAPPLPVRTDRMT------ EKLLVSAKPGGEN 698

697 NTISAKVIALGEQAVKLSRNPIVGVKYAIAEAITNIMFGPDCVLEDITLTVAAHWNKQETAALVR
:I IIII I :I I :I II II I I

699 VKVSGTVITLGEQGVKVSLDLREGTRLAMAEALLNAACAPI LDPEDVLLTLHLHLOPRRADNSAV 7b3

7132 VLFACKEMCRELNVNLSITOASDSROTPIQDTDAANTVVVTASARVT-SIERITPALKKAENALV
:: I II I II I I I II I:

764 MEAMTAASOVARGLGVKLTFGSASCPETGSSASNFMTVVASVSAPGEFSGPLITPVLQKTGSLLI 828

826 HVCLSKELTLSGSVFENSFTAFSSHLPDLDTSKLRDMFVAVKHLISKNLVVAGHDISDGGLITTA 890

829 AVRCGDGKI0GGSLFEQLFSDVATTPRAPEALSLKNLFRAVQQLVKSGIVLSGHDISDGGLVTCL 893

891 AEMCFASTFGVTVNLPSALPALMVLVSETPGALLEVPKEHLSTVTTLLSERGLTWVAVGTVNNVK
1I 11 1::11 1: 111:1 1

894 VEMALAGORGVTITMPVASDVLPEMFAEHPGLVFEVEERSVGEVLQTLRSMNMVPAVLGRVGEOG
956 NLSIVDNGTH---LLTESINILNSK8MSVAEESFETCEPHIE--SMVRNDVGNNAMDLKHLEDLC 1015

:I: l l Il: l

959 PDOMFEVQHGPETVLROSLRLLLGTWSSFASEQVECLRPDRINRSMHVSDVGVNEALAVSPLTGK
1016 THKPLOLVTCPSHPVSVAVLTFPGCPDPVATLQAFANVGFLSVPISTEFLLQGNNLNAFSCLAVS

11 1111 11 1 : 11
1024 NLSPRRLVTEPDPRCQVAVLCAPGTRGHESLLAAFTNAGCLCRRVFFREVRDNTFLDKVVGLAIG

1081 GSSAFEEEGTGTRIAIVTLLQCDLAKNCLKEFFQRPDTLSLCCGELGTOLLAACQVVGDTH-PSR 1144

:: :: 1111 1: lii11111:1 11 1I
1089 GVHGARDSALAGRATVALINRFPALRDAILKFLNRPDTFSVALGELGVOVLAGLGAVGSTDNPPA 1153

1145 GDISSNPESWTLELEPNASKHVESLWLNFHVPOTTKSIILOALRGTIFQODGLWOV-LLRVKHDA 1208
:1 I I I

1154 PGVEVNVORSPLILAPNASGMFESRWLNISIPATTSSVMLRGLRGCVLPCWVOGSCLGLOFTNLG
1209 OEVIMQQNGTIAMSVHSAKINPVLVAMHVPRNPSGNSSVAGICSKNGRHLALLVEPALSFHTWQW 1273

I:1 1 :1::11 1I 1I1I1 1 1I1:1 1: :11 1
1219 MPVVLONAHOIACHFHSNGTDAWRFAMNVPRNPTEOGNIAGLCSRDGRHLALLCOPSLCTDFWOW
1274 OHIP----KPLVTSPWALMYOCMFLWCVK 1298 -HVS

1284 EHIPPAFGHPTGCSPWTLMFQAAHLWSLR 1312-EBV

FIG. 4. Alignments of the amino acid sequences of the 160K

protein of HVS (upper lines) and the 140K product of the BNRF1

reading frame of the EBV genome (lower lines). The alignment
shown was obtained by using the algorithm of Wilbur and Lipman
(30) as implemented in the MGS suite of programs. Identical

residues in the two aligned sequences are interconnected by dashes,
and similar residues are connected by dots; gaps introduced to give
the alignments shown are indicated by dashes.

p140 of EBV). For example, with the FASTP program of

Lipman and Pearson (30), with a K tup of 2, the optimized
score of the HVS protein versus this EBV protein was 1,200
relative to a mean score (for all other sequences in the

PROTSEQ library) of 25.7 and the next highest optimized
score of 64. The general extent and quality of the homology
of the HVS 160K protein and the EBV gene product can be

appreciated from a dot-matrix display of the arrangement of

all homologous subsequences which exceed a threshold

score (Fig. 3). The two proteins are of very similar size

(Table 2; Fig. 3), and homologous subsequences are

colinear. The 300 residues from the amino termini of the

sequences contain relatively fewer homologous regions than

the remainder of the proteins.
The amino acid compositions of the two proteins are

compared in Table 2, and an alignment of the two protein
sequences is given in Fig. 4. The HVS protein contains

significantly more lysine and less arginine, more isoleucine

and less leucine and valine, and more asparagine and cystine
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FIG. 5. Comparison of changes in hydrophobicities (ordinates, hydropathy) of (a) the predicted sequence of the 160K protein of HVS and
(b) the predicted sequences of the 140K protein of EBV. The graphs are generated by the ANALYSEP program of Staden (51), with the
hydropathy values of Kyte and Doolittle (29) with a window size of 11 residues. The ordinate is scaled from +50 (hydrophobic/hydropathic)
to -50 (hydrophilic). The position of a conserved asparagine-alanine-serine (NAS) sequence (28) is indicated.

and less glycine and proline than its EBV homolog. In
general, these differences are predicted as a result of a

relative reduction in amino acids encoded by G+C-rich
codons and an increase in those encoded by A+T-rich
codons in the HVS sequence. The alignment of the two
sequences (Fig. 4) allows a more objective display of the
arrangement and extent of homologous subsequences, and it
is evident that the most homologous regions are in the
C-terminal halves of the two proteins. The overall homology
of the alignment is 37%. Amino acid residues 537 to 662 of
the HVS sequence are specified by the DNA sequences
isolated in the simian virus 40 enhancer trap (46). Residues
537 to 552 and residues 605 to 659 of the HVS protein are

clearly conserved with respect to the sequence of the EBV
counterpart. If a part of this region of the HVS genome is
serving an additional (noncoding) function in the virus, its
most likely location would be between these conserved
regions (i.e., nucleotides 1944 to 2099 of the sequence in Fig.
1).

Available evidence on the roles of the 160K protein of
HVS and the EBV gene product suggests that these gene

products are not integral membrane proteins but may asso-

ciate with the underside of the lipid envelope of the virion.
Both proteins are either very poorly glycosylated or

nonglycosylated. A comparison of the changes in local
hydrophobicity for the two proteins is illustrated in Fig. 5.
Both proteins are relatively hydrophobic, and the patterns of
local variation in hydrophobicity correlate well, particularly
over the C-terminal two-thirds of the molecules. However,

neither protein has a signal sequence or a sufficiently ex-

tended region of hydrophobic residues to indicate a cotrans-
lational or posttranslational membrane insertion sequence
(32). Analyses of the predicted secondary structures of both
proteins (6, 17) indicate an overall preponderance of P-sheet
over a-helix and overall conservation of secondary struc-
ture, as expected from the extent of sequence conservation
(data not shown). Without further experimental data on the
secondary and tertiary structures of these proteins, such
predictions do not currently provide the basis for realistic
modeling of these structures.

DISCUSSION

In this paper we have shown that the sequences at the
right end of the HVS genome contain a single major ORF
and that the product of this reading frame is homologous to
the product of the BNRF1 reading frame at the left end of
EBV. The 160K proteins of HVS previously mapped to this
region of the HVS genome (20) is synthesized at maximal
rates late in a productive infection, its synthesis is sensitive
to inhibitors of virus DNA synthesis (36), and it is incorpo-
rated as a major component of the virion ofHVS (25, 39-42).
Recent studies of its assembly and topography in the mature
virion has confirmed its role as a tegument component, not
exposed through the lipid bilayer, and have shown that the
neutralizing properties of a rabbit polyclonal serum to the
160K protein were due to minor contaminating antibodies to
virion glycoproteins (40, 42; M. R. Gopal and R. W. Honess,

Io a) Herpesvirus saimiri '160K'polypeptide.
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unpublished results). The EBV homolog is also expressed as
a late gene (24) and is a major structural protein of virions of
EBV (13, 14). The DNA sequences upstream of the EBV
gene (bases 1 to 1735 [1]) have a mean nucleotide composi-
tion of 47% G+C relative to 61.4% G+C for the BNRF1
reading frame, and we have noted the unusually A+T-rich
sequences which are upstream of the HVS gene. Both genes
are immediately preceded by potential TATA box homolo-
gies and followed by polyadenylation signals (AATAAA).
Thus, the regulatory class and the relative positions of
presumptive cis-regulatory sequences, as well as the nature
of the encoded proteins, have been conserved in these two
gamma herpesviruses within DNA sequences which differ in
composition by some 20% G+C. More significantly, in both
these viruses, these genes are in similar positions and the
same orientation with respect to the signals which determine
genome termini, and there is no obvious homolog of the gene
among reading frames predicted from the complete sequence
of the alpha herpesvirus varicella-zoster virus (9).
Comparisons of the genetic organization of the alpha

herpesviruses and, in particular, herpes simplex virus and
varicella-zoster virus, have established that there is a general
colinearity of homologous genes in this subfamily (8-11).
Genes which are clearly homologous to a number of the
structural and nonstructural genes identified in these alpha
herpesviruses have also been recognized in the genome of
the gamma herpesvirus EBV (1, 7-10, 18, 19, 31, 33, 34, 37,
38). Although there is conservation in the relative order and
arrangement of homologous reading frames within portions
of these genomes, the global gene order observed in the
alpha herpesviruses is not conserved in the genome of EBV.
In addition, there are many regions of the genomes of
varicella-zoster virus and EBV which appear to specify
proteins with no obvious homology to proteins of the other
virus. One of the minimal events required to relate the order
of genes of the alpha herpesviruses to genes which are
recognizably homologous to EBV is a nonconservative
transposition of the signals which determine the genome
termini in these two virus subgroups.
The results of this paper clearly show that at least one of

the termini of HVS and of EBV are at similar positions with
respect to a gene which is common to these gamma herpes-
viruses but is not recognized in the alpha herpesviruses. This
observation suggests that despite differences in their mean
nucleotide compositions, gamma herpesvirus genomes share
features of their genetic repertoire and organization which
are not observed in representatives of other herpesvirus
subgroups.
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