Supporting Information, Part A

Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I

Sabrina Castellano, Hannah D. G. Fiji, Sape S. Kinderman, Masaru Watanabe,¹ Pablo de Leon, Fuyuhiko Tamanoi,¹ and Ohyun Kwon*

Department of Chemistry and Biochemistry, Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569

ohyun@chem.ucla.edu

Contents

List of abbreviations	S2
General	S 3
Structures of 138 compounds	S4
Screening the pilot library of 138 compounds	S5
Synthesis of 4-substituted 2,3-butadienoic acids A(01-11)	S 6
Chart of the 4-substituted 2,3-butadienoic acid building blocks A(01-11)	S 6
Synthesis of 2-substituted 2,3-butadienoic acids B(01–12)	S 8
Chart of the 2-substituted 2,3-butadienoic acid building blocks B(01–12)	S 8
Synthesis of <i>N</i> -sulfonylimines C(01–46)	S12
Chart of the <i>N</i> -sulfonylimine building blocks C(01-46)	S12
Resin loading with 4-substituted 2,3-butadienoic acids	S15
Resin loading with 2-substituted 2,3-butadienoic acids	S16
Solid phase [3 + 2] annulations with N-sulfonylimines	S16
Solid phase [4 + 2] annulations with N-sulfonylimines	S18
Solid phase thiol addition to the dihydropyrrole scaffold	S19
Chart of the thiol building blocks E(01-32)	S19
Solid phase thiol addition to the tetrahydropyridine scaffold	S21
Screening for the selection of building blocks used in the library synthesis	S22
Experimental procedures for the library tagging and the split and pool library synthesis	S34
Table of LCMS data for a random selection of library products	S38
Bio-assays using 4288 GGTI analogs	S40
Part B: Spectroscopic data for example derivatives	S 43
Part C: Spectroscopic data for the dihydropyrroles and derivatives	S73
Part D: Spectroscopic data for the tetrahydropyridines and derivatives	S221
Part E: LCMS data for a random selection of library products	S381

¹ Department of Microbiology, Immunology and Molecular Genetics

List of Abbreviations

APCI	atmospheric pressure chemical	Ts	<i>p</i> -toluenesulfonyl
	ionization	2-Ts	o-toluenesulfonyl
Ar	aryl		
<i>n</i> -BuLi	<i>n</i> -butyllithium		
Bs	benzenesulfonyl		
Br	bromo		
Bu	butyl		
CI	chemical ionization		
Cl	chloro		
4-ClBs	<i>p</i> -chlorobenzenesulfonyl		
calcd.	calculated		
CN	cyano		
cond.	condition(s)		
DCM	dichloromethane		
DIPEA	diisopropylethylamine (Hünig's base)		
DMF	N,N-dimethylformamide		
EI	electron ionization		
equiv	equivalents		
EŜ	electrospray		
Et	ethyl		
EtO	ethoxy		
F	fluoro		
h	hour(s)		
HPLC	high-performance liquid		
	chromatography		
HRMS	high-resolution mass spectrometry		
incl.	included		
IR	infrared		
L-lantern	L-series lantern, capacity 15		
	μ mol/lantern		
L-	attached to L-lantern solid support		
LC	liquid chromatography		
2-MCBs	2-methoxycarbonylbenzenesulfonyl		
Me	methyl		
MeO	methoxy		
Ms	methanesulfonyl		
MS	mass spectrometry		
nd	not determined		
nm	nanometer		
NMR	nuclear magnetic resonance		
Ns	<i>p</i> -nitrobenzenesulfonyl		
2-Ns	o-nitrobenzenesulfonyl		
3-Ns	<i>m</i> -nitrobenzenesulfonyl		
Ph	phenyl		
<i>i</i> -Pr	isopropyl		
\mathbf{R}_{f}	retention factor		
rt	room temperature		
TEA	triethylamine		
TFA	trifluoroacetic acid		
THF	tetrahydrofuran		
TLC	thin layer chromatography		
TOF	time of flight		

General. Unless otherwise noted, all chemicals were purchased from commercial suppliers and used without purification. Synphase lanterns (L-series lantern; capacity: 15 μ mol/lantern), spindles, and cogs were purchased from Mimotopes Pty. Ltd., Clayton, Australia. Prior to their first use, the lanterns were washed (3x) with the reaction solvent. Each washing was left to settle for at least 5 min, unless otherwise stated. The solid phase washings were performed using PA-grade solvents. For reactions, benzene and CH₂Cl₂ were freshly distilled from calcium hydride. THF and diethyl ether were freshly distilled from Na using benzophenone as indicator. Triethylamine was stored over KOH pellets and used as such. All air- and moisture-sensitive reactions were performed under an inert atmosphere of dry Ar. Column chromatography was performed using EMD silica gel 60 (230–400 mesh). R_f values were obtained from thin layer chromatography (TLC) on silica gel-coated glass plates (E. Merck silica gel plates 60F-254) using the indicated solvents. Infrared spectra were recorded on a Perkin-Elmer pargon 1600 FT-IR spectrometer. NMR spectra were obtained in CDCl₃ (unless otherwise noted) on a Bruker AV300, Bruker ARX 400, or Bruker DRX 500 spectrometer. Spectra are reported in units of ppm on the δ scale, relative to chloroform (7.26) ppm for ¹H NMR; 77.0 ppm for ¹³C NMR). High-resolution EI mass spectra were recorded after rapid thermal vaporization of samples deposited on a desorption ionization filament that was directly inserted into the electron ionization (EI, 70 eV, 200°C) source of a triple-sector high-resolution instrument (VG/Micromass Autospec) tuned to 8000 static resolution (M/DM, 10% valley) using perfluorinated kerosene (formula weight: 705; Lancaster Synthesis, Inc., NH) as an internal calibrant. High-resolution chemical ionization (CI) mass spectra were recorded using a Micromass GCT Gas Chromatograph EI/CI TOF spectrometer. Atmospheric pressure chemical ionization (APCI) was performed on a SCIEX II instrument equipped with an optional Applied Biosystems/MSD Sciex QSTAR-XL hybrid Quad-TOF. Uncorrected melting points were determined using an Electrothermal capillary melting point apparatus. LCMS data were obtained on an Agilent 1100 HPLC using a Phenomenex Synergi 4µ max-RP 80Å 50 × 3 mm column, an Agilent MSD single-quadrupole mass spectrometer in ESI mode, and water/acetonitrile with formic acid as co-additive as the eluent.

Enzyme Assay. [³H]Farnesyl diphosphate (FPP) and [³H]geranylgeranyl diphosphate (GGPP) were purchased from Perkin–Elmer. Rat FTase and GGTase-I were purchased from JENA Biosciences. GGTI298 and GGTI2166 were purchased from Calbiochem. Full-length cDNAs of K-Ras4B and RhoA were subcloned into pMAL-p2 vector (NEB) to generate MBP-tagged K-Ras4B and RhoA. The preparation of pCDNA3-mycHARheb (M184L) was described previously.² FTase and GGTase-I activities were determined using the method in which radiolabeled isoprenoid is transferred from [³H]FPP and [³H]GGPP into a substrate protein. In brief, FTase or GGTase-I (50 ng) were used to initiate reactions containing 50.0 mM Tris-HCl (pH 7.5), 10.0 mM MgCl₂, 50.0 μM ZnCl₂, 1.0 mM DTT, 0.1 μM [³H]FPP or [³H]GGPP, 50.0 ng GGTase-I, and a concentration of 0.25 μM of appropriately purified MBP-tagged protein substrates (K-Ras4B for FTase; RhoA and K-Ras4B for GGTase-I). The final DMSO concentration was 5% for each sample. Reactions were performed for 30 min at 37 °C, after which time the reaction mixtures were added onto a piece of Whatmann 3 filter paper. Filters were fixed twice with 10% trichloroacetic acid (TCA) for 10 min and then washed twice with ethanol and acetone for 5 min, respectively. After drying, the filters were mixed with scintillation fluid (2 mL) and counted in a Beckman LS6500 scintillation counter.

Protein Processing Assay. Human embryonic kidney (HEK293) cells were maintained in Dulbecco's modified Eagle's medium (DMEM; Invitrogen) supplemented with 10% (vol/vol) heat-inactivated fetal bovine serum, penicillin (100 IU mL⁻¹), and streptomycin (100 μ g mL⁻¹). Cells were transfected using Polyfect (Qiagen) according to the manufacturer's instructions. In brief, the plasmid DNA was incubated in serum-free media with the Polyfect reagent for 10 min, diluted in serum-free media, and added to the cells with fresh media. After 24 h of transfection, the cells were treated with DMSO or our GGTIs, GGTI-298, and GGTI-2166 for 48 h. The cells were then harvested and lysed in lysis buffer: 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), 1% SDS, 1% NP-40, and 1x Protease Inhibitor Mixture (Roche Applied Science). The lysates were electrophoresed using a 10% SDS-PAGE system, transferred to nitrocellulose membranes, and immunoblotted with anti-Rheb antibody (GenWay).

² Gau, C. L.; Kato-Stankiewicz, J.; Jiang, C.; Miyamoto, S.; Guo. L.; Tamanoi, F. Mol. Cancer Ther. 2005, 4, 918.

small molecules from dioxanylidene project

Figure S1. Structures of 138 compounds screened against GGTase I.

Screening the Pilot Library of 138 Compounds

Filter Binding Assays to Identify the Initial Protein Geranylgeranyltransferase Type I Inhibitors. The pilot library (Figure S1) was screened for inhibitors of protein geranylgeranyltransferase type I (GGTase I). Protein prenyltransferase assays were performed through filter binding.³ Two different substrates, RhoA and K-Ras4B, were used for the assay. RhoA ends with the CaaL motif and is an exclusive substrate for GGTase I, while K-Ras4B ends with the CaaX motif and is modified by both GGTase I and protein farnesyltransferase (FTase). The presence of a polybasic domain consisting of a stretch of lysine residues close to the CaaX motif enables this CaaX motif to be recognized by GGTase I. Thus, RhoA and K-Ras4B are two very different substrates for this enzyme. Screening of the 138-compound pilot library resulted in the identification of the two groups of compounds presented in Figure S2. In the assay, we used a fixed concentration of 100 μ M for the small molecules; the results are plotted for the inhibition of RhoA (vertical axis) as well as for K-Ras4B (horizontal axis).

Figure S2. Impact of GGTIs on the GGTase-I activity, and their structures.

To determine IC_{50} values, the percentage activity of GGTase I was measured in the presence of the inhibitors of GGTase I (GGTIs) at various concentrations. Figure S3 displays dose-response curves for compounds 1 (P2G6) and 2 (P2D10).

³ Finegold, A. A.; Johnson, D. I.; Farnsworth, C. C.; Gelb, M. H.; Judd, S. R.; Glomset, J. A.; Tamanoi, F. Proc. Natl. Acad. Sci., USA **1991**, 88, 4448.

Figure S3. Dose dependency of GGTase-I activity in the presence of compound 1 or 2.

Synthesis of 4-Substituted 2,3-Butadienoic Acids A(01–11)

Chart 1. 4-Substituted 2,3-butadienoic acid building blocks A(01–11).

A01

2,3-Butadienoic Acid (A01). 2,3-Butadienoic acid was synthesized from 3-butyn-1-ol through Jones oxidation and subsequent isomerization according to a literature procedure.⁴ Later, we found out that the Jones oxidation product, 3-butynoic acid, could be used directly for coupling to the benzyl alcohol units of Wang resin, resulting in the resinbound allenoate. Presumably the initial 3-butynoate product was isomerized to the allenoate under the coupling reaction conditions. Subsequently, we employed a mixture of an allenoic acid and the isomeric alkynoic acid in the formation of resin-bound allenoates (vide infra).

4-Alkyl-2,3-butadienoic Acids A(02–11). Most of the 4-alkyl-2,3-butadienoic acids A(02-11) and their ethyl esters are known in literature,⁵ except for A05 and A11. These 4-alkyl-butadienoic acids were synthesized according to the procedures described below.

^{4.} For Jones oxidation, see: (a) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. **1946**, 39. (b) Heibron, I.; Jones, R. H.; Sondheimer, F. J. Chem. Soc. **1949**, 604. For isomerization, see: (c) Egliton, G.; Jones, E. R. H.; Mansfield, G. H.; Whiting, M. C. J. Chem. Soc. **1954**, 3197.

For ethyl esters, see: (a) Lang, R. W.; Hansen, H.-J. H. Helv. Chim. Acta 1980, 63, 438. (b) Tsuboi, S.; Kuroda; Takatsura, S.; Fukawa, T.; Sakai, T.; Utaka, M. J. Org. Chem. 1993, 58, 5952. (c) Gandhi, R. P.; Ishar, M. P. S. Wali, A. Tetrahedron Lett. 1987, 28, 6679. (d) Dieter, R. K.; Lu, K. Tetrahedron Lett. 1999, 40, 4011. (e) Nishibayashi, Y.; Singh, J. D.; Fukuzawa, S.; Uemura, S. J. Org. Chem. 1995, 60, 4114. (f) Ahmar, M.; Chabanis, O.; Gauthier, J.; Cazes, B. Tetrahedron Lett. 1997, 38, 5277. (g) Bestmann, H. J.; Hartung, H. Angew. Chem., Int. Ed. Engl. 1963, 2, 214. (h) Ramaswamy, S.; Hui, R. A. H. F.; Jones, J. B. J. Chem. Soc., Chem. Commun. 1986, 1545. (i) Lang, R. W.; Hansen, H.-J. Org. Synth. Coll. Vol. 7, 1990, 232. For acids, see: (j) Jones, E. R. H.; Whitham, G. H.; Whiting, M. C. J. Chem. Soc. 1954, 3201. (k) Ma, S.-M.; Shi, Z.-J. Chin. J. Chem. 2001, 19, 1280. (l) Pansard, J.; Gaudemar, M. Bull. Soc. Chim. Fr. 1968, 8, 3332. (m) Gill, G. B.; Idris, M. S. H.; Kirollos, K. S.

General Procedure. Et₃N (63 mmol, 1.1 equiv) added solution of was to a stirred (carbethoxymethylene)triphenylphosphorane (57.5 mmol, 1 equiv) in CH₂Cl₂ (200 mL). After stirring for 10 min, the required acyl chloride (57.5 mmol, 1 equiv) was added dropwise over 30 min at room temperature. After stirring overnight, the resulting mixture was poured unto a Büchner funnel packed with silica gel and was washed with CH₂Cl₂ several times. The combined filtrate was carefully concentrated and the resulting crude oil was purified by flash column chromatography (hexane/EtOAc, 20:1) to provide the 4-substituted 2,3-butadienoates. For the hydrolysis, a round-bottom flask was charged with the 4-substituted 2,3-butadienoate in EtOH (10 mL/g of ester). LiOH (1 N aqueous solution, 20 equiv) was added over a period of 5 min at room temperature. The reaction mixture was stirred overnight at room temperature. The products were extracted with CH_2Cl_2 (3 × 50 mL) and the combined extracts dried (Na_2SO_4) and concentrated to afford a mixture of allenoic and alkynoic acids. This crude mixture of allenoic and alkynoic acids was used for loading to obtain the resin-bound y-substituted allenoates. The reaction yields and literature references for the allenoates and their hydrolysis products are listed in Tables 1 and 2. Spectroscopic data of ethyl 4-cyclopentylmethyl-2,3-butadienoate and its hydrolysis product are also provided.

Entry	Allenoate	R	Yield (%)	Reference
1	Et-A02	methyl	-	Helv. Chim. Acta 1980, 63, 438
2	Et-A03	<i>tert</i> -butyl	75	Helv. Chim. Acta 1980, 63, 438
3	Et-A04	phenyl	53	J. Org. Chem. 1993, 58, 5952
4	Et-A05	ethyl	100	Tetrahedron Lett. 1987, 28, 6679
5	Et-A06	isopropyl	74	Tetrahedron Lett. 1999, 40, 4011
6	Et-A07	<i>n</i> -propyl	74	J. Org. Chem. 1995, 60, 4114
7	Et-A08	<i>n</i> -butyl	86	Tetrahedron Lett. 1997, 38, 5277
8	Et-A09	<i>n</i> -pentyl	75	Angew. Chem., Int. Ed. Engl. 1963, 2, 214
9	Et-A10	<i>n</i> -hexyl	84	J. Chem. Soc., Chem. Commun. 1986, 1545
10	Et-A11	cyclopentylmethyl	55	Unknown in the literature

Table 1. Synthesized 4-Substituted 2,3-Butadienoic Acid Ethyl Esters Et-A(01-11).

Table 2. Hydrolyses of 4-Substituted 2,3-Butadienoic Acid Ethyl Esters Et-A(01-11).

Entry	Acid	R	Yield (%)	Ratio Allenoic/alkynoic acid	Reference
1	A02	methyl	91	1:2.9	J. Chem. Soc. 1954, 3201
2	A03	<i>tert</i> -butyl	96-100	2.7:1	Chin. J. Chem. 2001, 19, 1280
3	A04	phenyl	80-100	2.7:1	J. Chem. Soc., Chem. Commun. 1986, 1545
4	A05	ethyl	96–98	1:1.2	Unknown in the literature
5	A06	isopropyl	98-100	1.4:1	Bull. Soc. Chim. Fr. 1968, 8, 3332
6	A07	<i>n</i> -propyl	98-100	1.1:1	J. Chem. Soc, Perkin Trans 1 1992, 2367
7	A08	<i>n</i> -butyl	95-100	1:1.8	Tetrahedron Lett. 1999, 40, 2393
8	A09	<i>n</i> -pentyl	95–98	1:2.1	Synthesis 1981 , 875
9	A10	<i>n</i> -hexyl	95-98	1:1.5	J. Am. Chem. Soc. 1985, 107, 6046
10	A11	cyclopentylmethyl	90-100	1:3.6	Unknown in the literature

J. Chem. Soc., Perkin Trans 1 1992, 2367. (n) Ma, S.; Shi, Z.; Yu, Z. Tetrahedron Lett. 1999, 40, 2393. (o) Clinet, J.-C.; Linstrumelle, G. Synthesis 1981, 875. (p) Schwab, J. M.; Lin, D. C. T. J. Am. Chem. Soc. 1985, 107, 6046.

4-Ethylbuta-2,3-dienoic Acid and Hex-3-ynoic Acid (A05). According to the general procedure (90 mmol scale), a mixture of 4-ethylbuta-2,3-dienoic acid and hex-3-ynoic acid was obtained as a light-yellow oil. Yield: 13.5 g (88 mmol, 98%). IR (neat) v 3400–2500, 2976, 1956, 1716 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 11.43 (s, 1H), 5.67 (q, *J* = 6.25 Hz, 1H), 5.44 (dt, *J* = 6.25, 3.52 Hz, 1H), 3.24 (t, *J* = 2.40, 2H), 2.15–2.07 (m, 5H), 1.04 (t, *J* = 7.55, 3H), 1.00 (t, *J* = 7.40, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 213.4, 175.3, 172.4, 97.3, 88.2, 85.4, 69.9, 25.6, 20.4, 13.5, 12.7, 12.1; GCMS (Agilent) calcd. for C₆H₈O₂ [M⁺] 112.05, found 112.10.

5-Cyclopentyl-2,3-pentadienoic Acid Ethyl Ester (Et-A11). The title compound was prepared in accordance with the general procedure described above (163 mmol scale), and was obtained in 55% yield as a yellow oil. IR (neat) v 2948, 2868, 1716, 1039 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, *J* = 3.90 Hz, 1H), 7.16 (d, *J* = 6.9 Hz 1H), 5.61–5.53 (m, 2H), 4.23–4.12 (m, 2H), 2.02–1.90 (m, 1H), 1.84–1.76 (m, 2H), 1.64–1.49 (m, 2H), 1.29 (t, *J* = 7.46 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.7, 166.4, 94.6, 87.8, 60.7, 39.5, 33.9, 32.3, 25.3, 14.3; HRMS (EI) calcd. for C₁₂H₁₉O₂ [M + H]⁺ 195.1388, found 195.1376.

5-Cyclopentyl-2,3-pentadienoic Acid and 5-Cyclopentyl-3-pentynoic Acid (A11). According to the general procedure (90 mmol scale), a mixture of 5-cyclopentylpenta-2,3-dienoic acid and 5-cyclopentylpent-3-ynoic acid was obtained as a light-yellow oil. Upon distillation of the crude mixture, 13.5 g (81 mmol, 90%) of the acids were obtained. IR (neat) v 2950, 1717 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, *J* = 3.90 Hz, 1H), 7.16 (d, *J* = 6.9 Hz 1H), 5.61–5.53 (m, 2H), 4.23–4.12 (m, 2H), 2.02–1.90 (m, 1H), 1.84–1.76 (m, 2H), 1.64–1.49 (m, 2H), 1.29 (t, *J* = 7.46 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 213.9, 175.2, 172.3, 94.9, 87.2, 83.8, 70.5, 39.3, 38.9, 33.6, 32.1, 31.8, 25.8, 25.1, 25.1, 24.3; HRMS (ESI negative-ion mode) calcd. for C₁₀H₁₃O₂ [M – H]⁻ 165.0928, found 165.0921.

Synthesis of 2-Substituted 2,3-Butadienoic Acids B(01–12)

Chart 2. 2-Substituted 2,3-butadienoic acid building blocks B(01-12)

2-Methyl-2,3-butadienoic Acid (B01). 2-Methyl-2,3-butadienoic acid was synthesized following a (slightly modified) literature procedure.⁶

2-Benzyl-2,3-butadienoic Acids B(02–12). All α -benzyl allenoic acids were synthesized according to the general procedure below, which is a combination of (slightly modified) literature procedures.⁷

General Procedure. A solution of (carbethoxymethylene)triphenylphosphorane (80 g, 230 mmol) and the benzyl bromide (250 mmol, 1.1 equiv) in CHCl₃ (500 mL) was heated under reflux for 4–7 days until TLC (hexanes/EtOAc, 2:1) indicated the complete disappearance of the phosphorane. The mixture was concentrated and the crude oily foam was co-evaporated with CH₂Cl₂ (2×100 mL). The resultant crude phosphonium salt was dissolved in CH₂Cl₂ (500 mL) and Et₃N (64 mL, 460 mmol, 2 equiv) was added, followed by stirring for 30 min. AcCl (16.35 mL, 230 mmol, 1 equiv) was then slowly added over 30 min with vigorous stirring. The resultant suspension was stirred for 16 h and concentrated. The thick slurry was stirred with Et₂O (300 mL) and the combined organic fractions were concentrated. Column chromatography of the crude oil (hexanes/Et₂O, 40:1–20:1) afforded the pure allenoates. 2 N Aqueous NaOH (1L, 2 mol, 20 equiv) was added to a solution of the allenoate (100 mmol) in EtOH (50 mL) and stirred at the indicated temperature for 24–96 h until TLC (hexanes/EtOAc, 2:1) indicated complete hydrolysis. The solution was carefully acidified to ca. pH 1 using 6 N HCl and the product was then extracted with Et₂O (4 × 125 mL). The combined extracts were dried (Na₂SO₄) and concentrated. When necessary, column chromatography (hexanes/EtOAc, 8:1–0:1) afforded the pure butadienoic acid, often as a white solid.

2-Benzyl-2,3-butadienoic Acid (B02).^{7c} According to the general procedure (230 mmol scale), ethyl 2-benzyl-2,3-butadienoate (25.6 g, 127 mmol, 55%) was obtained as a colorless oil. The allenoate (25.6 g, 127 mmol) was hydrolyzed at room temperature to afford 2-benzylbuta-2,3-dienoic acid (18.0 g, 104 mmol, 82%) as a white solid. All spectroscopic data were in accordance with those reported in the literature.^{7c}

2-(2-Fluorobenzyl)-2,3-butadienoic Acid (B03). According to the general procedure (86.1 mmol scale), ethyl 2-(2-fluorobenzyl)-buta-2,3-dienoate (10.1 g, 45.8 mmol, 53%) was obtained as a colorless oil. The allenoate (7.6 g, 34.7 mmol) was hydrolyzed at room temperature to give 2-(2-fluorobenzyl)-2,3-butadienoic acid (5.55 g, 28.9 mmol, 83%) as a white solid after column chromatography. IR (film) v 2990, 1964, 1682, 1586, 1494, 1419, 1294, 1227, 1071, 911, 858, 783 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.19 (m, 2H), 7.08–7.00 (m, 2H), 5.15 (t, *J* = 2.8 Hz, 2H), 3.59 (t, *J* = 2.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.1, 172.1, 161.1 (d, *J* = 246.2 Hz), 131.0 (d, *J* = 4.4

6. Harvey, G. R.; Ratts, K. W. J. Org. Chem. 1966, 31, 3907.

^{7.} For the Wittig reaction, see: (a) Ref. 5a. For the hydrolysis, see: (b) Bestmann, H.-J.; Hartung, H. *Chem. Ber.* 1966, 99, 1198.
(c) Himbert, G.; Juergen, H. *Zeitschrift fur Naturforschung, B: Chemical Sciences* 1992, 47, 1785.

Hz), 128.2 (d, J = 8.3 Hz), 125.2 (d, J = 15.3 Hz), 123.7 (d, J = 3.3 Hz), 115.1 (d, J = 21.9 Hz), 98.6, 79.8, 27.8 (d, J = 2.5 Hz); HRMS (EI) calcd. for C₁₁H₉O₂F [M⁺] 192.0587, found 192.0594.

2-(3-Fluorobenzyl)-2,3-butadienoic Acid (B04). Following the general procedure (86.1 mmol scale), ethyl 2-(3-fluorobenzyl)-2,3-butadienoate (10.5 g, 47.6 mmol, 55%) was obtained as a colorless oil. The allenoate (8.0 g, 36.3 mmol) was hydrolyzed at room temperature to give 2-(3-fluorobenzyl)-buta-2,3-dienoic acid (6.04 g, 31.4 mmol, 87%) as a white solid. IR (film) v 2994, 1963, 1693, 1589, 1486, 1420, 1303, 1277, 1097, 931, 860, 787, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.21 (m, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.96–6.90 (m, 2H), 5.21 (t, *J* = 2.4 Hz, 2H), 3.54 (t, *J* = 2.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.3, 172.2, 162.7 (d, *J* = 245.3 Hz), 141.1 (d, *J* = 7.4 Hz), 129.6 (d, *J* = 8.3 Hz), 124.4, 115.6 (d, *J* = 21.4 Hz), 113.3 (d, *J* = 20.9 Hz), 99.2, 79.7, 34.1; HRMS (EI) calcd. for C₁₁H₉O₂F [M⁺] 192.0587, found 192.0588.

2-(3-Chlorobenzyl)-2,3-butadienoic Acid (B05). Following the general procedure (48.8 mmol scale), ethyl 2-(3-chlorobenzyl)-2,3-butadienoate (18.14 g, 76.6 mmol, 55%) was obtained as a slightly yellow oil. The allenoate (18 g, 76.0 mmol) was hydrolyzed at room temperature to provide 2-(3-chlorobenzyl)-2,3-butadienoic acid (14.9 g, 71.4 mmol, 94%) as a white solid. IR (film) v 2991, 1965, 1931, 1692, 1593, 1422, 1304, 1277, 1183, 1100, 915, 858, 785, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24–7.18 (m, 3H), 7.13–7.11 (m, 1H), 5.21 (t, *J* = 2.4 Hz, 2H), 3.52 (t, *J* = 2.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.4, 172.2, 140.6, 134.0, 129.5, 128.8, 126.9, 126.6, 99.2, 79.8, 34.0; HRMS (EI) calcd. for C₁₁H₉O₂Cl [M⁺] 208.0291, found 208.0286.

2-(3-Bromobenzyl)-2,3-butadienoic Acid (B06). Following the general procedure (86.1 mmol scale), ethyl 2-(3-bromobenzyl)-2,3-butadienoate (10.9 g, 38.6 mmol, 45%) was obtained as a slightly yellow oil. The allenoate (9.2 g, 32.7 mmol) was hydrolyzed at room temperature to afford 2-(3-bromobenzyl)-2,3-butadienoic acid (7.4 g, 29.2 mmol, 89%) as an off-white solid. IR (film) v 2987, 2677, 1965, 1932, 1692, 1590, 1471, 1427, 1304, 1277, 1100, 915, 857, 785, 693 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.32 (m, 2H), 7.16–7.11 (m, 2H), 5.22 (s, 2H), 3.56 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.4, 172.2, 140.9, 131.7, 129.8, 129.6, 127.4, 122.2, 99.2, 79.8, 34.0; HRMS (EI) calcd. for C₁₁H₉O₂Br [M⁺] 253.9765, found 253.9756.

2-(3-Methylbenzyl)-2,3-butadienoic Acid (B07). Following the general procedure (97.6 mmol scale), ethyl 2-(3-methylbenzyl)-2,3-butadienoate (11.16 g, 51.6 mmol, 53%) was obtained as a slightly yellow oil. The allenoate (7.3 g, 33.8 mmol) was hydrolyzed at 100 °C to give 2-(3-methylbenzyl)-2,3-butadienoic acid (4.6 g, 24.4 mmol, 72%) as a white solid after column chromatography. IR (film) v 3419, 3020, 1963, 1683, 1415, 1283, 850, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.15 (m, 1H), 7.04–7.01 (m, 3H), 5.18 (t, *J* = 2.4 Hz, 2H), 3.52 (t, *J* = 2.2 Hz, 2H),

2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 215.4, 172.0, 138.5, 137.8, 129.4, 128.1, 127.1, 125.7, 99.7, 79.4, 34.3, 21.3; HRMS (EI) calcd. for C₁₂H₁₂O₂ [M⁺] 188.0837, found 188.0846.

2-(4-Fluorobenzyl)-2,3-butadienoic Acid (B08). Following the general procedure (86.1 mmol scale), ethyl 2-(4-fluorobenzyl)-2,3-butadienoate (9.9 g, 45 mmol, 52%) was obtained as a slightly yellow oil. The allenoate (8.2 g, 37.2 mmol) was hydrolyzed at room temperature to afford 2-(4-fluorobenzyl)-2,3-butadienoic acid (6.9 g, 35.8 mmol, 96%) as a white solid. IR (film) v 2988, 1935, 1694, 1507, 1420, 1305, 1283, 1213, 859, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.16 (m, 2H), 6.98–6.93 (m, 2H), 5.18 (t, *J* = 2.5 Hz, 2H), 3.51 (t, *J* = 2.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.2, 171.5, 161.5 (d, *J* = 244.4 Hz), 134.2, 130.2 (d, *J* = 7.9 Hz), 115.0 (d, *J* = 21.4 Hz), 99.7, 79.6, 33.6; HRMS (EI) calcd. for C₁₁H₉O₂F [M⁺] 192.0587, found 192.0592.

B09

2-(4-Chlorobenzyl)-2,3-butadienoic Acid (B09). Following the general procedure (230 mmol scale), ethyl 2-(4-chlorobenzyl)-2,3-butadienoate (28.3 g, 119.5 mmol, 52%) was obtained as a slightly yellow oil. The allenoate (23.0 g, 97 mmol) was hydrolyzed at room temperature to give 2-(4-chlorobenzyl)-2,3-butadienoic acid (19.0 g, 91 mmol, 94%) as an off-white solid. IR (film) v 2982, 1932, 1691, 1492, 1421, 1303, 1277, 1087, 1013, 858 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 5.19 (t, *J* = 2.5 Hz, 2H), 3.51 (t, *J* = 2.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.2, 171.7, 137.0, 132.2, 130.1, 128.3, 99.4, 79.7, 33.8; HRMS (EI) calcd. for C₁₁H₉O₂Cl [M⁺] 208.0291, found 208.0285.

2-(4-Bromobenzyl)-2,3-butadienoic Acid (B10). Following the general procedure (230 mmol scale), ethyl 2-(4-bromobenzyl)-2,3-butadienoate (32.5 g, 115.7 mmol, 50%) was obtained as a slightly yellow oil. The allenoate (26.0 g, 92.5 mmol) was hydrolyzed at room temperature to give 2-(4-bromobenzyl)-2,3-buta-2,3-dienoic acid (24.1 g, 95 mmol, 100%) as an off-white solid. IR (film) v 3059, 1933, 1691, 1487, 1419, 1301, 1275, 1176, 1067, 1008, 855, 799 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 5.19 (t, *J* = 2.4 Hz, 2H), 3.49 (t, *J* = 2.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 215.2, 171.7, 137.6, 131.4, 131.3, 130.5, 130.0, 120.3, 99.3, 79.7, 33.9; HRMS (EI) calcd. for C₁₁H₉O₂Br [M⁺] 251.9787, found 251.9786.

2-(4-Methylbenzyl)-2,3-butadienoic Acid (B11). Following the general procedure (97.6 mmol scale), ethyl 2-(4-methylbenzyl)-2,3-butadienoate (11.22 g, 52 mmol, 53%) was obtained as a slightly yellow oil. The allenoate (7.3 g, 33.8 mmol) was hydrolyzed at 100 °C to give 2-(4-methylbenzyl)-2,3-butadienoic acid (3.8 g, 19.7 mmol, 58%) as a solidifying oil after column chromatography. IR (film) v 2980, 1962, 1675, 1515, 1420, 1281, 1065, 860 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.23–7.11 (m, 4H), 5.19 (s, 2H), 3.54 (s, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)

 δ 215.4, 172.7, 135.9, 135.6, 128.9, 128.6, 100.0, 79.4, 34.0, 21.0; HRMS (EI) calcd. for $C_{12}H_{12}O_2$ [M⁺] 188.0837, found 188.0842.

2-(4-*tert***-Butylbenzyl)-2,3-butadienoic acid (B12)**. Following the general procedure (86.1 mmol scale), ethyl 2-(4-*tert*-butylbenzyl)-2,3-butadienoate (11.7 g, 45.1 mmol, 52%) was obtained as a slightly yellow oil. The allenoate (10.0 g, 38.7 mmol) was hydrolyzed at 100 °C to give 2-(4-*tert*-butylbenzyl)-2,3-butadienoic acid (6.9 g, 29.9 mmol, 77%) as a solidifying oil after column chromatography. IR (film) v 2963, 1963, 1515, 1413, 1364, 1284, 907, 852, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 5.19 (t, *J* = 2.3 Hz, 2H), 3.52 (t, *J* = 2.1 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 215.5, 172.7, 149.1, 135.6, 128.3, 125.1, 99.8, 79.3, 34.3, 33.9, 31.3; HRMS (EI) calcd. for C₁₅H₁₈O₂ [M⁺] 230.1307, found 213.1318.

Synthesis of *N*-Sulfonylimines C(01–46)

Chart 3. N-Sulfonylimine building blocks C(01-46)

The *N*-sulfonylimines C01, C03, C06–C18, C20–C24, C26–C30, and C32–C42 were synthesized through the condensation of the corresponding aldehydes with the sulfonamides catalyzed by $BF_3 \cdot OEt_2$ with azeotropic water

removal (Dean–Stark), according to the literature procedure.⁸ The *N*-sulfonylimines **C02**, **C04**, **C05**, **C19**, **C25**, **C31**, and **C43–C46** were synthesized from the corresponding aldehydes and sulfonamides through the use of TiCl₄, according to a literature procedure.⁹ The spectroscopic data for the following synthesized imines were in agreement with those reported in the literature (or cited therein): C01;^{10a} C02, C14, and C23;^{10b} C03;^{10c} C04 and C16;^{10d} C05, C30, and C43;^{10e} C06;^{10f} C07 and C20;^{10g} C09 and C39;^{10h} C11, C18, and C19;¹⁰ⁱ C12;^{10j} C13;^{10k} C15;^{10l} C17;^{10m} C21;¹⁰ⁿ C24;^{10o} C26 and C27;^{10p} C28;^{10q} C29 and C35;^{10r} C33;^{10s} C46.^{10t}

The spectroscopic data for the previously unreported *N*-sulfonylimines C10, C34, C36–C38, and C40–C42 that were used in the library synthesis are listed below.

N-(2-Fluorobenzylidene)-4-methylbenzenesulfonamide (C10). Following the literature procedure,⁸ 2-fluorobenzaldehyde (18.6 g, 150 mmol) was reacted with *p*-toluenesulfonamide (24.7 g, 144.0 mmol) in the presence of BF₃·OEt₂ (10 mol%) to afford C10 as a white solid after crystallization from hexanes/EtOAc. Yield: 39.6 g (142.8 mmol, 99%). M.p. 136–140 °C; IR (film) v 1611, 1572, 1456, 1321, 1157, 1087, 871, 814, 762 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 9.53 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.80–7.76 (m, 1H), 6.81–6.77 (m, 3H), 6.54–6.47 (m, 2H), 1.88 (s, 3H); ¹³C NMR (75 MHz, C₆D₆) δ 164.3 (d, *J* = 260 Hz), 163.7, 144.9, 137.1 (d, *J* = 9.1 Hz), 134.8, 129.9, 129.4, 128.2, 124.9, 120.5 (d, *J* = 8.4 Hz), 116.4 (d, *J* = 20.6 Hz), 21.8; LRMS (APCI) calcd. for C₁₄H₁₃FNO₂S [MH⁺] 278.1, found 278.2.

2-[(4-Methoxybenzylidene)sulfamoyl]benzoic Acid Methyl Ester (C34). Following the literature procedure,⁸ 4-methoxybenzaldehyde (20.4 g, 150 mmol) was reacted with methyl 2-(aminosulfonyl)benzoate (30.1 g, 140.0 mmol) in the presence of BF₃·OEt₂ (10 mol%) to afford **C34** as a white solid after crystallization from hexanes/EtOAc. Yield: 16.8 g (50.6 mmol, 36%). M.p. 90–96 °C; IR (film) v 2954, 2842, 1736, 1591, 1558, 1513, 1427, 1263, 1158, 1115, 1059, 1023, 954, 810, 772, 610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.28–8.26 (m, 1H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.68–7.62 (m, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 3H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 167.4, 165.5, 136.8, 134.0, 133.2, 132.8, 131.0, 130.4, 129.4, 125.2, 114.8, 55.7, 53.1; LRMS (APCI) calcd. for C₁₆H₁₆NO₅S [MH⁺] 334.1, found 334.3.

^{8.} McKay, W. R.; Proctor, G. R. J. Chem. Soc., Perkin Trans. 1 1981, 2435.

^{9.} Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.

^{10. (}a) Chemla, F.; Hebbe, V.; Normant, J. Synthesis 2000, 75. (b) Li, A.; Zhou, Y.; Dai, L.; Hou, X.; Xia, L.; Lin, L. J. Org. Chem. 1998, 63, 4338. (c) Shi, M.; Li, C. Tetrahedron: Asymmetry 2005, 16, 1385. (d) Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561. (e) Gohain, M.; Prajapati, D.; Gogoi, B. J.; Sandhu, J. S. Synlett 2004, 1179. (f) Trost, B. M.; Marrs, C. M. J. Org. Chem. 1991, 56, 6468. (g) Love, B. E.; Raje, P. S.; Williams II, T. C. Synlett 1994, 493. (h) Ruano, J. L. G.; Aleman, J.; Cid, M. B.; Parra, A. Org. Lett. 2005, 7, 179. (i) Davis, F. A.; Lamendola, Jr., J.; Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.; Billmers, R.; Jenkins, Jr., R.; Turchi, I. J.; Watson, W. H.; Chen, J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000. (j) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 2003, 68, 2583. (k) Nair, V.; Sreekanth, A. R.; Bhadbhade, M. M.; Gonnade, R. C. Org. Lett. 2002, 4, 3575. (l) Jiang, N.; Qu, Z.; Wang, J. Org. Lett. 2001, 3, 2989. (m) Ref. 8. (n) Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6203. (o) Pandey, M. K.; Bisai, A.; Pandey, A.; Singh, V. K. Tetrahedron Lett. 2005, 46, 5039. (p) Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790. (q) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055. (r) Chan, T. H.; Lu, W. Tetrahedron Lett. 1998, 39, 8605. (s) Shi, M.; Xu, Y. J. Org. Chem. 2003, 68, 4784. (t) Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1977, 540.

N-(4-Methylbenzylidene)-2-nitrobenzenesulfonamide (C36). Following the literature procedure,⁸ *p*-tolualdehyde (10.4 g, 86.8 mmol) was reacted with 2-nitrobenzenesulfonamide (14.6 g, 72.3 mmol) in the presence of BF₃·OEt₂ (10 mol%) to afford C36 as a white solid after crystallization from hexanes/EtOAc. Yield: 16.7 g (54.9 mmol, 76%). M.p. 144–148 °C; IR (film) v 1639, 1593, 1542, 1366, 1330, 1232, 1161, 1124, 1057, 805 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.41–8.39 (m, 1H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.81–7.77 (m, 3H), 7.33 (d, *J* = 8.1 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 146.3, 133.6, 132.3, 131.7, 131.6, 131.5, 129.9, 129.7, 127.9, 124.1, 21.3; LRMS (APCI) calcd. for C₁₄H₁₃N₂O₄S [MH⁺] 305.1, found 305.2.

4-Chloro-*N***-(4-methoxybenzylidene)-benzenesulfonamide** (C37). Following the literature procedure,⁸ 4methoxybenzaldehyde (21.4 g, 157 mmol) was reacted with 4-chlorobenzenesulfonamide (28.7 g, 150.0 mmol) in the presence of BF₃·OEt₂ (5 mol%) to afford C37 as a white solid after crystallization from hexanes/EtOAc. Yield: 34.4 g (111.1 mmol, 74%). M.p. 100–102 °C; IR (film) v 1644, 1591, 1562, 1513, 1426, 1319, 1264, 1156, 1088, 1014, 806, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.49 (d, *J* = 8.9 Hz, 2H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 165.6, 139.9, 137.4, 134.0, 129.3, 128.3, 125.0, 114.8, 55.7; LRMS (APCI) calcd. for C₁₄H₁₃NClO₃S [MH⁺] 310.0, found 310.3.

N-(4-Methoxybenzylidene)-2-methylbenzenesulfonamide (C38). Following the literature procedure,⁸ 4methoxybenzaldehyde (4.3 g, 31.4 mmol) was reacted with *o*-toluenesulfonamide (5.1 g, 30.0 mmol) in the presence of BF₃·OEt₂ (5 mol%) to afford C38 as a white solid after crystallization from hexanes/EtOAc. Yield: 5.3 g (18.3 mmol, 61%). M.p. 90–93 °C; IR (film) v 1591, 1561, 1513, 1425, 1314, 1263, 1157, 1131, 1062, 1024, 811, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.03–6.99 (m, 1H), 6.95–6.89 (m, 2H), 6.49 (d, *J* = 8.8 Hz, 2H), 3.11 (s, 3H), 2.86 (s, 3H); ¹³C NMR (100 MHz) δ 169.7, 165.4, 138.7, 133.7, 133.4, 132.4, 129.1, 126.3, 125.3, 114.8, 55.7, 20.7; LRMS (APCI) calcd. for C₁₅H₁₆NO₃S [MH⁺] 290.1, found 290.2.

N-(4-Chlorobenzylidene)-2-methylbenzenesulfonamide (C40). Following the literature procedure,⁸ 4-chlorobenzaldehyde (24.3 g, 173 mmol) was reacted with *o*-toluenesulfonamide (25.7 g, 150 mmol) in the presence of BF₃·OEt₂ (10 mol%) to afford C40 as a white solid after crystallization from hexanes/EtOAc. Yield: 37.4 g (127.3 mmol, 85%). M.p. 118–120 °C; IR (film) v 1608, 1562, 1318, 1161, 1062, 791, 714 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.52–7.49 (m, 1H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.37–7.35 (m, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 141.6, 138.9, 136.3, 133.8, 132.5, 132.4, 130.9, 129.7, 129.3, 126.4, 20.7; LRMS (APCI) calcd. for C₁₄H₁₃NO₂CIS [MH⁺] 294.0, found 294.1.

2-Methyl-*N***-(4-methylbenzylidene)benzenesulfonamide** (C41). Following the literature procedure,⁸ *p*-tolualdehyde (12 mL, 100 mmol) was reacted with *o*-toluenesulfonamide (15.4 g, 90 mmol) in the presence of BF₃·OEt₂ (9 mol%) to afford C41 as a white solid after crystallization from hexanes/EtOAc. Yield: 20.4 g (74.6 mmol, 83%). M.p. 103–106 °C; IR (film) v 1596, 1562, 1314, 1159, 1131, 1062, 870, 810, 797, 758, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.50–7.48 (m, 1H), 7.35–7.32 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.74 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 146.5, 138.8, 136.8, 133.5, 132.4, 131.5, 130.0, 129.9, 129.2, 126.3, 22.0, 20.7; LRMS (APCI) calcd. for C₁₅H₁₆NO₂S [MH⁺] 274.1, found 274.3.

2-[(4-Methylbenzylidene)sulfamoyl]benzoic Acid Methyl Ester (C42). Following the literature procedure,⁸ *p*-tolualdehyde (15.6 g, 130 mmol) was reacted with methyl 2-(aminosulfonyl)benzoate (25.8 g, 120 mmol) in the presence of BF₃·OEt₂ (10 mol%) to afford **C42** as a white solid after crystallization from hexanes/EtOAc. Yield: 20.8 g (65.6 mmol, 55%). M.p. 109–112 °C; IR (film) v 1736, 1645, 1595, 1562, 1433, 1324, 1294, 1161, 1117, 1059, 803 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.29–8.27 (m, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.69–7.65 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.90 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 167.3, 146.6, 136.5, 133.3, 132.9, 131.6, 131.1, 130.6, 130.0, 129.8, 129.5, 53.1, 22.0; LRMS (APCI) calcd. for C₁₆H₁₆NO₄S [MH⁺] 318.1, found 318.1.

Resin Loading With 4-Substituted 2,3-Butadienoic Acids

Resin Loading With 2,3-Butadienoic Acid (A01)

General Procedure. An oven-dried vial was charged with lanterns (15 μ mol/lantern), 2,3-butadienoic acid (10 equiv), and 2-chloro-1-methylpyridinium iodide (10 equiv). After two evacuation/backfill cycles with Ar, the solids were dissolved in dry CH₂Cl₂ (0.5 mL/lantern). After 30 min, the vial was cooled to -70 °C and diisopropylethylamine (Hünig's base, 20 equiv) was added under an Ar atmosphere. After 1 h, the cooling bath was removed; the vials were then flushed with Ar, capped, and shaken at room temperature for 4 h. The brown solution was removed and the light-yellow lanterns were washed as follows: THF × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, DCM × 5, THF ×

Resin Loading With 4-Substituted 2,3-Butadienoic Acids A(02–11)

General Procedure. An oven-dried vial was charged with a mixture of 4-substituted-2,3-butadienoic acid (A02–A11) and tautomeric 3-alkynoic acid (10 equiv), 2-chloro-1-methylpyridinium iodide (10 equiv), and lanterns (15 μ mol/lantern). After two evacuation/backfill cycles with Ar, the solids were dissolved in dry CH₂Cl₂ (0.5

mL/lantern). After 30 min, the vial was cooled to -78 °C and DIPEA (20 equiv) was added under an Ar atmosphere. After 1 h, the cooling bath was removed; the vials were then flushed with Ar, capped, and shaken at room temperature for 12 h. The brown solution was removed and the light-yellow lanterns were washed as follows: THF × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, DCM × 5, THF × 5,

Resin Loading With 2-Substituted 2,3-Butadienoic Acids B(01–12)

General Procedure. An oven-dried flask or vial was loaded with the desired number of lanterns (L-series; 15 µmol loading capacity per lantern), 2-chloro-1-methylpyridinium iodide (10 equiv, 0.15 mmol/lantern), and the butadienoic acid (10 equiv, 0.15 mmol/lantern). The flask was charged with Ar and CH_2Cl_2 (0.5 mL/Lantern) was added. After soaking for 30 min, the suspension was cooled to -70 °C and triethylamine (20 equiv, 0.3 mmol/lantern) was added. The flask was swirled manually to ensure mixing and then the cooling bath was removed. While being warmed to room temperature, the flask was swirled manually from time to time; at ca. -5 °C the solution began to turn red/brown. At room temperature, the flask was capped and swirled or shaken gently for 16 h. The colored lanterns were then washed as follows (ca. 1 mL solvent/lantern; at room temperature, the lanterns were at least soaked for a couple of minutes unless otherwise stated): CH_2Cl_2 (3×). The loaded lanterns were dried in the air or used directly in the next step. The lantern-bound allenoate **L-B01** was stable for several months at -18 °C.

Solid Phase [3 + 2] Annulations with *N*-Sulfonylimines

[3+2] Cycloaddition of Lantern-Bound 2,3-Butadienoate L-A01

General Procedure. Lantern-bound 2,3-butadienoate **L-A01** was washed under an Ar flow with dry THF (1 mL/lantern, 5 times) and dry benzene (1 mL/lantern, 5 times). A solution of *N*-sulfonylimine (5 equiv) in benzene (0.5 mL/lantern) was then added followed by triphenylphosphine (0.5 equiv) in benzene (0.5 mL/lantern). The mixture was agitated manually and heated at 60 °C for 24 h. The reaction solution was then removed and the brown lanterns washed as follows: toluene, DCM × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, toluene, THF × 5, and then left in toluene overnight at 60 °C. Further washing with toluene × 5, THF × 5, DMF × 5, THF × 5, DCM × 5, THF

The spectroscopic data of a representative product A01C02 are listed below.

1-(4-Toluenesulfonyl)-2-(*p***-tolyl)-2,5-dihydro-1***H***-pyrrole-3-carboxylic Acid (A01C02). According to the general procedure, L-A01C02** was formed. Three lanterns were then treated with 2.5% TFA/DCM (3 mL) to yield a crude product (15.6 mg, 97% yield), which was purified by flash column chromatography (SiO₂; hexane/EtOAc, 4/1 with 2% AcOH) to afford **A01C02** as an off-white solid (14.7 mg, 91%). IR (neat) v 3408, 2964, 2926, 2875, 1697, 1645, 1455, 1343, 1162, 814 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 9.5 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 1.5 Hz, 1H), 5.67 (d, *J* = 6.0 Hz, 1H), 4.52–4.48 (dd, *J* = 2.0, 18.0 Hz, 1H), 4.41–4.36 (dd, *J* = 1.5, 6.0 Hz, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.06–1.99 (m, 2H), 1.00 (t, *J* = 7.5 Hz, 3H); 2.37 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 143.3, 138.0, 137.9, 136.2, 135.6, 135.3, 129.5, 129.1, 127.7, 127.1, 68.5, 54.9, 21.5, 21.2; HRMS (EI) calcd. for C₁₉H₁₉NO₄S [M⁺] 357.1031, found 357.1035.

[3+2] Cycloaddition of Lantern-Bound 4-Substituted 2,3-Butadienoates

General Procedure. Lantern-bound 4-substituted-2,3-butadienoate **L-A(02–11)** was washed under Ar flow with dry THF (1 mL/lantern, 5 times) and dry benzene (1 mL/lantern, 5 times). A solution of 5 equiv of *N*-tosylimine in benzene (0.5 mL for each lantern) was then added followed by 0.5 equiv of tributylphosphine. The mixture was agitated manually and heated at 60 °C for 5 days. The reaction solution was then removed and the light-yellow lanterns were washed as follows: toluene, DCM × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, toluene, THF × 5, and then left in toluene overnight at 60 °C. Further washing with toluene × 5, THF × 5, DMF × 5, THF × 5, DMF × 5, THF × 5, and then left in DMF at 60 °C for 4 h; THF × 5, DMF × 5, THF × 5, DMF, NH₄Cl/H₂O, THF/H₂O, DCM × 5, toluene, THF × 5, DCM × 5, and then left in DCM for 1 h. (Note: Lanterns were soaked for at least 15 min before changing solvents.) The annulation products were cleaved by treatment with TFA/DCM 2.5% (1 mL/lantern) to yield the crude carboxylic acid products **A(02–11)C(01–46)**.

The spectroscopic data of the representative product A05C02 are listed below.

5-Ethyl-1-(4-toluenesulfonyl)-2-(*p***-tolyl)-2,5-dihydro-1***H***-pyrrole-3-carboxylic Acid (A05C02). According to the general procedure, performed on a 0.045-mmol scale, L-A05C02** was formed. Three lanterns were then treated with 2.5% TFA/DCM (3 mL) to yield a crude product (16.8 mg, 97% yield), which was purified by flash chromatography (SiO₂; hexane/EtOAc, 4:1 with 2% AcOH) to afford **A05C02** as an off-white solid (15.9 mg, 92% yield over three steps). IR (neat) v 3408, 2964, 2926, 2875, 1697, 1645, 1455, 1343, 1162, 814 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 4H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.87 (s, 1H), 5.65 (s, 1H), 4.60–4.56 (m, 1H), 2.43 (s, 3H), 2.36 (s, 3H), 2.16–2.02 (m, 1H), 1.85–1.65 (m, 1H), 1.05 (t, *J* = 7.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 143.7, 142.5, 137.9, 136.7, 135.2, 133.2, 129.6, 129.1, 127.9, 127.5, 120.0, 68.9, 29.9, 21.5, 21.2, 10.4; HRMS (EI) calcd. for C₂₁H₂₃NO₄S [M⁺] 385.1348, found 385.1354.

Solid Phase [4 + 2] Annulations with *N*-Sulfonylimines

General Procedure. The lantern-bound allenoates L-B(01-12) were placed in an oven-dried vial or flask, charged with Ar, and washed with distilled, dry CH_2Cl_2 (3×). The solvent was evaporated and the N-sulforylimine (5 equiv) was added as a solid. CH₂Cl₂ (0.5 mL/lantern) was added. After the imine had dissolved, PBu₃ (0.5 equiv) was added. The vial or flask was removed from the Ar line, capped, and then gently shaken or swirled at room temperature for 48 h ($R^1 = H$) or 96 h ($R^1 = aryl$). The lanterns were washed as follows (ca. 1 mL solvent/lantern; the lanterns were soaked at least for a couple of minutes at room temperature unless otherwise stated): CH₂Cl₂ (5×), toluene (2x), THF (3x), DMF (3x), THF (3x), 20% Bu₃N in THF at 60 °C for 16 h (1x), THF (3x), 50% H₂O in THF (3x), THF (3x), 20% HOAc in THF for 1h (1x), THF (3x), 50% H₂O in THF (3x), THF (3x), DMF (3x), THF (3x), 20% Bu₃N in THF at 60 °C for 16 h (1x), THF (3x), 50% H₂O in THF (3x), THF (3x), 20% HOAc in THF for 1h (1x), THF (3x), 50% H₂O in THF (2x), 2.5 M aqueous NH₄Cl:THF (1:1) for 1 h (1x), 50% H₂O in THF (3x), THF (3x), DMF (3x), THF (3x), toluene (2x), CH_2Cl_2 (3x), toluene for 16 h (1x), CH_2Cl_2 (3x). The loaded lanterns were dried in the air or used directly in the next step. After washing, the products L-B(01-12)C(01-46) were cleaved from the lantern by adding a solution of 2.5% TFA in CH₂Cl₂ (1 mL) and leaving the mixture to stand for 12 h in a small vial. Removal of the lantern, rinsing it with CH_2Cl_2 , and concentration afforded the product as a crude oil. Small amounts of remaining TFA were removed by co-evaporation with CHCl₃ and blow-drying using a gentle flow of air.

The spectroscopic data of the representative products B01C02, B01C12, and B02C02 are listed below.

1-(4-Toluenesulfonyl)-6-(*p*-tolyl)-1,2,5,6-tetrahydropyridine-3-carboxylic Acid (B01C02). According to the general procedure, lantern-bound 2-methyl-buta-2,3-dienoate **L-B01** (80 L-lanterns, 1.20 mmol) was reacted with 4-methyl-*N*-(4-methylbenzylidene)-benzenesulfonamide **C02** (1.64 g, 6 mmol) in the presence of *n*-Bu₃P (150 µL, 0.6 mmol). After washing, the product was cleaved from one lantern by adding a solution of 2.5% TFA in CH₂Cl₂ (1 mL) and letting it stand for 12 h. Cleavage afforded **B01C02** as a yellowish oil; crude yield: 6.2 mg (0.0167 mmol, 111%); yield after flash column chromatography: 5.25 mg (0.0142 mmol, 94%). IR (film) v 3032, 2930, 1694, 1340, 1160, 1100 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.16–7.07 (m, 5H), 5.33 (d, *J* = 6.6 Hz, 1H), 4.43 (d, *J* = 18.6 Hz, 1H), 3.45–3.38 (m, 1H), 2.67–2.55 (m, 2H), 2.41 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 143.6, 139.7, 137.7, 137.2, 134.8, 129.8, 129.3, 127.1, 127.0, 126.7, 51.8, 39.1, 27.2, 21.5, 21.0; HRMS (EI) calcd. for C₂₀H₂₁NO₄S [M⁺] 371.1191, found 371.1184.

6-(3-Chlorophenyl)-1-(4-toluenesulfonyl)-1,2,5,6-tetrahydropyridine-3-carboxylic Acid (B01C12). According to the general procedure, lantern-bound 2-methylbuta-2,3-dienoate **L-B01** (6 L-lanterns, 0.09 mmol) was reacted with *N*-(3-chlorobenzylidene)-4-methylbenzenesulfonamide **C12** (0.132 g, 0.45 mmol) in the presence of *n*-Bu₃P (12 μ L, 0.045 mmol). After washing, the product was cleaved from one lantern by adding a solution of 2.5% TFA in CH₂Cl₂ (1 mL) and letting the mixture stand for 12 h. Cleavage afforded **B01C12** as a yellowish oil; crude yield: 5.9 mg

(0.015 mmol, 100%); yield after flash column chromatography: 5.8 mg (99%). R_f 0.22 (hexanes/EtOAc, 2:1 + 2% HOAc); IR (film) v 2925, 1692, 1596, 1433, 1338, 1289, 1160, 1101, 960, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.39–7.32 (m, 1H), 7.27 (d, *J* = 8.7 Hz, 2H), 7.23–7.12 (m, 2H), 5.33 (d, *J* = 6.4 Hz, 1H), 4.49 (d, *J* = 18.8 Hz, 1H), 3.44 (d, *J* = 18.7 Hz, 1H), 2.70–2.53 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ 169.2, 143.9, 140.0, 138.8, 137.0, 134.6, 130.0, 129.9, 128.2, 127.4, 127.0, 126.9, 125.3, 51.7, 39.3, 27.2, 21.6; HRMS (EI) calcd. for C₁₉H₁₈CINO₄S [M⁺] 391.0645, found 391.0646.

2-Phenyl-1-(4-toluenesulfonyl)-6-(*p***-tolyl)-1,2,5,6-tetrahydropyridine-3-carboxylic** Acid (B02C02). Following the general procedure, lantern-bound 2-benzylbuta-2,3-dienoate L-B02 (31 L-Lanterns, 0.465 mmol) was reacted with *N*-(4-methylbenzylidene)-4-methylbenzenesulfonamide C02 (0.64 g, 2.33 mmol) in the presence of *n*-Bu₃P (58 μ L, 0.235 mmol). Cleavage afforded B02C02 as a yellowish oil; crude yield: 7.0 mg (0.0156 mmol, 104%); yield after flash column chromatography: 6.1 mg (91%). IR (film) v 2923, 1690, 1341, 1284, 1161, 1090, 730, 659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.99–6.91 (m, 6H), 6.83 (d, *J* = 8.1 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 2H), 6.11 (s, 1H), 5.11 (m, 1H), 2.70–2.63 (m, 1H), 2.42 (s, 3H), 2.25–2.17 (m, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 143.7, 140.8, 138.1, 137.2, 136.8, 135.2, 130.1, 129.9, 128.4, 127.7, 127.6 (2x), 127.2, 126.5, 54.1, 52.5, 26.4, 21.6, 20.8; HRMS (EI) calcd. for C₂₆H₂₅NO₄S [M⁺] 447.1504, found 447.1506.

Solid Phase Thiol Addition to the Dihydropyrrole Scaffold

Chart 4. Thiol building blocks **E(01–32**)

For each of the selected thiols, the reaction conditions were optimized. The conditions used for the library synthesis are listed below.

Conditions A: For thiols E01, E06, E07, E16, E25, E30, E32, E02, E04, E17, E18, E19, E20, E21, E22, E23, E24, E28, and E29 with the imine building blocks C01, C03, C09, C10, C24, and C27; 100 equiv thiol, 10 equiv *n*-BuLi, THF, -25 °C, 10 d.

Conditions B: For thiols **E02**, **E04**, **E17**, **E18**, **E19**, **E20**, **E21**, **E22**, **E23**, **E24**, **E28**, and **E29** with the rest of the imines: 100 equiv thiol, 6 equiv *n*-BuLi, THF, -25 °C, 10 d.

General Procedure. The lantern-bound dihydropyrrole L-A(05-11)C(01-46) was placed in an oven-dried vial or flask and charged with Ar. The lantern(s) were washed five times with freshly distilled THF and then soaked in THF (0.5 mL/lantern) for 30 min. The thiol (100 equiv, in solid or liquid form) was then added. The vial or flask was placed in a cooling bath at -70 °C and n-BuLi (6 or 10 equiv) was added via syringe. The mixture was left to warm to room temperature over 30 min, the Ar line was removed, and the vial was capped and placed in a freezer at -25°C for 10 days. The lanterns were then washed as follows: THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), DMF (5x), CH₂Cl₂ (3x), toluene (1x and overnight), THF (5x), 50% H₂O in THF (1x), 2.5 M aqueous NH₄Cl:THF (1:1) for 1 h (1×), 50% H₂O in THF (3×), THF (5×), DMF (3×), DMF (1× and overnight), THF (3×), CH₂Cl₂ (3×), toluene (3x), THF (3x), CH₂Cl₂ (3x), toluene (3x), CH₂Cl₂ (3x). The lanterns were soaked in CH₂Cl₂ for 30 min and then a solution of 2.5% TFA in CH₂Cl₂ (ca. 1 mL per lantern) was added to cleave the compound. After 12 h, the lantern was removed, rinsed with CH_2Cl_2 , and concentrated to afford the crude product A(05-11)C(01-46)E(01-32).

The spectroscopic data of the representative product **A05C02E01** are listed below. Crystallographic data for **A05C02E01** and **B01C02E01** have been deposited with the Cambridge Crystallographic Data Centre as supplementary numbers CCDC 631680 and 631681. These data can be obtained online free of charge (or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

5-Ethyl-4-phenylsulfanyl-1-(4-toluenesulfonyl)-2-(*p***-tolyl)-pyrrolidine-3-carboxylic Acid (A05C02E01). Following the procedure described above, L-A05C02 was reacted with benzenethiol (0.045 mmol scale, conditions A). Upon TFA-mediated cleavage, the product A05C02E01 was obtained as an off-white solid (13.2 mg, 89% yield over four steps). IR (neat) v 3544, 3165, 3002, 2944, 1726, 1634, 1444, 1375, 1164, 819, 750, 665 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) \delta 7.67 (d,** *J* **= 8.0 Hz, 2H), 7.41 (d,** *J* **= 5.0 Hz, 2H), 7.33–7.30 (m, 5H), 7.15 (d,** *J* **= 8.0 Hz, 2H), 5.00 (d,** *J* **= 10.0 Hz, 1H), 3.95 (dd,** *J* **= 9.5, 4.5 Hz, 1H), 3.69 (d,** *J* **= 6.0 Hz, 1H), 3.47 (dd,** *J* **= 9.5, 6.0 Hz, 1H), 2.46 (s, 3H), 2.36 (s, 3H), 2.14–2.09 (m, 1H), 1.80–1.74 (m, 1H), 0.92 (t,** *J* **= 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 172.7, 143.4, 137.4, 137.2, 134.6, 133.1 132.3, 129.3, 129.1, 128.9, 128.2, 128.0, 127.8, 127.0, 69.7, 64.0, 56.0, 51.9, 29.7, 21.5, 21.0, 10.6; HRMS (EI) calcd. for C₂₇H₂₉NO₄S₂ [M⁺] 495.1523, found 495.1538.**

Solid Phase Thiol Addition to the Tetrahydropyridine Scaffold

For each of the selected thiols, the reaction conditions were optimized. The conditions used for the library synthesis are listed below.

Conditions A: For E01, E02, E04, and E05; 100 equiv thiol, 1 equiv n-BuLi, 1 equiv [12]crown-4, THF, 60 °C, 4 d.

Conditions B: For E06 and E09; 100 equiv thiol, 1 equiv *n*-BuLi, THF, rt, 4 d.

Conditions C: For E15, E16, E18, and E30; 100 equiv thiol, 1 equiv *n*-BuLi, THF, 40 °C, 2 d.

Conditions D: For E22; 100 equiv thiol, 1 equiv n-BuLi, THF, 40 °C, 4 d.

Conditions E: For E07, E21, and E24; 100 equiv thiol, 1 equiv *n*-BuLi, THF, 40 °C, 8 d.

Conditions F: For E23, E25, and E28; 100 equiv thiol, 1 equiv *n*-BuLi, THF, 60 °C, 2 d.

General Procedure. The lantern-bound 6-aryl-N-sulfonyl-1,2,5,6-tetrahydropyridine-3-carboxylate L-B01C(01-46) was placed in an oven-dried vial or flask and charged with Ar. The lantern(s) were washed three times with freshly distilled THF and then soaked in THF (0.5 mL/lantern). The thiol (100 equiv) was added to the soaked lanterns as a liquid or as a solid. In the case of aromatic thiols, [12]crown-4 (1 equiv) was added. The vial or flask was placed in a cooling bath at -70 °C and n-BuLi (1 equiv) was added via syringe. The mixture was left to warm to room temperature over 30 min, the Ar line was removed, and then the vial was capped and placed aside for the indicated time and at the indicated temperature. It was not necessary to shake or swirl this mixture during the reaction. After the reaction was complete, the lanterns were washed as follows: THF (5x), DMF (3x), THF (3x), CH₂Cl₂ (3x), toluene (1x and overnight), THF (3x), 50% H₂O in THF (1x), 2.5 M aqueous NH₄Cl:THF (1:1) for 1 h (1x), 50% H_2O in THF (3x), THF (3x), DMF (2x), DMF (1x and overnight), THF (3x), CH_2Cl_2 (3x), toluene (3x), THF (3x), CH_2Cl_2 (3x), toluene (3x), CH_2Cl_2 (3x). After washing, the product was cleaved from a lantern by adding a solution of 2.5% TFA in CH₂Cl₂ (1 mL) and then letting the mixture stand for 12 h in a 4-mL vial. Removal of the lantern, rinsing it with CH₂Cl₂, and concentration afforded the product as a crude oil. Small amounts of remaining TFA were removed by co-evaporation with CHCl₃ and blow-drying using a gentle flow of air. Note: Because the thioethers are sensitive, extensive contact with basic media should be avoided to prevent β elimination.

The spectroscopic data of the representative products **B01C01E01** and **B01C01E07** are listed below. The ORTEP drawing below is that of the piperidine derivative **B01C02E01** presenting a 6-tolyl substituent.

6-Phenyl-4-phenylsulfanyl-1-(4-toluenesulfonyl)-piperidine-3-carboxylic Acid (B01C01E01). According to the general procedure, lantern-bound 6-phenyl-1-(4-toluenesulfonyl)-1,2,5,6-tetrahydropyridine-3-carboxylate **L-B01C01** (1 lantern, 0.015 mmol) was reacted with benzenethiol **E01** (154 μ L, 1.5 mmol) and *n*-BuLi (10 μ L, 0.015 mmol) in the presence of [12]crown-4 (2.4 μ L, 0.015 mmol). The reaction mixture was heated at 60 °C for 4 days (conditions A). Cleavage afforded **B01C01E01** as a slightly yellow-colored oil. Crude yield: 5.4 mg (0.0115 mmol, 77%). IR (film) v 3429, 2925, 1708, 1448, 1339, 1157, 1091, 968 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.38–7.19 (m, 12H), 5.29 (br d, *J* = 5.1 Hz, 1H), 4.14–4.09 (m, 1H), 3.15–3.06 (m, 2H), 2.55 (d, *J* = 13.5 Hz, 1H), 2.44 (s, 3H), 2.39–2.32 (s, 1H), 1.60–1.52 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 176.1, 143.6, 137.5, 136.8, 135.1, 130.3, 130.0, 129.0, 128.9, 128.5, 127.5, 126.8, 126.4, 55.2, 46.7, 43.6, 41.6, 32.8, 21.7; HRMS (EI) calcd. for C₂₅H₂₅NO₄S₂ [M⁺] 467.1225, found 467.1214.

4-(4-*tert***-Butylbenzylsulfanyl)-6-phenyl-1-(4-toluenesulfonyl)-piperidine-3-carboxylic** Acid (B01C01E07). According to the general procedure, lantern-bound 6-phenyl-1-(4-toluenesulfonyl)-1,2,5,6-tetrahydropyridine-3-carboxylate **L-B01C01** (1 lantern, 0.015 mmol) was reacted with 4-*tert*-butylbenzylmercaptan E07 (0.28 mL, 1.5 mmol) in the presence of *n*-BuLi (10 μ L, 0.015 mmol) as a base for 8 days at 40 °C (conditions E). Cleavage afforded **B01C01E07** as a slightly yellow-colored oil. Crude yield: 7.9 mg (0.0143 mmol, 95%). IR (film) v 2962, 1709, 1449, 1340, 1158, 1092, 968 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.35–7.31 (m, 4H), 7.25–7.20 (m, 3H), 7.19 (d, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 5.24 (br d, *J* = 4.8 Hz, 1H), 4.09–4.05 (m, 1H), 3.63 (s, 2H), 3.00–2.95 (m, 1H), 3.81–3.73 (m, 1H), 2.44 (s, 3H), 2.36–2.33 (m, 2H), 1.73–1.64 (m, 1H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 150.1, 143.7, 137.6, 136.8, 134.6, 130.0, 128.7, 128.5, 127.2, 126.9, 126.4, 125.4, 55.1, 47.4, 43.5, 38.2, 35.2, 34.4, 33.6, 31.2, 21.4; HRMS (EI) calcd. for C₃₀H₃₅NO₄S₂ [M⁺] 537.2007, found 537.1965.

Screening for the Selection of Building Blocks Used in the Library Synthesis

Building Block Screening for the [3 + 2] Annulation

Screening Imines Using Resin-Bound Allenoate L-A01: Imines were reacted with allenoate L-A01 according to the general procedure described previously. The data from the spectroscopic analyses (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the cleaved annulation products A01C(01-46) are summarized in Table 3. Based on this screen, 30 imines (of 46) were chosen for inclusion in the library synthesis.

		product		LCMS^b					
entry	Ar	\mathbb{R}^2	no.	yield ^a (%)	calcd. [M]	observed [M + Na] ⁺	retention time (min)	purity (%)	incl.
1	Ph	<i>p</i> -tolyl	A01C01	95	343.09	366.0	3.609	89	\checkmark
2	$4-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	A01C02	97	357.10	380.0	3.744	93	\checkmark
3	$4-EtC_6H_4$	<i>p</i> -tolyl	A01C03	72	371.12	394.0	3.983	99	\checkmark
4	$4-OMeC_6H_4$	<i>p</i> -tolyl	A01C04	46	373.10	N/A	N/A	N/A	no

5	$4-OEtC_6H_4$	<i>p</i> -tolyl	A01C05	60	387.11	N/A	N/A	N/A	no
6	piperonal	<i>p</i> -tolyl	A01C06	69	387.08	410.0	3.625	99	\checkmark
7	$4-Me_2NC_6H_4$	<i>p</i> -tolyl	A01C07	49	386.13	N/A	N/A	N/A	no
8	$4-Et_2NC_6H_4$	<i>p</i> -tolyl	A01C08	51	414.16	N/A	N/A	N/A	no
9	$4-CNC_6H_4$	<i>p</i> -tolyl	A01C09	99	368.08	391.0	3.627	99	\checkmark
10	$2-FC_6H_4$	<i>p</i> -tolyl	A01C10	99	361.08	384.0	3.701	99	\checkmark
11	$4-ClC_6H_4$	<i>p</i> -tolyl	A01C11	99	377.05	400.0	3.885	99	\checkmark
12	$3-ClC_6H_4$	<i>p</i> -tolyl	A01C12	99	377.05	400.0	3.867	87	\checkmark
13	3,4-ClC ₆ H ₄	<i>p</i> -tolyl	A01C13	95	411.01	434.9	4.035	100	\checkmark
14	$4-BrC_6H_4$	<i>p</i> -tolyl	A01C14	89	421.00	445.9	3.928	98	\checkmark
15	$3-BrC_6H_4$	<i>p</i> -tolyl	A01C15	95	421.00	445.9	3.904	97	\checkmark
16	1-naphthyl	<i>p</i> -tolyl	A01C16	63	393.10	416.0	3.907	96	\checkmark
17	2-furyl	<i>p</i> -tolyl	A01C17	68	333.07	N/A	N/A	N/A	no
18	Ph	<i>p</i> -NO ₂ Ph	A01C18	95	374.06	397.0	3.680	99	\checkmark
19	Ph	Me	A01C19	110	267.06	290.0	2.874	84	\checkmark
20	$3,4-OMeC_6H_4$	<i>p</i> -tolyl	A01C20	45	403.11	N/A	N/A	N/A	no
21	2-thiophenyl	<i>p</i> -tolyl	A01C21	67	349.04	N/A	N/A	N/A	no
22	4-Me-2-furyl	<i>p</i> -tolyl	A01C22	46	347.08	N/A	N/A	N/A	no
23	$4-FC_6H_4$	<i>p</i> -tolyl	A01C23	90	361.08	384.0	3.738	99	\checkmark
24	4-i-PrC ₆ H ₄	<i>p</i> -tolyl	A01C24	65	385.13	408.1	4.116	98	\checkmark
25	3,4,5-OMeC ₆ H ₄	<i>p</i> -tolyl	A01C25	57	433.12	N/A	N/A	N/A	no
26	$3-FC_6H_4$	<i>p</i> -tolyl	A01C26	79	361.08	384.0	3.736	94	\checkmark
27	$4-ClC_6H_4$	p-ClPh	A01C27	75	396.99	421.9	3.981	93	\checkmark
28	$4-ClC_6H_4$	Me	A01C28	86	301.02	323.9	3.198	88	\checkmark
29	$4-ClC_6H_4$	Ph	A01C29	97	363.03	386.0	3.738	96	\checkmark
30	$4-\text{MeC}_6\text{H}_4$	p-ClPh	A01C30	100	377.05	400.0	3.943	98	\checkmark
31	$4-ClC_6H_4$	o-CO ₂ MePh	A01C31	112	421.04	444.0	3.716	100	\checkmark
32	1-Methyl- pyrrolyl	<i>p</i> -tolyl	A01C32	24	346.10	N/A	N/A	N/A	no
33	$3-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	A01C33	87	357.10	380.0	3.798	99	\checkmark
34	$4-OMeC_6H_4$	o-CO ₂ MePh	A01C34	78	417.09	N/A	N/A	N/A	no
35	$4-OMeC_6H_4$	Ph	A01C35	63	359.08	N/A	N/A	N/A	no
36	$4-\text{MeC}_6\text{H}_4$	o-NO ₂ Ph	A01C36	142	388.07	411.0	3.741	95	\checkmark
37	$4-OMeC_6H_4$	<i>p</i> -ClPh	A01C37	68	393.04	N/A	N/A	N/A	no
38	$4-OMeC_6H_4$	o-tolyl	A01C38	34	373.10	N/A	N/A	N/A	no
39	$3-OMeC_6H_4$	<i>p</i> -tolyl	A01C39	41	373.10	N/A	N/A	N/A	no
40	$4-ClC_6H_4$	o-tolyl	A01C40	104	377.05	400.0	3.897	100	\checkmark
41	$4-\text{MeC}_6\text{H}_4$	o-tolyl	A01C41	80	357.10	380.0	3.852	90	\checkmark
42	$4-\text{MeC}_6\text{H}_4$	o-CO ₂ MePh	A01C42	50	401.09	424.0	3.659	84	\checkmark
43	$4-\text{MeC}_6\text{H}_4$	Ph	A01C43	97	343.09	366.0	3.681	94	
44	$4-\text{MeC}_6\text{H}_4$	p-NO ₂ Ph	A01C44	81	388.07	411.0	3.801	96	
45	$4-\text{MeC}_6\text{H}_4$	<i>m</i> -NO ₂ Ph	A01C45	68	388.07	N/A	N/A	N/A	no
46	$4-MeC_6H_4$	Me	A01C46	48	281.07	304.0	3.017	86	

^{*a*} Crude yield after cleavage.

^b Short 6-min method; purity observed at λ 210 nm.

Screening γ -Substituted Allenoic Acids Using *N*-Tosyltolualdimine C02: Allenoic acids were loaded and reacted with imine C02 according to the general procedure on pages S18 and S19. The data from the spectroscopic analyses (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the

cleaved annulation products A(02-11)C02 are summarized in Table 4. Based on these results, all of the γ -substituted allenoic acids were chosen for inclusion in the library synthesis.

Table 4. γ-Substituted Allenoic Acid Screening.

	pro	duct		NMR			LCMS ^b			
entry	R	no.	conv. (%)	yield $(\%)^a$	dr	calcd. [M]	observed [M + Na] ⁺	retention time (min)	purity (%)	incl.
1	Me	A02C02	>99	100	92:8	371.12	394.1	3.871	80	\checkmark
2	<i>t</i> -Bu	A03C02	>99	80	99:1	413.17	436.1	4.383	100	\checkmark
3	Ph	A04C02	>99	50	99:1	433.13	456.1	4.146	87	\checkmark
4	Et	A05C02	>99	99	95:5	385.13	408.1	4.090	89	\checkmark
5	<i>i</i> -Pr	A06C02	>99	92	99:1	399.15	422.1	4.158	83	\checkmark
6	<i>n</i> -Pr	A07C02	>99	102	99:1	399.15	422.1	4.176	72	\checkmark
7	<i>n</i> -Bu	A08C02	>99	77	99:1	413.17	436.1	4.425	89	\checkmark
8	<i>n</i> -pentyl	A09C02	>99	66	99:1	427.18	450.1	4.516	74	\checkmark
9	<i>n</i> -hexyl	A10C02	>99	85	83:17	441.20	464.1	4.683	49	\checkmark
10	cyp-Me	A11C02	>99	70	92:8	439.18	462.1	4.547	87	\checkmark

^{*a*} Crude yield after cleavage.

^b Short 6 min method, purity observed at λ 210 nm.

Screening Imines Using Resin-Bound Allenoate L-A05: Imines were reacted with allenoate **L-A05** according to the general procedure in page S20. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the cleaved annulation products **A05C(01–46)** are summarized in Table 5. Based on this screen, 21 imines (of 46) were chosen for inclusion in the library synthesis.

Table 5.	Imine	Screening	in the	[3 + 2]	Annulation	Using l	L-A05.
						4 2	

		product	NMR				$LCMS^{b}$				
entry	Ar	R^2	no.	conv. (%)	yield ^a (%)	dr	calcd. [M]	obs. [M + Na] ⁺	ret. time (min)	purity (%)	incl.
1	Ph	<i>p</i> -tolyl	A05C01	>99	99	99:9	371.12	394.1	3.890	66	\sqrt{c}
2	$4-MeC_6H_4$	p-tolyl	A05C02	>99	99	95:5	385.13	408.1	4.090	89	\checkmark
3	$4-EtC_6H_4$	<i>p</i> -tolyl	A05C03	>99	100	98:2	399.15	422.1	4.237	83	\checkmark
4	$4-MeOC_6H_4$	<i>p</i> -tolyl	A05C04	>99	75	mess	401.13	N/A	N/A	N/A	no
5	$4-EtOC_6H_4$	<i>p</i> -tolyl	A05C05	>99	64	mess	415.15	N/A	N/A	N/A	no
6	piperonal	<i>p</i> -tolyl	A05C06	>99	87	>91:1	415.11	438.0	3.919	100	\checkmark
7	$4-Me_2NC_6H_4$	p-tolyl	A05C07	trace	58	mess	414.16	N/A	N/A	N/A	no
8	$4-Et_2NC_6H_4$	<i>p</i> -tolyl	A05C08	trace	63	mess	442.19	N/A	N/A	N/A	no

9	$4-NCC_6H_4$	<i>p</i> -tolyl	A05C09	>99	40	97:3	396.11	419.0	3.921	100	\checkmark
10	$2-FC_6H_4$	<i>p</i> -tolyl	A05C10	>99	106	100:0	389.11	412.0	3.969	71	\checkmark
11	$4-ClC_6H_4$	<i>p</i> -tolyl	A05C11	>99	66	96:4	405.08	406.1^{d}	4.132	95	\checkmark
12	$3-ClC_6H_4$	<i>p</i> -tolyl	A05C12	>99	53	93:7	405.08	428.0	4.159	79	\checkmark
13	3,4-ClC ₆ H ₄	<i>p</i> -tolyl	A05C13	>99	85	94:6	439.04	440.0^{d}	4.306	85	\checkmark
14	$4-BrC_6H_4$	<i>p</i> -tolyl	A05C14	>99	98	93:7	449.03	474.0*	4.217	87	\checkmark
15	$3-BrC_6H_4$	<i>p</i> -tolyl	A05C15	>99	70	mess	449.03	472.2	4.201	66	no
16	1-naphthyl	<i>p</i> -tolyl	A05C16	>99	79	100:0	421.13	444.0	4.173	95	\checkmark
17	2-furyl	<i>p</i> -tolyl	A05C17	no rxn	56	mess	361.10	N/A	N/A	N/A	no
18	Ph	<i>p</i> -NO ₂ Ph	A05C18	mess	68	mess	402.09	N/A	N/A	N/A	no
19	Ph	Me	A05C19	>99	140	100:0	295.09	318.0	3.327	57	\sqrt{c}
20	3,4- MeOC ₆ H ₄	<i>p</i> -tolyl	A05C20	>99	65		431.14	454.0	3.767	80	\checkmark
21	2-thiophenyl	<i>p</i> -tolyl	A05C21	mess	64	mess	377.08	N/A	N/A	N/A	no
22	4-Me-2-furyl	<i>p</i> -tolyl	A05C22	no rxn	67	-	375.11	N/A	N/A	N/A	no
23	$4-FC_6H_4$	<i>p</i> -tolyl	A05C23	>99	89	92:8	389.11	412.0	4.026	92	\checkmark
24	4-i-PrC ₆ H ₄	<i>p</i> -tolyl	A05C24	>99	92	94:6	413.17	436.1	4.378	88	\checkmark
25	3,4,5- MeOC ₆ H ₄	<i>p</i> -tolyl	A05C25	mess	38	mess	461.15	N/A	N/A	N/A	no
26	$3-FC_6H_4$	<i>p</i> -tolyl	A05C26	>99	60	96:4	389.11	412.0	4.028	78	V
27	$4-ClC_6H_4$	p-ClPh	A05C27	>99	81	98:2	425.03	447.9	4.268	75	\checkmark
28	$4-ClC_6H_4$	Me	A05C28	mess	95	mess	329.05	N/A	N/A	N/A	no
29	$4-ClC_6H_4$	Ph	A05C29	>99	91		391.06	414.0	4.045	86	V
30	$4-\text{MeC}_6\text{H}_4$	p-ClPh	A05C30	>99	79	93:7	405.08	428.0	4.220	78	\checkmark
31	$4-ClC_6H_4$	о- CO ₂ MePh	A05C31	mess	71	mess	449.07	472.0	3.998	54	no
32	l-Methyl- pyrrolyl	<i>p</i> -tolyl	A05C32	no rxn	23	-	374.13	N/A	N/A	N/A	no
33	$3-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	A05C33	>99	92	92:8	385.13	408.1	4.092	91	\checkmark
34	4-MeOC ₆ H ₄	<i>o</i> - CO ₂ MePh	A05C34	mess	nd	mess	445.12	N/A	N/A	N/A	no
35	$4-\text{MeOC}_6\text{H}_4$	Ph	A05C35	mess	nd	mess	387.11	N/A	N/A	N/A	no
36	$4-\text{MeC}_6\text{H}_4$	<i>o</i> -NO ₂ Ph	A05C36	mess	nd	mess	416.10	N/A	N/A	N/A	no
37	$4-\text{MeOC}_6\text{H}_4$	<i>p</i> -ClPh	A05C37	mess	nd	mess	421.08	N/A	N/A	N/A	no
38	$4-\text{MeOC}_6\text{H}_4$	<i>o</i> -tolyl	A05C38	mess	nd	mess	401.13	N/A	N/A	N/A	no
39	$3-\text{MeOC}_6\text{H}_4$	<i>p</i> -tolyl	A05C39	mess	nd	mess	401.13	N/A	N/A	N/A	no
40	$4-ClC_6H_4$	<i>o</i> -tolyl	A05C40	>99	108		405.08	406.1 ^{<i>a</i>}	4.181	67	\sqrt{c}
41	$4-\text{MeC}_6\text{H}_4$	<i>o</i> -tolyl	A05C41	>99	105	100:0	385.13	386.1 ^{<i>a</i>}	4.113	55	\mathbf{v}^{c}
42	$4-\text{MeC}_6\text{H}_4$	<i>o</i> - CO ₂ MePh	A05C42	mess	nd	mess	429.12	N/A	N/A	N/A	no
43	$4-\text{MeC}_6\text{H}_4$	Ph	A05C43	>99	100		371.12	394.1	3.883	70	no
44	$4-\text{MeC}_6\text{H}_4$	<i>p</i> -NO ₂ Ph	A05C44	mess	nd	mess	416.10	N/A	N/A	N/A	no
45	$4-\text{MeC}_6\text{H}_4$	<i>m</i> -NO ₂ Ph	A05C45	mess	nd	mess	416.10	N/A	N/A	N/A	no
46	$4-\text{MeC}_6\text{H}_4$	Me	A05C46	>99	97		309.10	332.1	3.388	57	no

⁴⁰ ^{4-MeC₆H₄ Me A0SC40 ^a Crude yield after cleavage. ^b Short 6-min method; purity observed at λ 210 nm. ^c Selection based on ¹H NMR spectrum. ^d [M + H]⁺}

Building Block Screening for the [4 + 2] Annulation

Screening Imines Using Resin-Bound Allenoate L-B01. Imines C(01-46) were reacted with allenoate L-B01 according to the general procedure described previously. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part D, for copies of spectra and chromatograms) of the cleaved annulation products B01C(01-46) are summarized in Table 6. Based on these results, 25 imines (of 46) were chosen for inclusion in the library synthesis.

Table 6. Screening Imines C(01–46) Using Resin-Bound Allenoate L-B01.

		pro	duct		LCMS^b					
ontry	imina	٨r	$SO P^2$	no	yield ^a	calcd.	retention	observed	purity	incl
enuy	mme	AI	30 ₂ K	no.	(%)	[M]	time (min)	$[M + Na]^+$	(%)	mer.
1	C01	Ph	Ts	B01C01	108	357.10	3.91	380.0	85	
2	C02	$4-\text{MeC}_6\text{H}_4$	Ts	B01C02	102	371.12	4.02	394.0	99	\checkmark
3	C03	$4-EtC_6H_4$	Ts	B01C03	118	385.13	4.18	408.1	99	\checkmark
4	C04	$4-MeOC_6H_4$	Ts	B01C04	95	387.11	3.82	410.1	68	\checkmark
5	C05	$4-EtOC_6H_4$	Ts	B01C05	80	401.13	4.09	424.0	99	\checkmark
6	C06	piperonyl	Ts	B01C06	95	401.09	3.82	424.0	90	\checkmark
7	C07	$4-Me_2NC_6H_4$	Ts	B01C07	68	400.15	3.38	401.1 ^c	73	no
8	C08	$4-Et_2NC_6H_4$	Ts	B01C08	62	428.18	nd	nd	nd	no
9	C09	$4-NCC_6H_4$	Ts	B01C09	82	382.10	3.74	405.0	50	no
10	C10	$2-FC_6H_4$	Ts	B01C10	100	375.09	3.85	398.0	95	\checkmark
11	C11	$4-ClC_6H_4$	Ts	B01C11	87	391.06	4.10	414.0	82	no
12	C12	$3-ClC_6H_4$	Ts	B01C12	100	391.06	3.99	414.0	80	\checkmark
13	C13	3,4-di-ClC ₆ H ₄	Ts	B01C13	99	425.03	4.25	448.0	75	no
14	C14	$4-BrC_6H_4$	Ts	B01C14	84	435.01	4.13	460.0	77	no
15	C15	$3-BrC_6H_4$	Ts	B01C15	90	435.01	4.10	457.9	77	no
16	C16	1-naphthyl	Ts	B01C16	95	407.12	4.15	430.0	95	\checkmark
17	C17	2-furyl	Ts	B01C17	56	347.08	nd	nd	nd	no
18	C18	Ph	Ns	B01C18	50	388.07	nd	nd	nd	no
19	C19	Ph	Ms	B01C19	85	281.07	nd	nd	nd	no
20	C20	3,4-di-MeOC ₆ H ₄	Ts	B01C20	83	417.12	3.66	440.0	91	\checkmark
21	C21	2-thiophene	Ts	B01C21	53	363.06	3.80	386.0	99	\checkmark
22	C22	5-methyl-2-furyl	Ts	B01C22	55	361.10	nd	nd	nd	no
23	C23	$4-FC_6H_4$	Ts	B01C23	89	375.09	3.91	398.0	82	no
24	C24	4-i-PrC ₆ H ₄	Ts	B01C24	77	399.15	4.33	422.1	96	\checkmark
25	C25	3,4,5-tri-MeOC ₆ H ₄	Ts	B01C25	61	447.14	3.67	470.0	80	\checkmark
26	C26	$3-FC_6H_4$	Ts	B01C26	103	375.09	3.90	398.0	78	no
27	C27	$4-ClC_6H_4$	4ClBs	B01C27	103	411.01	nd	nd	nd	no
28	C28	$4-ClC_6H_4$	Ms	B01C28	122	315.03	nd	nd	nd	no
29	C29	$4-ClC_6H_4$	Bs	B01C29	115	377.05	nd	nd	nd	no
30	C30	$4-\text{MeC}_6\text{H}_4$	4ClBs	B01C30	102	391.06	4.10	414.0	87	\checkmark
31	C31	$4-ClC_6H_4$	2MCBs	B01C31	67	435.05	3.90	458.0	85	no
32	C32	1-Me-2-pyrrole	Ts	B01C32	31	360.11	nd	nd	nd	no
33	C33	$3-\text{MeC}_6\text{H}_4$	Ts	B01C33	99	371.12	4.04	394.0	77	\checkmark
34	C34	$4-MeOC_6H_4$	2MCBs	B01C34	68	431.10	3.69	454.0	87	\checkmark
35	C35	$4-MeOC_6H_4$	Bs	B01C35	93	373.10	3.69	396.0	94	\checkmark
36	C36	$4-\text{MeC}_6\text{H}_4$	2Ns	B01C36	61	402.09	3.89	403.1 ^c	95	\checkmark
37	C37	$4-MeOC_6H_4$	4ClBs	B01C37	103	407.06	3.93	430.0	92	\checkmark
38	C38	$4-MeOC_6H_4$	2Ts	B01C38	105	387.11	3.89	410.0	84	\checkmark
39	C39	$3-\text{MeOC}_6\text{H}_4$	Ts	B01C39	57	387.11	3.84	410.1	87	\checkmark

40 C40 4-ClC ₄ H ₄ 2Ts B01C40 92 391.06 4.12 414.9) 98 √
41 C41 4-MeC ₆ H ₄ 2Ts B01C41 83 371.12 4.07 394.	90 √
42 C42 4-MeC ₆ H ₄ 2MCBs B01C42 90 415.11 3.86 438.0) 93 √
43 C43 4-MeC ₆ H ₄ Bs B01C43 75 357.10 3.91 380.0) 90 √
44 C44 4-MeC ₆ H ₄ 4Ns B01C44 70 402.09 nd nd	nd no
45 C45 4-MeC ₆ H ₄ 3Ns B01C45 51 402.09 nd nd	nd no
46 C46 4-MeC ₆ H ₄ Ms B01C46 97 295.09 3.39 318.0) 55 no

^{*a*} Crude yield after cleavage.

^b Short 6-min method; purity observed at λ 210 nm.

 c [M + H⁺].

Screening α -Substituted Allenoic Acids Using *N*-Tosyltolualdimine (C02): Allenoic acids B(02–12) were loaded and reacted with imine C02 according to the general procedures. The data from spectroscopic analyses (¹H NMR and LCMS spectra; see Supporting Information, Part D, for copies of spectra and chromatograms) of the cleaved annulation products B(02–12)C02 are summarized in Table 7. Based on this screen, all of the α -substituted allenoic acids were chosen for inclusion in the library synthesis.

Table 7. Screen Data for Allenoic Acids B(02–12)

		produc	ct	NMR				$LCMS^{b}$		_
entry	allenoic acid	R^1	no.	d.r.	yield ^a (%)	calcd. [M]	retention time (min)	observed [M + Na] ⁺	purity (%)	incl.
1	B02	Ph	B02C02	93:7	104	447.15	4.36	470.1	85	\checkmark
2	B03	2-F-C ₆ H ₄	B03C02	99:1	110	465.14	4.33	488.1	95	\checkmark
3	B04	$3-F-C_6H_4$	B04C02	95:5	93	465.14	4.39	488.0	98	\checkmark
4	B05	$3-Cl-C_6H_4$	B05C02	96:4	104	481.11	4.52	504.0	95	\checkmark
5	B06	$3-Br-C_6H_4$	B06C02	96:4	113	525.06	4.56	548.0	93	\checkmark
6	B07	$3-\text{Me-C}_6\text{H}_4$	B07C02	95:5	92	461.17	4.48	484.1	95	\checkmark
7	B08	$4-F-C_6H_4$	B08C02	94:6	100	465.14	4.40	488.1	98	\checkmark
8	B09	$4-Cl-C_6H_4$	B09C02	95:5	112	481.11	4.55	504.0	93	\checkmark
9	B10	$4-Br-C_6H_4$	B10C02	96:4	110	525.06	4.59	548.0	89	\checkmark
10	B11	$4-\text{Me-C}_6\text{H}_4$	B11C02	95:5	111	461.17	4.49	484.1	91	\checkmark
11	B12	$4-t-Bu-C_6H_4$	B12C02	94:6	98	503.21	4.87	526.1	99	\checkmark

^{*a*} Crude yield after cleavage.

^b Short 6-min method; purity observed at λ 210 nm.

Screening Imines Using Resin-Bound Allenoate L-B05: Imines C(01-46) were reacted with allenoate L-B05 according to the general procedure on page S20. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part D, for copies of spectra and chromatograms) of the cleaved annulation products B05C(01-46) are summarized in Table 8. Based on these results, 31 imines (of 46) were chosen for inclusion in the library synthesis.

Table 8. Screening Imines Using Allenoate L-B05.

		proc	duct		NMR				LCMS ^b		
ontru	imina	۸.r	\mathbf{P}^2	no	d r	yield ^a	calcd.	retention	observed	purity	incl
enuy	mme	Al	К	110.	u.1.	(%)	[M]	time (min)	$[M + Na]^+$	(%)	mer.
1	C01	Ph	Ts	B05C01	98:2	63	467.10	4.36	468.1 ^c	86	\checkmark
2	C02	$4-\text{MeC}_6\text{H}_4$	Ts	B05C02	96:4	59	481.11	4.49	504.0	98	\checkmark
3	C03	$4-EtC_6H_4$	Ts	B05C03	96:4	149	495.13	4.69	518.0	86	\checkmark
4	C04	$4-MeOC_6H_4$	Ts	B05C04	96:4	54	497.11	4.29	520.0	99	\checkmark
5	C05	$4-EtOC_6H_4$	Ts	B05C05	96:4	52	511.12	4.40	534.0	98	\checkmark
6	C06	piperonyl	Ts	B05C06	92:8	61	511.09	4.17	534.0	98	\checkmark
7	C07	$4 - Me_2NC_6H_4$	Ts	B05C07	99:1	52	510.14	3.80	511.1 ^c	37	no
8	C08	$4-Et_2NC_6H_4$	Ts	B05C08	nd	nd	538.17	nd	nd	nd	no
9	C09	$4-NCC_6H_4$	Ts	B05C09	94:6	76	492.09	4.12	515.0	99	\checkmark
10	C10	$2-FC_6H_4$	Ts	B05C10	94:6	84	485.09	4.24	508.0	98	\checkmark
11	C11	$4-ClC_6H_4$	Ts	B05C11	96:4	76	501.06	4.50	524.0	97	\checkmark
12	C12	$3-ClC_6H_4$	Ts	B05C12	96:4	81	501.06	4.46	524.0	98	\checkmark
13	C13	3,4-di-ClC ₆ H ₄	Ts	B05C13	95:5	75	535.02	4.61	553.3	99	\checkmark
14	C14	$4-BrC_6H_4$	Ts	B05C14	95:5	66	545.01	4.60	568.0	99	no
15	C15	$3-BrC_6H_4$	Ts	B05C15	97:3	62	545.01	4.50	569.9	99	\checkmark
16	C16	1-naphthyl	Ts	B05C16	nd	53	517.11	4.59	540.0	73	no
17	C17	2-furyl	Ts	B05C17	nd	nd	457.08	nd	nd	nd	no
18	C18	Ph	Ns	B05C18	68:32	59	498.07	nd	nd	nd	no
19	C19	Ph	Ms	B05C19	98:2	68	391.06	3.78	414.0	97	\checkmark
20	C20	3,4-di-MeOC ₆ H ₄	Ts	B05C20	97:3	58	527.12	4.00	550.0	99	\checkmark
21	C21	2-thiophene	Ts	B05C21	99:1	59	473.05	4.22	496.0	95	\checkmark
22	C22	5-methyl-2-furyl	Ts	B05C22	nd	nd	471.09	nd	nd	nd	no
23	C23	$4-FC_6H_4$	Ts	B05C23	97:3	78	485.09	4.32	508.0	95	\checkmark
24	C24	4-i-PrC ₆ H ₄	Ts	B05C24	98:2	65	509.14	4.76	532.1	98	\checkmark
25	C25	3,4,5-tri-MeOC ₆ H ₄	Ts	B05C25	nd	43	557.13	4.07	580.0	52	no
26	C26	$3-FC_6H_4$	Ts	B05C26	99:1	81	485.09	4.31	508.0	97	\checkmark
27	C27	$4-ClC_6H_4$	4ClBs	B05C27	93:7	68	521.00	4.55	544.0	99	
28	C28	$4-ClC_6H_4$	Ms	B05C28	99:1	63	425.03	3.96	448.0	94	
29	C29	$4-ClC_6H_4$	Bs	B05C29	88:12	60	487.04	4.45	510.0	85	no
30	C30	$4-\text{MeC}_6\text{H}_4$	4ClBs	B05C30	95:5	86	501.06	4.56	524.0	97	
31	C31	$4-ClC_6H_4$	2MCBs	B05C31	99:1	98	545.05	4.38	568.0	41	no
32	C32	1-Me-2-pyrrole	Ts	B05C32	nd	nd	470.11	nd	nd	nd	no
33	C33	$3-\text{MeC}_6\text{H}_4$	Ts	B05C33	98:2	82	481.11	4.47	504.0	95	
34	C34	$4-\text{MeOC}_6\text{H}_4$	2MCBs	B05C34	93:7	62	541.10	4.14	564.0	88	no
35	C35	$4-\text{MeOC}_6\text{H}_4$	Bs	B05C35	96:4	65	483.09	4.11	506.0	98	
36	C36	$4-\text{MeC}_6\text{H}_4$	2Ns	B05C36	nd	57	512.08	nd	nd	nd	no
37	C37	$4-\text{MeOC}_6\text{H}_4$	4ClBs	B05C37	93:7	80	517.05	4.32	540.0	97	
38	C38	$4-MeOC_6H_4$	2Ts	B05C38	94:6	63	497.11	4.25	520.0	99	
39	C39	$3-\text{MeOC}_6\text{H}_4$	Ts	B05C39	99:1	75	497.11	4.26	520.0	94	\checkmark
40	C40	$4-ClC_6H_4$	2Ts	B05C40	95:5	92	501.06	4.51	524.0	99	
41	C41	$4-\text{MeC}_6\text{H}_4$	2Ts	B05C41	97:3	86	481.11	4.51	504.0	95	
42	C42	$4-\text{MeC}_6\text{H}_4$	2MCBs	B05C42	97:3	99	525.10	4.31	548.0	96	
43	C43	$4-\text{MeC}_6\text{H}_4$	Bs	B05C43	98:2	103	467.10	4.37	490.0	99	\checkmark
44	C44	$4-\text{MeC}_6\text{H}_4$	4Ns	B05C44	81:19	105	512.08	nd	nd	33	no
45	C45	$4-\text{MeC}_6\text{H}_4$	3Ns	B05C45	80:20	91	512.08	nd	nd	nd	no
46	C46	$4-\text{MeC}_6\text{H}_4$	Ms	B05C46	98:2	79	405.08	3.94	428.0	96	\checkmark

^{*a*} Crude yield after cleavage. ^{*b*} Short 6-min method; purity observed at λ 210 nm.

 c [M + H]⁺.

Building Block Screening for the Thiol 1,4-Addition to the Dihydropyrrole Scaffolds

Screening γ -Substituted Allenoic Acids Using *N*-Tosyltolualdimine and Benzenethiol/*p*-Toluenethiol. The lantern-bound dihydropyrroles L-A(02–11)02 derived from allenoic acids A(02–11) were reacted with thiol E01 or E02 according to the general procedure. The data from analyses (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the cleaved Michael addition products A(02–11)C02E01/02 are summarized in Table 9. Based on this screening result, seven allenoic acids (of 10) were chosen for inclusion in the library synthesis of pyrrolidines.

Table 9. Screening Allenoic Acids A(02-11) for the Thiol Addition to the Dihydropyrrole Scaffolds.

		produc	et		NM	R			$LCMS^{b}$		
entry	R	\mathbb{R}^4	no.	conv. (%)	yield $(\%)^a$	dr	calcd. [M]	observed [M + Na] ⁺	retention time (min)	purity (%)	incl.
1	Me	Ph	A02C02E01	>90	92	1:0.21:0.14	481.14	nd	nd	nd	no
2	t-Bu	Ph	A03C02E01	0	sm	nd	523.19	nd	nd	nd	no
3	Ph	Ph	A04C02E01	>80	59	1:0.20	543.15	nd	nd	nd	no
4	Et	<i>p</i> -tolyl	A05C02E02	99	91	1:0.10	509.17	532.1	4.617	81	\checkmark
5	<i>i</i> -Pr	<i>p</i> -tolyl	A06C02E02	98	88	1:0.03	523.19	546.1	4.661	56	\sqrt{c}
6	<i>n</i> -Pr	<i>p</i> -tolyl	A07C02E02	>98	87	1:0.11	523.19	546.1	4.678	66	\sqrt{c}
7	<i>n</i> -Bu	<i>p</i> -tolyl	A08C02E02	97	79	1:0.07	537.20	560.1	4.849	86	\checkmark
8	<i>n</i> -pentyl	<i>p</i> -tolyl	A09C02E02	93	61	1:0.11	551.22	574.0	4.994	73	\checkmark
9	<i>n</i> -hexyl	<i>p</i> -tolyl	A10C02E02	96	64	1:0.10	565.23	588.1	5.140	78	\checkmark
10	cyp-Me	<i>p</i> -tolyl	A11C02E02	96	86	1:0.08	563.22	586.1	4.999	76	\checkmark

^{*a*} Crude yield after cleavage.

^{*b*} Short 6-min method; purity observed at λ 210 nm.

^c Selection based on ¹H NMR spectrum.

Screening Imines Using Resin-Bound Allenoate L-A05 and *p*-Toluenethiol E02. The lantern-bound dihydropyrroles L-A05C(01–46) were reacted with thiol E02 according to the procedure on page S23. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the cleaved 1,4-addition products A05C(01–46)E02 are summarized in Table 10. Based on these results, 25 imines (of 46) were chosen for inclusion in the library synthesis.

Table 10. Imine Screening for the 5-Ethyldihydropyrrole Scaffold With *p*-Toluenethiol.

		Product			NMR		_	Ι	$LCMS^{b}$		
entr y	Ar	\mathbb{R}^2	no.	conv. (%)	yield $(\%)^a$	dr	calcd. [M]	obs. [M + Na] ⁺	ret time (min)	purity (%)	incl.
1	Ph	<i>p</i> -tolyl	A05C01E02	99	85	100:0	495.15	518.1	4.511	48	\sqrt{c}

2	$4-MeC_6H_4$	<i>p</i> -tolyl	A05C02E02	96	94	95:5	509.17	532.1	4.617	81	\checkmark
3	$4-EtC_6H_4$	<i>p</i> -tolyl	A05C03E02	98	75	99:1	523.19	546.1	4.730	69	\sqrt{c}
4	4-MeOC ₆ H ₄	<i>p</i> -tolyl	A05C04E02	99	60	100:0	525.16	548.1	4.447	60	\sqrt{c}
5	$4-EtOC_6H_4$	<i>p</i> -tolyl	A05C05E02	99	65	100:0	539.18	539.3 ^d	4.429	76	\checkmark
6	piperonal	<i>p</i> -tolyl	A05C06E02	93	80	90:10	539.14	562.1	4.451	60	\sqrt{c}
7	$4-Me_2NC_6H_4$	<i>p</i> -tolyl	A05C07E02	nd	mess	nd	538.20	nd	nd	nd	no
8	$4-Et_2NC_6H_4$	<i>p</i> -tolyl	A05C08E02	nd	mess	nd	566.23	nd	nd	nd	no
9	$4-NCC_6H_4$	<i>p</i> -tolyl	A05C09E02	91	67	91:9	520.15	543.1	4.448	57	\sqrt{c}
10	$2-FC_6H_4$	<i>p</i> -tolyl	A05C10E02	95	87	100:0	513.14	536.0	4.451	69	\sqrt{c}
11	$4-ClC_6H_4$	<i>p</i> -tolyl	A05C11E02	95	86	91:9	529.11	552.0	4.654	92	\checkmark
12	$3-ClC_6H_4$	<i>p</i> -tolyl	A05C12E02	95	74	91:9	529.11	552.0	4.655	44	\sqrt{c}
13	$3,4-ClC_6H_4$	<i>p</i> -tolyl	A05C13E02	90	79	91:9	563.08	586.0	4.785	87	\checkmark
14	$4-BrC_6H_4$	<i>p</i> -tolyl	A05C14E02	94	97	91:9	573.06	598.0	4.685	90	\checkmark
15	$3-BrC_6H_4$	<i>p</i> -tolyl	A05C15E02	nd	mess	nd	573.06	nd	nd	nd	no
16	1-naphthyl	<i>p</i> -tolyl	A05C16E02	97	101	100:0	545.17	568.1	4.691	78	\checkmark
17	2-furyl	<i>p</i> -tolyl	A05C17E02	nd	nd	nd	485.13	nd	nd	nd	no
18	Ph	<i>p</i> -NO ₂ Ph	A05C18E02	nd	mess	N/A	526.12	nd	nd	nd	no
19	Ph	Me	A05C19E02	nd	mess	100:1	419.12	442.0	4.059	67	no
20	3,4-MeOC ₆ H ₄	p-tolyl	A05C20E02	95	66	92:8	555.17	578.1	4.335	90	\checkmark
21	2-thiophenyl	p-tolyl	A05C21E02	90	71	89:11	501.11	524.0	4.436	69	\sqrt{c}
22	4-Me-2-furyl	p-tolyl	A05C22E02	nd	nd	nd	499.15	nd	nd	nd	no
23	$4-FC_6H_4$	p-tolyl	A05C23E02	98	83	92:8	513.14	514.2 ^e	4.500	70	\checkmark
24	4-i-PrC ₆ H ₄	<i>p</i> -tolyl	A05C24E02	93	88	93:7	537.20	537.4 ^d	4.827	70	\checkmark
25	3,4,5- MeOC ₆ H ₄	<i>p</i> -tolyl	A05C25E02	nd	mess	nd	585.19	608.1	4.301	42	no
26	$3-FC_6H_4$	<i>p</i> -tolyl	A05C26E02	99	75	93:7	513.14	537.3	4.549	52	\sqrt{c}
27	$4-ClC_6H_4$	p-ClPh	A05C27E02	91	79	90:10	549.06	572.0	4.740	43	\sqrt{c}
28	$4-ClC_6H_4$	Me	A05C28E02	N/A	mess	N/A	453.08	nd	nd	nd	no
29	$4-ClC_6H_4$	Ph	A05C29E02	94	90	100:0	515.10	539.0	4.560	68	\sqrt{c}
30	$4-\text{MeC}_6\text{H}_4$	p-ClPh	A05C30E02	98	86	100:0	529.11	553.3	4.710	54	\sqrt{c}
31	$4-ClC_6H_4$	о- CO ₂ MePh	A05C31E02	N/A	N/A	N/A	573.10	nd	nd	nd	no
32	1-methyl- pyrrolyl	<i>p</i> -tolyl	A05C32E02	nd	nd	nd	498.16	nd	nd	nd	no
33	$3-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	A05C33E02	99	92	91:9	509.17	$51e^d$	4.573	58	\sqrt{c}
34	$4-\text{MeOC}_6\text{H}_4$	о- CO ₂ MePh	A05C34E02	N/A	N/A	N/A	569.15	nd	nd	nd	no
35	$4-\text{MeOC}_6\text{H}_4$	Ph	A05C35E02	99	66	93:7	511.15	534.1	4.314	72	
36	$4-MeC_6H_4$	o-NO ₂ Ph	A05C36E02	nd	mess	nd	540.14	nd	nd	nd	no
37	$4-\text{MeOC}_6\text{H}_4$	p-ClPh	A05C37E02	nd	mess	nd	545.11	nd	nd	nd	no
38	$4-\text{MeOC}_6\text{H}_4$	o-tolyl	A05C38E02	nd	mess	nd	525.16	nd	nd	nd	no
39	$3-\text{MeOC}_6\text{H}_4$	p-tolyl	A05C39E02	nd	mess	nd	525.16	nd	nd	nd	no
40	$4-ClC_6H_4$	o-tolyl	A05C40E02	98	106	93:7	529.11	530.0 ^e	4.672	52	\sqrt{c}
41	$4-MeC_6H_4$	o-tolyl	A05C41E02	95	78	92:8	509.17	532.4	4.619	61	\sqrt{c}
42	$4-\text{MeC}_6\text{H}_4$	<i>о</i> - CO ₂ MePh	A05C42E02	nd	mess	N/A	553.16	nd	nd	nd	no
43	$4-\text{MeC}_6\text{H}_4$	Ph	A05C43E02	96	86	90:1	495.15	518.2	4.510	38	no
44	$4-\text{MeC}_6\text{H}_4$	<i>p</i> -NO ₂ Ph	A05C44E02	nd	mess	N/A	540.14	nd	nd	nd	no
45	$4-\text{MeC}_6\text{H}_4$	m-NO ₂ Ph	A05C45E02	nd	mess	N/A	540.14	nd	nd	nd	no
46	$4-\text{MeC}_6\text{H}_4$	Me	A05C46E02	85	77	93:7	433.14	456.0	4.192	55	no

a Crude yield after cleavage.

^{*b*} Short 6-min method; purity observed at λ 210 nm.

^c Selection based on ¹H NMR spectrum.

 d [M]⁺

 $e [M + H]^+$

Screening Thiols Using Resin-Bound Dihydropyrrole L-A05C02. The thiols were reacted with dihydropyrrole L-A05C02 according to the procedure on page S23. The data from the spectroscopic analyses (¹H NMR and LCMS spectra; see Supporting Information, Part C, for copies of spectra and chromatograms) of the cleaved pentasubstituted pyrrolidines A05C02E(01-32) are summarized in Table 11. Based on these results, 19 thiols (of 32) were chosen for inclusion in the library synthesis.

1000011, betweening 111013 $E(01-52)$ Using $E-A05C02$.	Table 11.	Screening	Thiols	E(01-32)	Using l	L-A05C02.
--	-----------	-----------	--------	----------	---------	-----------

	produ	ct		NMR		$\frac{\text{LCMS}^{b}}{\text{calcd.}}$				
entry	R^4	no.	conv. (%)	yield $(\%)^a$	dr	calcd. [M]	obs. [M + Na] ⁺	ret time (min)	purity (%)	incl.
1	Ph	A05C02E01	99	95	93:7	495.15	518.1	4.429	56	\sqrt{c}
2	<i>p</i> -tolyl	A05C02E02	96	94	95:5	509.17	532.1	4.617	81	\checkmark
3	$3,4-(CH_3)_2C_6H_3$	A05C02E03	>99	97	90:10	523.19	N/A	N/A	N/A	no
4	$4-\text{MeOC}_6\text{H}_4$	A05C02E04	>99	115	100:0	525.16	526.2^{d}	4.416	72	\checkmark
5	$4-ClC_6H_4$	A05C02E05	88	91	83:17	529.11	N/A	N/A	N/A	no
6	Bn	A05C02E06	>99	80	91:9	509.17	532.1	4.507	50	\sqrt{c}
7	4-t-butylbenzyl	A05C02E07	>99	87	92:8	565.23	588.1	4.960	32	\sqrt{c}
8	4-fluorobenzyl	A05C02E08	>99	109	70:30	527.16	N/A	N/A	N/A	no
9	4-chlorobenzyl	A05C02E09	>99	97	87:13	543.13	N/A	N/A	N/A	no
10	2-chlorobenzyl	A05C02E10	>99	102	81:19	543.13	N/A	N/A	N/A	no
11	4-bromobenzyl	A05C02E11	94	80	72:28	587.08	N/A	N/A	N/A	no
12	4-methoxybenzyl	A05C02E12	87	61	77:23	539.18	N/A	N/A	N/A	no
13	2-naphtyl	A05C02E13	44	81	82:18	545.17	N/A	N/A	N/A	no
14	2-furanyl	A05C02E14	>99	55	77:23	499.15	N/A	N/A	N/A	no
15	phenethyl	A05C02E15	95	94	85:15	523.19	N/A	N/A	N/A	no
16	Et	A05C02E16	>99	79	97:3	447.15	448.1^{d}	4.233	72	\checkmark
17	<i>i</i> -propyl	A05C02E17	>99	82	100:0	461.17	484.1	4.559	92	\checkmark
18	<i>n</i> -propyl	A05C02E18	>99	87	100:0	461.17	484.1	4.420	86	\checkmark
19	<i>t</i> -butyl	A05C02E19	>99	95	100:0	475.19	498.1	4.496	90	\checkmark
20	sec-butyl	A05C02E20	>99	98	100:0	475.19	498.1	4.524	92	\checkmark
21	isobutyl	A05C02E21	>99	102	100:0	475.19	498.1	4.541	90	\checkmark
22	<i>n</i> -butyl	A05C02E22	>99	135	100:0	475.19	498.1	4.558	83	\checkmark
23	isoamyl	A05C02E23	>99	90	100:0	489.20	512.1	4.669	75	\checkmark
24	<i>n</i> -pentyl	A05C02E24	>99	88	91:9	489.20	512.1	4.693	68	\sqrt{c}
25	<i>n</i> -hexyl	A05C02E25	>99	116	88:12	503.22	526.1	4.841	69	\sqrt{c}
26	<i>n</i> -heptyl	A05C02E26	58	104	85:15	517.23	N/A	N/A	N/A	no
27	<i>n</i> -decyl	A05C02E27	<10	73	mess	559.28	N/A	N/A	N/A	no
28	cyclopentyl	A05C02E28	>99	100	100:0	487.19	510.1	4.567	74	\checkmark
29	cyclohexyl	A05C02E29	>99	98	100:0	501.20	524.0	4.673	66	\sqrt{c}

30	CH ₂ =CHCH ₂	A05C02E30	>99	74	91:9	459.15	482.1	4.340	56	\sqrt{c}
31	MeO ₂ CCH ₂ CH ₂	A05C02E31	>99	100	86:14	505.16	N/A	N/A	N/A	no
32	<i>t</i> -BuO ₂ CCH ₂ CH ₂	A05C02E32	>99	94	91:9	547.21	570.1	4.575	41	\sqrt{c}

^{*a*} Crude yield after cleavage.

^{*b*} Short 6-min method; purity observed at λ 210 nm.

^c Selection based on ¹H NMR spectrum.

 d [M + H]⁺

Building Block Screening for the Thiol 1,4-Addition to the Tetrahydropyridine Scaffolds

Screening Imines by Reacting Resin-Bound Tetrahydropyridines L-B01C(01–46) With Benzyl Thiol (E06). A series of 46 resin-bound tetrahydropyridines L-B01C(01–46) were reacted with thiol E06 according to the general procedure. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part D, for copies of spectra and chromatograms) of the cleaved Michael addition products B01C(01–46)E06 are summarized in Table 12. Based on these results, 21 imines (of 46) were chosen for inclusion in the library synthesis.

Table 12. Screening Imines for the Benzylthiol Addition Using Resin-Bound Tetrahydropyridine B01C(01-46).

		pr	oduct ^a					LCMS ^c		_
entry	imine	Ar	\mathbf{R}^2	no.	yield ^b (%)	calcd. [M]	retention time (min)	observed [M + Na] ⁺	purity (%)	incl.
1	C01	Ph	Ts	B01C01E06	80	481.14	4.43	504.0	84	\checkmark
2	C02	$4-\text{MeC}_6\text{H}_4$	Ts	B01C02E06	66	495.15	4.52	518.1	88	\checkmark
3	C03	$4-\text{EtC}_6\text{H}_4$	Ts	B01C03E06	82	509.17	4.65	532.1	89	\checkmark
4	C04	$4-MeOC_6H_4$	Ts	B01C04E06	84	511.15	4.35	534.1	99	\checkmark
5	C05	$4-EtOC_6H_4$	Ts	B01C05E06	77	525.16	4.51	548.0	86	\checkmark
6	C06	piperonyl	Ts	B01C06E06	76	525.13	4.33	526.1^{d}	85	\checkmark
7	C07	$4-Me_2NC_6H_4$	Ts	B01C07E06	56	524.18	4.21	525.1^{d}	33	no
8	C08	$4-Et_2NC_6H_4$	Ts	B01C08E06	51	552.21	nd	nd	nd	no
9	C09	$4-NCC_6H_4$	Ts	B01C09E06	47	506.13	nd	nd	nd	no
10	C10	$2-FC_6H_4$	Ts	B01C10E06	60	499.13	4.43	522.0	73	
11	C11	$4-ClC_6H_4$	Ts	B01C11E06	84	515.10	4.60	538.0	88	
12	C12	$3-ClC_6H_4$	Ts	B01C12E06	80	515.10	4.51	538.0	93	\checkmark
13	C13	3,4-di-ClC ₆ H ₄	Ts	B01C13E06	51	549.06	4.71	572.0	54	no
14	C14	$4-BrC_6H_4$	Ts	B01C14E06	74	559.05	4.63	582.0	59	no
15	C15	$3-BrC_6H_4$	Ts	B01C15E06	83	559.05	4.59	582.0	70	\checkmark
16	C16	1-naphthyl	Ts	B01C16E06	80	531.15	nd	nd	nd	no
17	C17	2-furyl	Ts	B01C17E06	nd	471.12	nd	nd	nd	no
18	C18	Ph	Ns	B01C18E06	nd	512.11	nd	nd	nd	no
19	C19	Ph	Ms	B01C19E06	104	405.11	3.89	428.0	40	no
20	C20	3,4-di-MeOC ₆ H ₄	Ts	B01C20E06	62	541.16	4.19	564.0	51	\sqrt{e}
21	C21	2-thiophene	Ts	B01C21E06	60	487.09	4.37	510.0	45	no
22	C22	5-methyl-2-furyl	Ts	B01C22E06	78	485.13	nd	nd	nd	no
23	C23	$4-FC_6H_4$	Ts	B01C23E06	76	499.13	4.44	522.0	59	no
24	C24	4-i-PrC ₆ H ₄	Ts	B01C24E06	70	523.19	4.78	546.1	59	no
25	C25	3,4,5-tri-MeOC ₆ H ₄	Ts	B01C25E06	45	571.17	4.17	594.1	73	\checkmark
26	C26	$3-FC_6H_4$	Ts	B01C26E06	77	499.13	4.42	522.0	51	no
27	C27	$4-ClC_6H_4$	4ClBs	B01C27E06	70	535.04	nd	nd	nd	no
28	C28	$4-ClC_6H_4$	Ms	B01C28E06	76	439.07	nd	nd	nd	no

29	C29	$4-ClC_6H_4$	Bs	B01C29E06	nd	501.08	4.48	524.0	46	no
30	C30	$4-\text{MeC}_6\text{H}_4$	4ClBs	B01C30E06	72	515.10	4.63	537.4	67	\sqrt{e}
31	C31	$4-ClC_6H_4$	2MCBs	B01C31E06	73	559.09	nd	nd	nd	no
32	C32	1-Me-2-pyrrole	Ts	B01C32E06	33	484.15	nd	nd	nd	no
33	C33	$3-\text{MeC}_6\text{H}_4$	Ts	B01C33E06	86	495.15	4.53	518.0	42	no
34	C34	4-MeOC ₆ H ₄	2MCBs	B01C34E06	64	555.14	nd	nd	nd	no
35	C35	4-MeOC ₆ H ₄	Bs	B01C35E06	72	497.13	4.26	520.0	92	
36	C36	$4-\text{MeC}_6\text{H}_4$	2Ns	B01C36E06	51	526.12	nd	nd	nd	no
37	C37	4-MeOC ₆ H ₄	4ClBs	B01C37E06	91	531.09	4.46	553.0	66	\sqrt{e}
38	C38	$4-\text{MeOC}_6\text{H}_4$	2Ts	B01C38E06	69	511.15	4.41	534.1	59	\sqrt{e}
39	C39	3-MeOC ₆ H ₄	Ts	B01C39E06	69	511.15	4.36	534.1	81	
40	C40	$4-ClC_6H_4$	2Ts	B01C40E06	70	515.10	4.62	516.1^{d}	44	\sqrt{e}
41	C41	$4-\text{MeC}_6\text{H}_4$	2Ts	B01C41E06	71	495.15	4.58	518.0	79	
42	C42	$4-MeC_6H_4$	2MCBs	B01C42E06	84	539.14	nd	nd	nd	no
43	C43	$4-\text{MeC}_6\text{H}_4$	Bs	B01C43E06	68	481.14	4.39	504.1	88	
44	C44	$4-\text{MeC}_6\text{H}_4$	4Ns	B01C44E06	46	526.12	nd	nd	nd	no
45	C45	$4-MeC_6H_4$	3Ns	B01C45E06	28	526.12	nd	nd	nd	no
46	C46	$4 - MeC_6H_4$	Ms	B01C46E06	73	419.12	3.96	442.0	51	\sqrt{e}

^{*a*} All reactions exhibited conversions >95%. Products all exhibited a diastereoisomeric ratio of 90:10 or better.

^{*b*} Crude yield after cleavage.

^{*c*} Short 6-min method; purity observed at λ 210 nm.

 $^{d} [M + H]^{+}$

^e Selection based on ¹H NMR spectrum only.

Screening Thiols Using Resin-Bound Tetrahydropyridine L-B01C01/02. The thiols were reacted with lanternbound tetrahydropyridine L-B01C01 or L-B01C01 according to the procedure described on page S24. The analytical data (¹H NMR and LCMS spectra; see Supporting Information, Part D, for copies of spectra and chromatograms) of the cleaved tetrasubstituted piperidines B01C01/02E(01–32) are summarized in Table 13. Based on these results, 17 thiols (of 32) were chosen for inclusion in the library synthesis.

Table 13. Thiol E(01-32) Screening Using Resin-Bound Tetrahydropyridine B01C01 or B01C02.

		prod	uct	NI	MR		-]	LCMS ^b		
entry	cond.	\mathbb{R}^4	no.	conv.	d.r.	yield ^a (%)	calcd. [M]	retention time (min)	observed [M + Na] ⁺	purity (%)	incl.
1	А	Ph	B01C02E01	>98	96:4	60	481.14	4.50	504.0	95	\checkmark
2	А	<i>p</i> -tolyl	B01C01E02	>98	96:4	47	495.17	4.67	496.1 ^{<i>c</i>}	91	\checkmark
3	А	3,4-di-MeC ₆ H ₃	B01C01E03	>98	88:12	54	495.15	nd	nd	nd	no
4	А	$4-MeOC_6H_4$	B01C02E04	>98	93:7	42	511.15	4.49	534.1	87	\checkmark
5	А	$4-ClC_6H_4$	B01C02E05	>98	90:10	58	515.10	4.71	538.0	99	\checkmark
6	В	Bn	B01C02E06	99	93:7	89	495.15	4.51	518.1	96	\checkmark
7	Е	4-t-butylbenzyl	B01C02E07	99	89:11	95	551.22	5.00	574.0	97	\checkmark
8	В	4-fluorobenzyl	B01C01E08	96	93:7	57	499.13	nd	nd	nd	no
9	В	4-chlorobenzyl	B01C02E09	>98	94:6	57	529.11	4.69	552.0	92	\checkmark
10	В	2-chlorobenzyl	B01C01E10	>98	93:7	58	515.10	nd	nd	nd	no
11	В	4-bromobenzyl 4-	B01C01E11	>98	93:7	67	559.05	nd	nd	nd	no
12	В	methoxybenzyl	B01C01E12	95	92:8	64	511.15	nd	nd	nd	no

13	А	2-naphtyl	B01C01E13	>98	91:9	35	517.14	nd	nd	nd	no
14	В	2-furanyl	B01C01E14	>98	nd	23	471.12	nd	nd	nd	no
15	С	phenethyl	B01C02E15	>98	93:7	77	509.17	4.61	532.1	83	\checkmark
16	С	ethyl	B01C02E16	98	94:6	71	433.14	4.26	456.1	72	\checkmark
17	Е	<i>i</i> -propyl	B01C01E17	70	89:11	74	433.14	nd	nd	nd	no
18	С	<i>n</i> -propyl	B01C02E18	96	95:5	76	447.15	4.42	470.1	55	\sqrt{d}
19	D	<i>t</i> -butyl	B01C01E19	0	nd	0	447.15	nd	nd	nd	no
20	D	2-butanyl	B01C01E20	81	88:12	10	447.15	nd	nd	nd	no
21	Е	isobutyl	B01C02E21	97	93:7	71	461.17	4.55	484.1	99	\checkmark
22	D	<i>n</i> -butyl	B01C02E22	95	93:7	76	461.17	4.62	484.1	83	\checkmark
23	F	isoamyl	B01C02E23	>98	97:3	50	475.19	4.74	498.2	80	\checkmark
24	Е	<i>n</i> -pentyl	B01C02E24	86	92:8	72	475.19	4.78	498.1	45	\sqrt{d}
25	F	<i>n</i> -hexyl	B01C02E25	95	95:5	59	489.20	4.92	512.1	88	\checkmark
26	D	<i>n</i> -heptyl	B01C01E26	74	nd	nd	489.20	nd	nd	nd	no
27	D	<i>n</i> -decyl	B01C01E27	69	nd	nd	531.25	nd	nd	nd	no
28	F	cyclopentyl	B01C02E28	96	96:4	66	473.17	4.77	496.1	87	\checkmark
29	F	cyclohexyl	B01C02E29	86	89:11	30	487.19	nd	nd	nd	no
30	С	allyl	B01C02E30	98	97:3	57	445.14	4.36	468.0	99	\checkmark
31	С	MeO ₂ CCH ₂ CH ₂	B01C02E31	89	83:17	83	491.14	nd	nd	nd	no
32	С	<i>t</i> -BuO ₂ CCH ₂ CH ₂	B01C02E32	95	89:11	69	533.19	nd	nd	nd	no

^{*a*} Crude yield after cleavage.

^{*b*} Short 6-min method; purity observed at λ 210 nm.

 $^{c} [M + H]^{+}$

^d Selection based on ¹H NMR spectrum only.

Experimental Procedures for the Library Tagging and the Split-Pool Library Synthesis

Tagging of the Building Blocks. The individual lanterns were tagged with colored spindles and cogs to encode the building blocks used for each lantern. Tables 14–16 summarize the colors of the spindles and cogs used to encode the allenoic acid and imine building blocks. Because the thiol Michael addition was the last step of the synthesis, tagging for thiols was not necessary. The [3 + 2] and [4 + 2] annulation-based parts of the library were never pooled together. Consequently, there are overlaps of the colors of the spindles and cogs encoding the allenoic acids.

entry	R	allenoic acid	spindle
1	methyl	A02	black
2	<i>t</i> -butyl	A03	red^a
3	phenyl	A04	none
4	ethyl	A05	red^a
5	isopropyl	A06	yellow
6	<i>n</i> -propyl	A07	green
7	<i>n</i> -butyl	A08	blue
8	<i>n</i> -pentyl	A09	natural
9	<i>n</i> -hexyl	A10	brown
10	cyclopentylmethyl	A11	white

Table 14. Tagging for the γ -Substituted Allenoic Acids A(02–11).

^{*a*} The lanterns loaded with **A03** had only red spindles inserted (no cogs to encode imines) because the dihydropyrrole annulation products with **A03** were not pooled with the other annulation products for the thiol 1,4-addition. On the other hand, lanterns loaded with **A05** had red spindles and cogs that encode for imines.

Table 15.	Tagging	for the	α-Substituted	Allenoic Ad	cid Building	Blocks E	B(02-12)
	00 0				C	,	· · · ·

1 4010 101 1455		Thene There Building Bloc		
entry	\mathbf{R}^1	allenoic acid	spindle	cog
1	Ph	B02	-	-
2	2-F-C ₆ H ₄	B03	white	_

3	$3-F-C_6H_4$	B04	yellow	-
4	$3-Cl-C_6H_4$	B05	red	-
5	$3-Br-C_6H_4$	B06	blue	-
6	$3-\text{Me-C}_6\text{H}_4$	B07	green	_
7	$4-F-C_6H_4$	B08	brown	-
8	$4-Cl-C_6H_4$	B09	black	-
9	4-Br-C ₆ H ₄	B10	natural	-
10	$4-\text{Me-C}_6\text{H}_4$	B11	white	red
11	4-t-Bu-C ₆ H ₄	B12	white	blue

Table 16. Tagging for the Imines C(01-46) Used in the [3 + 2] and [4 + 2] Annulations.

entry	Ar	\mathbb{R}^2	imine	color of cog
1	Ph	<i>p</i> -tolyl	C01	red
2	$4-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	C02	yellow
3	$4-\text{EtC}_6\text{H}_4$	<i>p</i> -tolyl	C03	blue
4	$4-MeOC_6H_4$	<i>p</i> -tolyl	C04	red/green
5	$4-EtOC_6H_4$	<i>p</i> -tolyl	C05	yellow/white
6	piperonal	<i>p</i> -tolyl	C06	green
7	$4 - Me_2NC_6H_4$	<i>p</i> -tolyl	C07	-
8	$4-Et_2NC_6H_4$	<i>p</i> -tolyl	C08	-
9	$4-NCC_6H_4$	<i>p</i> -tolyl	C09	white
10	$2-FC_6H_4$	<i>p</i> -tolyl	C10	natural
11	$4-ClC_6H_4$	<i>p</i> -tolyl	C11	brown
12	$3-ClC_6H_4$	<i>p</i> -tolyl	C12	black
13	$3,4-ClC_6H_4$	<i>p</i> -tolyl	C13	red/yellow
14	$4-BrC_6H_4$	<i>p</i> -tolyl	C14	yellow/blue
15	$3-BrC_6H_4$	<i>p</i> -tolyl	C15	blue/natural
16	1-naphthyl	<i>p</i> -tolyl	C16	blue/green
17	2-furyl	<i>p</i> -tolyl	C17	-
18	Ph	<i>p</i> -NO ₂ Ph	C18	-
19	Ph	Me	C19	green/white
20	3,4-MeOC ₆ H ₄	<i>p</i> -tolyl	C20	white/natural
21	2-thiophenyl	<i>p</i> -tolyl	C21	green/brown
22	4-Me-2-furyl	<i>p</i> -tolyl	C22	-
23	$4-FC_6H_4$	<i>p</i> -tolyl	C23	natural/brown
24	4-i-PrC ₆ H ₄	<i>p</i> -tolyl	C24	brown/black
25	3,4,5-MeOC ₆ H ₄	<i>p</i> -tolyl	C25	white/black
26	$3-FC_6H_4$	<i>p</i> -tolyl	C26	black/red
27	$4-ClC_6H_4$	p-ClPh	C27	red/blue
28	$4-ClC_6H_4$	Me	C28	-
29	$4-ClC_6H_4$	o-CO ₂ MePh	C29	yellow/green
30	$4-MeC_6H_4$	p-ClPh	C30	blue/white
31	$4-ClC_6H_4$	o-MeOPh	C31	-
32	1-methylpyrrolyl	<i>p</i> -tolyl	C32	-
33	$3-\text{MeC}_6\text{H}_4$	<i>p</i> -tolyl	C33	green/natural
34	$4-MeOC_6H_4$	o-MePh	C34	black/blue
35	$4-MeOC_6H_4$	Ph	C35	red/white
36	$4-MeC_6H_4$	o-NO ₂ Ph	C36	yellow/natural
37	$4-\text{MeOC}_6\text{H}_4$	<i>p</i> -ClPh	C37	blue/brown

38	$4-\text{MeOC}_6\text{H}_4$	o-tolyl	C38	green/black
39	$3-\text{MeOC}_6\text{H}_4$	<i>p</i> -tolyl	C39	white/red
40	$4-ClC_6H_4$	<i>o</i> -tolyl	C40	white/brown
41	$4-\text{MeC}_6\text{H}_4$	<i>o</i> -tolyl	C41	natural/black
42	$4-\text{MeC}_6\text{H}_4$	o-MeOPh	C42	natural/yellow
43	$4-\text{MeC}_6\text{H}_4$	Ph	C43	brown/red
44	$4-\text{MeC}_6\text{H}_4$	<i>p</i> -NO ₂ Ph	C44	-
45	$4-\text{MeC}_6\text{H}_4$	<i>m</i> -NO ₂ Ph	C45	-
46	$4-\text{MeC}_6\text{H}_4$	Me	C46	black/yellow

Library Synthesis of 30 A01C(01-46). The thirty annulation products selected as indicated in Table 3 constituted the final members of the library.

Library Synthesis of 63 A(02–04)C(01–46). As described in the general procedure for the loading of γ -subsituted allenoic acids, each acid was loaded as follows: 21 lanterns (0.315 mmol) were reacted with 2-chloro-1-methylpyridinium iodide (0.805 g, 3.15 mmol) and 4-substituted buta-2,3-dienoic acid (A02, 0.309 g, 3.15 mmol; A03, 0.442 g, 3.15 mmol, A04, 0.505 g, 3.15 mmol) in the presence of diisopropylethylamine (1.10 mL, 6.3 mmol). After washing, the lanterns were split into 21 vials (three lanterns per vial), corresponding to the 21 selected imines. Following the general procedure for annulation, these lanterns were reacted with the appropriate imine in the presence of PBu₃. When the reaction was complete, the lanterns were washed as described in the general procedure, cleaved, and arrayed into 96-well plates.

Library Synthesis of 147 A(05-11)C(01-46)

Loading of Acids. Following the general procedure for the loading of γ -substitued allenoic acids, 500 tagged lanterns (7.5 mmol) for each acid [**A05** (8.41 g); **A06** (9.46 g); **A07** (9.46 g); **A08** (10.51 g); **A09** (11.57 g); **A10** (12.62g); **A11** (12.47 g)] were placed into an oven-dried 500-mL round-bottom flask. The lanterns were washed with CH₂Cl₂ three times and subsequently rinsed with dry CH₂Cl₂ (1×). 2-Chloro-1-methylpyridinium iodide (19.16 g, 75 mmol) was added, followed by two evacuation/backfill cycles with Ar. A mixture of the 4-substituted 2,3-butadienoic acid and the tautomeric 3-alkynoic acid (75 mmol) was added into the corresponding flasks and dry CH₂Cl₂ (250 mL) was added to dissolve the solids. The lanterns were soaked in CH₂Cl₂ for 30 min. The flasks were then cooled to -78 °C and diisopropylethylamine (26.1 mL, 150 mmol) was added under an Ar atmosphere. After 1 h, the cooling bath was removed and the flasks were flushed with Ar and shaken at room temperature overnight.

Washing and Splitting. The brown solution was removed and the lanterns were washed as follows: THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), CH₂Cl₂ (5×), THF (5×), CH₂Cl₂ (5×), CH₂Cl₂ (5×). (Note: Lanterns were soaked for at least 15 min before changing solvents.) The lanterns were washed

further with THF (5×), CH_2Cl_2 (5×), and toluene (5×) and then they were split into 25 250-mL round-bottom flasks according to the color combination of their cogs.

[3 + 2] Cycloaddition of Lantern-Bound 4-Substituted 2,3-Butadienoates L-A(05–11). For each of the 25 imines, 140 lantern-bound 4-substituted 2,3-butadienoates (15 μ mol/lantern) in a 250-mL round-bottom flask were washed under Ar with dry THF (1 mL/lantern, 5 times) and dry benzene (1 mL/lantern, 5 times). The imine (5 equiv) was added followed by 0.5 equiv of tributylphosphine. The mixture was agitated manually and heated at 60 °C for 5 days. The reaction solution was then removed and the lanterns were washed as follows: toluene, CH₂Cl₂ (5×), THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), toluene, THF (5×), and then left in toluene overnight at 60 °C. Further washing with toluene (5×), THF (5×), DMF (5×), THF (5×), and then left in DMF at 60 °C for 4 h; THF (5×), DMF (5×), THF (5×), DMF, NH₄Cl/H₂O, THF/H₂O, CH₂Cl₂ (5×), toluene, THF (5×), CH₂Cl₂ (5×), THF (5×), CH₂Cl₂ (5×), THF (5×), CH₂Cl₂ (5×), THF (5×), DMF, NH₄Cl/H₂O, THF/H₂O, CH₂Cl₂ for 1 h. (Note: Lanterns were soaked for at least 15 min before changing solvents.) A selection of 147 lanterns were set aside for the cleavage and arraying into 96-well plates.

Washing and Splitting. The lanterns used for the Michael addition were further washed as follows: THF (5×), DMF (5×), THF (5×), CH₂Cl₂ (5×). (Note: Lanterns were soaked for at least 15 min before changing solvents.) The lanterns were further washed with THF (5×), CH₂Cl₂ (5×), and toluene (5×), and were split into 19 250-mL and 12 100-mL round-bottom flasks according to the color combination of their spindles and cogs for the next split step. The lanterns that reacted with the seven thiols E01, E06, E07, E16, E25, E30, and E32 (conditions A on page S22) were all combined in one flask. The lanterns that were treated with the 12 thiols E02, E04, E17, E18, E19, E20, E21, E22, E23, E24, E28, and E29 were divided into a 250-mL flask (for annulation products formed with imines C02, C04, C05, C06, C11, C12, C13, C14, C16, C20, C23, C25, C29, C30, C33, C35, C40, C41; conditions B) and a 100-mL flask (for annulation products formed with imines C01, C03, C09, C10, C24, C27; conditions A).

A(05-11)C(01-46)E(01-32)

Library Synthesis of 3,325 A(05–11)C(01–46)E(01–32). Lantern-bound dihydropyrroles L-A(05–11)C(01–46) (15 μ mol/lantern) were washed under Ar with dry THF (1 mL/lantern, 5 times). The thiol (100 equiv) was added to the lanterns in THF (0.5 mL/lantern) followed by *n*-BuLi (6 or 10 equiv, 1.6 M in hexanes). The mixture was agitated manually at –25 °C for 10 days. The reaction solution was then removed and the lanterns were washed as follows: THF (5×), toluene, CH₂Cl₂ (5×), THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), DMF (5×), THF (5×), CH₂Cl₂ (5×), THF (5×). Further washing with THF (5×), CH₂Cl₂ (5×), THF (5×), CH₂Cl₂ (5×), THF (5×), CH₂Cl₂ (5×), and then left in CH₂Cl₂ for at least 1 h. When the washing was complete, the lanterns were cleaved according to the general procedure and arrayed into 96-well plates.

B01C(01-46)

Library Synthesis of 25 B01C(01–46). According to Table 16, 382 L-series lanterns were tagged (natural spindle was used for B01). Following the general procedure for the loading described earlier, these 382 lanterns (5.73 mmol) were reacted with 2-chloro-1-methylpyridinium iodide (14.7 g, 57.3 mmol) and 2-methyl-buta-2,3-dienoic acid (B01, 5.63 g, 57.3 mmol) in the presence of Et₃N (16.0 mL, 115 mmol). After washing, the lanterns were split into 28 vials, according to the selected imines with which they were to react. Following the general procedure for annulation, these lanterns were reacted with the appropriate imine in the presence of PBu₃ in CH₂Cl₂ at room temperature. After the reaction was complete and the washing performed, the 25 annulation products selected were set aside to be cleaved and arrayed into 96-well plates.

B01C(01-46)E(01-32)

Library Synthesis of 357 B01C(01–46)E(01–32). A set of 17 vials, corresponding to the 17 thiols to be used in the 1,4 addition, were dried and placed under Ar. No tagging was required for the thiols used. Into each of these vials, 21 lanterns of the different annulation products B01C(01-46) selected to undergo the 1,4-addition of thiols were pooled and reacted with the thiols according to the method outlined in the general procedure. Please note the different conditions (A–F) used for the different thiols. After the washing protocol was complete, the 357 lanterns, each containing a different product, were split and cleaved according to the general procedure and subsequently arrayed into 96-well plates.

B(02-12)C(01-46)

Library Synthesis of 341 B(02–12)C(01–46). According to Table 15, 31 lanterns were tagged for each of the 11 allenoic acids (total number of lanterns was 341). A set of 11 vials was dried, flushed with Ar, and charged with the 31 lanterns. The loading with each of the allenoic acids took place according to the general procedure. After washing, the lanterns were pooled and split again into 31 vials corresponding to the 31 imines selected for the annulation with these lantern-bound α -benzyl allenoates. Each vial contained a lantern for each allenoic acid (11 in total). For these series, no separate tagging occurred for the imines. The annulation was performed following the general procedure; after washing, the 341 lanterns, each containing a distinct annulation product, were split, cleaved, and arrayed into 96-well plates.

Global Cleavage and Arraying into 96-Well Plates as 10 mM DMSO Stock Solutions. The 4288 lanterns were inserted into 4288 vials and treated with 2.5% TFA in CH₂Cl₂ for 12 h. The lanterns were then removed and rinsed with CH₂Cl₂. The resulting solution was concentrated and further co-evaporated with CHCl₃ to effectively remove TFA. The cleaved compounds were weighed and redissolved in CHCl₃; a portion (2 µmol) of each compound was transferred to 54 96-well plates (80 compounds per well; two columns of wells in each plate were left empty to accommodate controls in subsequent assays) and the solvents were left to evaporate. The products were redissolved in DMSO and analyzed in the biochemical enzymatic assay for activity against GGTase I.

LCMS Data for Randomly Selected Library Products. Out of 4288 library compounds, 121 compounds were randomly selected and analyzed by LCMS for their identity and purity; 107 (of 121; 88%) compounds indicated the correct identity and 79 compounds (65%) demonstrated >70% purity (UV210).

	product	calcd	retention	observed	. (01)
entry	label	[M]	time (min)	$[M + H]^+$	purity (%)
1	A04C11	453.08	4.252	454.0	100
2	A03C11	433.11	4.462	434.0	100
3	A10C11	461.14	4.795	462.0	100
4	A03C13	467.07	4.651	468.0	90
5	A06C01	385.15	4.041	408.1^{b}	87
6	A06C09	410.13	4.042	411.1	84
7	A08C11	433.11	4.446	434.1	76
8	A03C20	459.17	4.003	460.1	70
9	A07C09	410.13	4.034	411.1	95
10	A08C09	424.15	3.731	446.1^{b}	78
11	A09C09	438.16	4.377	439.1	76
12	A07C13E01	563.08	4.776	564.1	80
13	A05C13E01	549.06	4.646	550.1	82

Table 17. Random Selection of Library Products With the Corresponding LCMS Data.^a

14	A05C14E01	559.05	4.538	560.0	92
15	A06C09E01	520.15	4.384	521.2	82
16	A06C11E01	520.11	4.61	530.1	99
10		529.11	4.01	530.1	00
17	A07CIIE01	529.11	4.627	530.1	90
18	A07C14E01	573.06	4.67	574.1	84
10	A08C00F01	534 16	1 561	535 2	70
19		554.10	4.004	555.2	19
20	A08C13E01	577.09	4.926	600.1°	90
21	A09C11E01	557.15	4.916	_	80
22	A05C11E01	515 1	1 188		75
22	AUSCITEUT	515.1	4.400	-	75
23	A06C09E04	550.16	4.322	-	92
24	A06C11E04	559.13	4.591	560.1	74
25	A06C14E04	603.07	4 638	604 1	87
25		542.15	4.030	544.2	07
26	A06C23E04	543.15	4.4/4	544.2	82
27	A05C16E18	497.17	4.428	498.1	90
28	A05C06E01	525 13	4 345	526.1	80
20	A05C14E02	572.06	1.660	5741	100
29	AUSC14EU2	575.00	4.009	5/4.1	100
30	A05C13E02	563.08	4.787	-	92
31	A05C09E01	506.13	4.276	507.1	71
37	A05C20E01	501.08	1 525		85
32	A03C29E01	507.00	4.525	-	0.5
33	A09CITE19	537.18	4.957	538.2	100
34	A08C14E01	587.08	4.815	588.1	66
35	A05C11E04	545 11	4 491	546	71
26		562.00	1 7 0	540	11
36	A06C13E01	563.08	4./8	564.0	83
37	A06C11E18	495.13	4.617	496.1	70
38	A06C09E28	512 18	4 709	_	80
20	A07C11E20	525.16	1 100	525 0	00 77
39	AU/CIIE29	555.10	4.409	555.2	11
40	A07C03E28	515.22	4.579	516.0	86
41	A05C23E29	505.18	4.548	506.2	84
42	A06C09F29	527.2	4 623	528 5	03
42		527.2	4.721	520.5	25
43	AU6CITE32	581.17	4./31	604.0°	89
44	A06C14E32	625.12	4.771	648.0^{b}	79
45	A06C16E16	497 17	4 4 2 4	498 2	81
15		511.05	1.121	510.0	01
40	AU5C14E10	511.05	4.348	512.0	91
47	A05C04E01	463.15	4.081	464.1	77
48	A06C09E17	486.16	4.3	487.1	70
40	A06C10E17	470.16	1 2 2 5	490.1	72
49		479.10	4.333	400.1	75
50	A05C05E01	524.16	3.942	524.2	83
51	A06C09E23	514.2	4.602	515.2	83
52	408C09E20	514.2	4 621	537 4^{b}	63
52		105.10	4.541	106.1	05
53	A05CITE20	495.13	4.541	496.1	/1
54	A07C14E32	625.12	4.488	625.4	76
55	A07C03	413.17	4.355	414.1	81
56	A00C03	441.2	4 605	442.2	80
50		441.2	4.075	442.2	02
57	AIUC03	455.21	4.866	478.2	84
58	A03C01	399.15	4.223	400.1	79
59	A03C10	417 14	417	418.0	87
<i>.</i> ,	A 02C12	T1/.1T 100 11	T.17 A A10	4EC 1b	07
60	AUSC12	433.11	4.418	450.1	83
61	A03C26	417.14	4.287	418.0	79
62	A03C27	453.06	4 558	454.0	77
63	A03C30	122.00	4 452	156 8 ^b	03
05	AUSCOU	433.11	4.432	430.8	93
64	A03C41	413.17	4.415	414.1	76
65	A07C41E01	509.17	4.588	510.1	48
66	A06C14F01	573.06	4 65	nd	51
67	A 07C 22E01	510.14	4 400	514.0	51
0/	AU/CZ3EUI	515.14	4.489	514.2	51
69	A09C13E01	591.11	-	-	-
70	A09C14E01	601.1	_	_	_
71	A 10C1/E01	615 11			
/1	AIUCI4EUI	013.11		-	_
72	A05C21E22	451.15	4.219	-	42
73	A06C14E18	539.08	4.586	563.0^{b}	51
74	A08C09F04	564 18	4 509	565.2	61
7 - T		507.10	т.ЈО2	505.2	01
15	A09C11E25	565.21	-	_	—

76	A10C14E25	623.17	-	_	_
77	A08C14E25	595.14	_	_	_
78	A08C11E25	551.19	-	-	_
79	A07C11E25	537.18	_	_	_
80	A06C11E25	537.18	_	-	_
81	A05C14E30	523.05	4.406	524.0	44
82	A09C09E30	512.18	4.389	535.2^{b}	35
83	A09C11E30	521.15	-	-	_
84	A10C11E30	535.16	-	-	_
85	A05C09E07	576.21	4.426	599.3 ^{<i>b</i>}	48
86	A09C16E01	573.2	_	_	_
87	A09C09E01	548.18	4.720	571.2^{b}	59
88	A09C20E01	583.21	4.606	584.2	48
89	A10C11E01	571.16	_	_	_
90	A10C09E01	562.2	4.875	564.2	55
91	A11C06E01	579.17	4.72	580.2	52
92	A11C09E01	560.18	4.727	nd	53
93	A11C13E01	603.11	-	-	-
94	A05C11E07	585.18	-	-	-
95	A09C11E16	509.15	-	-	-
96	A06C14E17	539.08	4.575	540.0	65
97	A05C09E16	458.13	4.064	481.1^{b}	39
98	A05C09E17	472.15	4.179	473.1	55
99	A07C04E19	505.2	4.467	nd	57
100	A05C11E24	509.15	4.719	510.1	54
101	A05C09E21	486.16	4.343	487.1	50
102	A05C30E20	495.13	4.585	496.0	59
103	A09C35E19	519.21	4.671	520.0	56
104	A10C09E24	556.24	-	-	-
105	A10C14E23	609.16	-	-	-
106	A05C13E22	529.09	4.716	530.0	38
107	B01C04	387.11	3.783	410.1°	90
108	B02C09	458.13	4.016	481.1	93
109	B04C39	481.14	4.150	504.1°	91
110	B06C05	555.07	4.433	580.00	98
111	B07C10	465.14	4.226	488.1°	99
112	B08C43	451.13	4.238	474.0°	98
113	B10C26	529.04	4.372	552.0°	97
114	B11C21	453.11	4.207	476.0°	69
115	B12C09	514.19	4.521	537.3°	99
116	B01C01E06	481.14	4.377	504.0°	78
117	B01C01E18	433.14	4.252	456.1°	56 ^c
118	B01C02E04	511.15	4.462	534.1°	70
119	B01C03E01	495.15	4.623	518.1 ^b	87
120	B01C30E09	549.06	4.747	572.0°	57
121	B01C35E02	497.13	4.323	520.1 ^{<i>b</i>}	90

^{*a*} Short 6-min method; purity observed at λ 210 nm.

 $^{b} [M + Na]^{+}$

^c Major byproduct is the retro-Michael product, formed on the LCMS column. ¹H NMR spectra verified the correct identity of the compounds.

Bioassays Using 4,288 GGTI Analogs

Filter Binding Assays to Identify GGTIs With Improved Efficacy and Determination of IC_{50} . The percentage activities of GGTase-I for protein K-Ras4B or RhoA in the presence of the 4288 compounds were determined as follows: We first prepared the working solution that contained each compound in DMSO at a concentration of 1 mM. The working solution was added to the GGTase I reaction mixture so that the final concentration of the compound was 50 μ M. The GGTase-I activity was assayed by incubating [³H]GGPP with K-Ras4B or RhoA protein in the presence of GGTase-I and examining the radioactivity incorporated into the substrate protein by spotting onto a filter paper. After washing with trichloroacetic acid (TCA), ethanol, and acetone, the radioactivity retained on the

filter was determined using a scintillation counter. The GGTase-I activity in the presence of DMSO was taken as a 100% value and the activity in the presence of the compound is presented as a percentage activity relative to the 100% value. Compounds 22 and 23 were identified as the best inhibitors of GGTase I. The dose dependency of the inhibition of the two compounds 22 and 23 is shown in Figure S4. The IC₅₀ values for the inhibition of GGTase-I using RhoA as a substrate were 0.5 and 0.3 μ M for 22 and 23, respectively.

Figure S4. Dose dependency of GGTase-I activity in the presence of compounds 22 or 23.

Measurement of Specificity. The specificity of the GGTase-I inhibition by **22** and **23** was examined. As is evident from Figure S5, no inhibition of FTase activity was caused by any of these compounds, even when the concentration was increased to 100 μ M. The farnesyltransferase (FTase) inhibitor BMS225975, used as a control, inhibited FTase but did not inhibit GGTase-I. The GGTase-I inhibitor GGTI-298 inhibited GGTase-I, whereas little inhibition was observed with FTase.

Figure S5. Effects of compounds 22 and 23 on the enzymatic activity of GGTase-I (black) and FTase (white). Data represent the mean \pm S.D. of measurements from three independent experiments.

Protein Geranylgeranylation Assay. Human embryonic kidney-293 (HEK293) cells were transfected with pCDNA3-mycHARheb (M184L) mutant ¹¹ using the Polyfect transfection reagent (Qiagen, Chatsworth, CA). Cells were cultured in DMEM plus 10% (v/v) fetal bovine serum overnight, and then DMSO, GGTI-298 (10 μ M; Calbiochem, La Jolla, CA), GGTI-2166 (10 μ M; obtained from Dr Said Sebti, University of South Florida),¹² and

¹¹ Gau, C. L.; Kato-Stankiewicz, J.; Jiang, C.; Miyamoto, S.; Guo, L.; Tamanoi, F. Mol. Cancer Ther. 2005, 4, 918.

¹² Sun, J.; Blaskovich, M. A.; Knowles, D.; Qian, Y.; Ohkanda, J.; Bailey, R. D.; Hamilton, A. D.; Sebti, S. M. *Cancer Res.* **1999**, *59*, 4919.

compound **22** or **23** (25 μ M) were added. Incubation was continued for 48 h. The cells were harvested and lysed in lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 1x Protease Inhibitor Cocktail). Lysates (10 μ g) were electrophoresed on a 10% SDS-PAGE, transferred to nitrocellulose membranes and immunoblotted with anti-myc 9B11 antibody (Cell Signaling, Beverly, CA). The descriptors P and U in Figure S6 indicate the processed and unprocessed Rheb, respectively. Data are representative of two independent experiments.

Figure S6. Effects of compounds 22 and 23 on Rheb-CVSL processing in HEK293 cells.

Figure S7. Structures of GGTI-298, GGTI-2166, and GGTI-DU40.