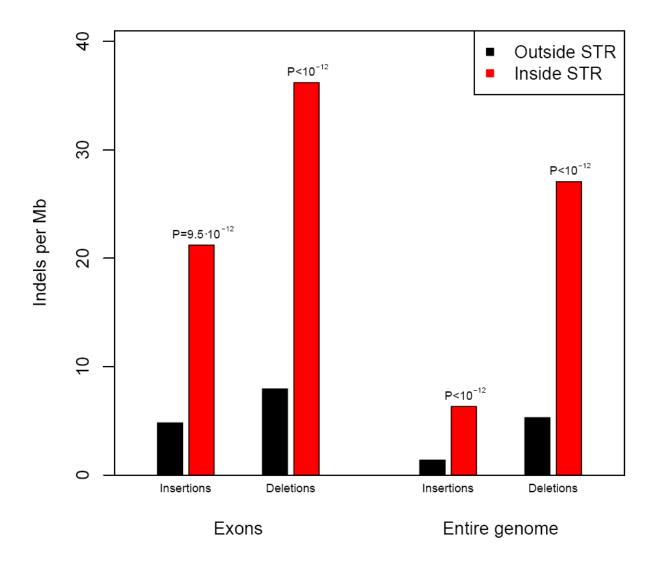
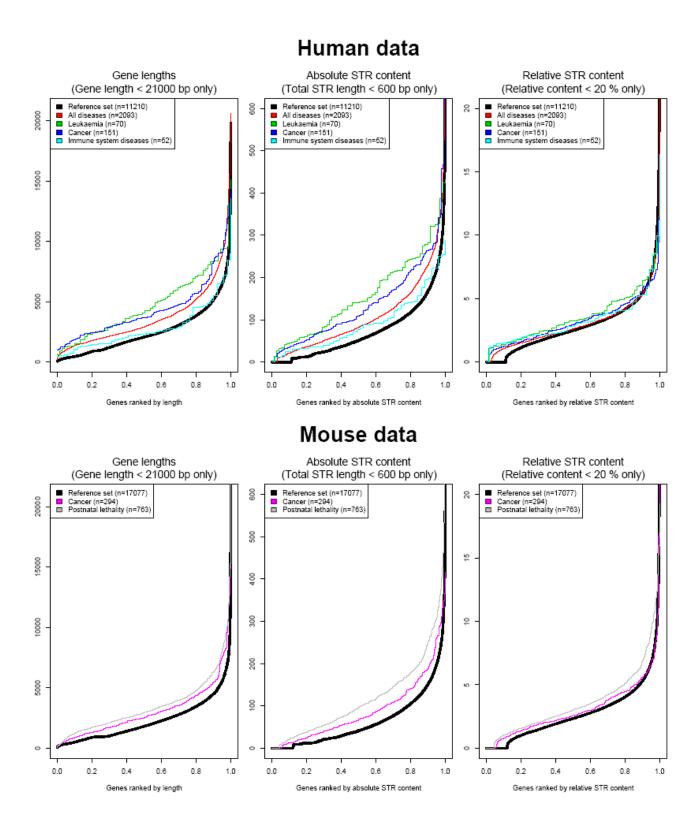
## **Short Tandem Repeats in Human Exons: A Target for Disease Mutations**

Bo Eskerod Madsen\*, Palle Villesen\*, Carsten Wiuf #

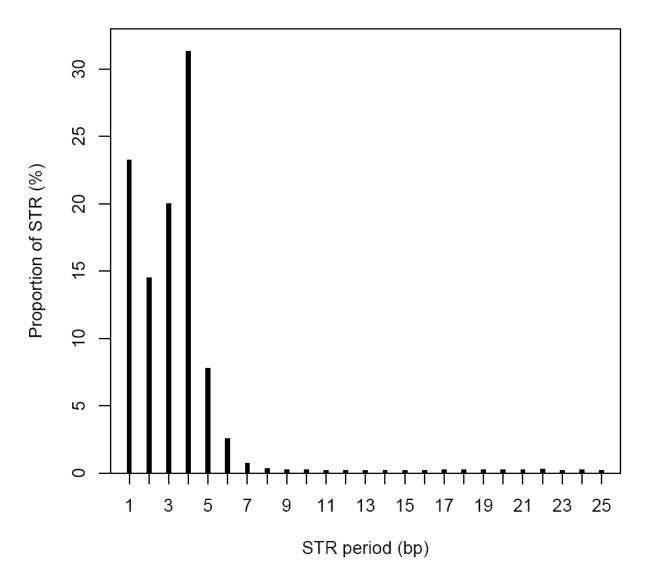

\* The authors contributed equally to this work.

# Corresponding author. Email: wiuf@birc.au.dk

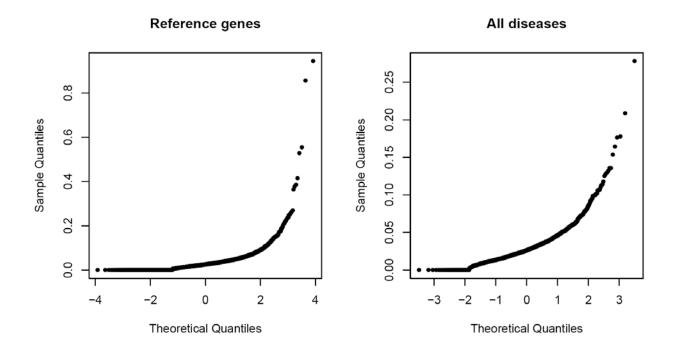

Bioinformatics Research Center (BiRC), University of Aarhus, DK-8000 Aarhus C, Denmark

Supporting Figures S1-S4

Supporting Tables S1-S5




**Figure S1. Indels in STRs outside known tandem repeats.** Both insertions and deletions are more frequent inside than outside STRs (P-values shown above columns), in the entire genome as well as in exons only.




**Figure S2. Gene lengths, absolute STR amount and relative STR amount**. A) human reference genes and four sets of disease-related genes; B) mouse reference genes and two sets of disease-related genes.

## Distribution of STR periods on chromosome 20



**Figure S3. Distribution of STR periods on chromosome 20.** Shown is the proportion of STR of each period up till 25 bp on the human chromosome 20. Only 0.8% of the STR has a period of more than 9 bp.



**Figure S4. Distributions of relative STR amount.** The distributions are clearly non-Gaussian, since they do not follow a straight line in the QQ-plot.

**Table S1. Indel content in STRs**. The observed proportion of insertions and deletions inside versus outside STR; 95% confidence intervals are shown in brackets.

|                         | # inside STR | # total | Observed proportion inside STR | P-value            |  |  |  |
|-------------------------|--------------|---------|--------------------------------|--------------------|--|--|--|
|                         |              | Enti    | ire genome (4.02 % STR)        |                    |  |  |  |
| Insertions              | 794          | 4351    | 18.2 % ( [17.3,100])           | <10 <sup>-12</sup> |  |  |  |
| Deletions               | 3844         | 16899   | 22.7 % ( [22.2,100])           | <10 <sup>-12</sup> |  |  |  |
| Exons only (2.99 % STR) |              |         |                                |                    |  |  |  |
| Insertions              | 42           | 321     | 13.1 % ( [10.2,100])           | <10 <sup>-12</sup> |  |  |  |
| Deletions               | 86           | 532     | 16.2 % ( [13.6,100])           | <10 <sup>-12</sup> |  |  |  |

**Table S2. Counts of indel length versus STR period.** The majority of indel lengths are concurrent with STR periods (e.g. the majority of indels in STRs with period 2 have lengths 2, 4, 6 or 8 bp).

|                 | 9 | 0   | 1  | 2  | 0  | 0  | 0 | 0 | 0 | 0 |  |
|-----------------|---|-----|----|----|----|----|---|---|---|---|--|
|                 | 8 | 2   | 0  | 0  | 3  | 0  | 0 | 0 | 0 | 0 |  |
|                 | 7 | 0   | 0  | 0  | 0  | 0  | 0 | 1 | 0 | 0 |  |
|                 | 6 | 0   | 4  | 4  | 0  | 0  | 2 | 0 | 0 | 0 |  |
| STR period (bp) | 5 | 4   | 0  | 2  | 2  | 12 | 0 | 0 | 0 | 0 |  |
|                 | 4 | 3   | 7  | 11 | 46 | 5  | 3 | 0 | 0 | 0 |  |
|                 | 3 | 3   | 1  | 28 | 8  | 4  | 0 | 0 | 0 | 0 |  |
|                 | 2 | 5   | 57 | 2  | 4  | 0  | 3 | 0 | 0 | 0 |  |
|                 | 1 | 461 | 29 | 20 | 32 | 9  | 4 | 1 | 0 | 0 |  |
| •               |   | 1   | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 |  |
|                 |   |     |    |    |    |    |   |   |   |   |  |

Insertion length (bp)

|                 | 9 | 1    | U  | U  | U  | U  | U | U | U | U |
|-----------------|---|------|----|----|----|----|---|---|---|---|
|                 | 8 | 1    | 0  | 0  | 0  | 0  | 0 | 0 | 2 | 0 |
|                 | 7 | 5    | 0  | 0  | 0  | 0  | 0 | 4 | 0 | 0 |
|                 | 6 | 17   | 0  | 1  | 0  | 1  | 6 | 0 | 0 | 0 |
| STR period (bp) | 5 | 54   | 1  | 3  | 1  | 24 | 0 | 0 | 0 | 0 |
|                 | 4 | 287  | 12 | 5  | 83 | 2  | 1 | 0 | 8 | 0 |
|                 | 3 | 172  | 5  | 59 | 4  | 5  | 6 | 1 | 0 | 2 |
|                 | 2 | 676  | 52 | 0  | 21 | 1  | 2 | 0 | 0 | 0 |
|                 | 1 | 2289 | 7  | 5  | 4  | 1  | 0 | 0 | 0 | 0 |
|                 |   | 1    | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 |

Deletion length (bp)

Table S3. STR overrepresentation when STRs with periods 3, 6, 9 are omitted in the analysis.

The estimated overrepresentation is relative to the proportion of STR in the reference gene set; 95% confidence intervals are in brackets. Note that the P-values are expected to be higher than in the corresponding tests since a large part of the observations are omitted.

| Gene set (human)       | Genes | STR overrepresentation | P-value                |  |
|------------------------|-------|------------------------|------------------------|--|
| Reference set          | 11210 | -                      | -                      |  |
| All diseases           | 2095  | 11.0 % [8.0, inf]      | $1.97 \times 10^{-12}$ |  |
| Leukaemia              | 70    | 31.7 % [17.1, inf]     | $1.8 \times 10^{-4}$   |  |
| Cancers                | 151   | 17.8 % [8.5, inf]      | $9.0x10^{-4}$          |  |
| Immune system diseases | 52    | 9.8 % [-3.8, inf]      | 0.13                   |  |

**Table S4. STR overrepresentation in introns.** The estimated overrepresentation of each gene set is relative to the proportion of STR in the reference set of genes. The 95% confidence interval of the estimate is given in brackets.

| Gene set (human)       | Genes | STR overrepresentation | P-value |  |
|------------------------|-------|------------------------|---------|--|
| Reference set          | 11210 | -                      | -       |  |
| All diseases           | 2095  | 0.8 % [-0.3,inf]       | 0.11    |  |
| Leukaemia              | 70    | 9.4 % [4.3,inf]        | 0.0014  |  |
| Cancer                 | 151   | 1.6 % [-1.6,inf]       | 0.20    |  |
| Immune system diseases | 52    | -3.0 % [-9.9,inf]      | 0.76    |  |

Table S5. STR overrepresentation when tandem repeats regions are omitted in the analysis.

The estimated overrepresentation of each gene set is relative to the proportion of STRs in the reference set of genes. The 95% confidence interval of the estimate is given in brackets. We find that 96.42 % of STRs in exons does NOT overlap with tandem repeats. The difference stems from our definition of STRs as small periodic regions and that polymorphic sites are allowed in the region. Tandem Repeats Finder, in contrast, does not search specifically for these small regions.

| Gene set (human)       | Genes | STR overrepresentation | P-value              |  |
|------------------------|-------|------------------------|----------------------|--|
| Reference set          | 11210 | -                      | -                    |  |
| All diseases           | 2095  | 6.9 % [4.5,inf]        | $3.4 \times 10^{-7}$ |  |
| Leukaemia              | 70    | 26.4 % [13.8,inf]      | $2.7 \times 10^{-4}$ |  |
| Cancer                 | 151   | 16.2 % [7.8,inf]       | $6.9 \times 10^{-4}$ |  |
| Immune system diseases | 52    | 13.2 % [0.3,inf]       | $4.4 \times 10^{-2}$ |  |

Table S6. STR overrepresentation when polymorphic sites are omitted in the STR definition.

The estimated overrepresentation of each gene set is relative to the proportion of STR in the reference set of genes. The 95% confidence interval of the estimate is given in brackets.

| Gene set (human)       | Genes | STR overrepresentation | P-value              |  |
|------------------------|-------|------------------------|----------------------|--|
| Reference set          | 11210 | -                      | -                    |  |
| All diseases           | 2095  | 6.3 % [3.9,inf]        | $2.6 \times 10^{-6}$ |  |
| Leukaemia              | 70    | 28.3 % [15.6,inf]      | $1.5 \times 10^{-4}$ |  |
| Cancer                 | 151   | 17.1 % [8.5,inf]       | $4.4x10^{-4}$        |  |
| Immune system diseases | 52    | 13.9 % [0.6,inf]       | $4.0 \times 10^{-2}$ |  |