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Depedence of Fc on dt for the Model System

Supporting information (SI) Fig. S1 shows how the F¢ changes
with the value of dr = 2°. . .2%0 for the model system in Fig. 1. At
small df, consecutive F¢ values are displaced by a constant
distance of AF = kT In(V2) = 0.25In(2) ~ 0.17 as expected for
diffusive motion. As dt increases, AF for the local minima
becomes notably larger than 0.17. This can be understood by
assuming that the average distance that the system jumps during
dt is no longer determined by diffusive motion but, rather, by the
size of the basin; this limit is valid for times dt ~ Ax?/D ~ 1/0.005.
For steps with constant length, Fc is proportional to ~1/dt; that
is, AF = kT In(2) = 0.5In(2) =~ 0.34. At the same time, when the
step becomes larger than the size of the transition-state region,
multiple recrossing events are no longer registered and the
dynamics of the transition between basins is in the “ballistic”
regime so that F¢ is constant, which remains valid for times less
than mean transition time between basins. On still-longer time
scales, when the two basins essentially join into one, the whole
picture repeats; that is, initially one sees an indication of diffusive
motion (AF ~ 0.17) over a smooth “averaged” profile (1) and on
still-longer time scales the size of the jumps are limited by the size
of system (AF ~ 0.34).

Relation to the Rhee and Pande Approach

Recently, Rhee and Pande (2) presented an approach to trans-
form the Fy along psoia (commitor) as the reaction coordinate to
a coordinate for which the diffusion coefficient is constant (i.e.,
the “natural coordinate,” as defined above). Because their
method and the present approach must give the same answer for
Prola as the reaction coordinate, the Fy along proa uniquely
defines the F¢. To demonstrate this point, we use the notation
used in ref. 2. Consider a one-dimensional system performing
diffusive motion with a diffusion coefficient D(x) on potential
U(x). For the profile expressed in terms of the original coordinate
x, we have Zy(x) = ¢ PU® and Zc(x) = Zu()(Dx)dy/w)'? =
(D(x)dt/m)?e=PUE), as shown above. The proiq reaction coordinate
for a one-dimensional system as a function of x is (2)
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The Zy as a function of pyoq as the reaction coordinate is equal
to

Z1(pio) = Zu(x(Proia))/(dprotaldx) = c¢D (x(porg) e~ >PUEPE0),
where ¢ = J2 1/D(x)ePU® is a constant. For the Fc, one obtains
Zc(prowa) = Zc(x(proa)) = (D (x(prog) dt/ ) /2 ~ U P

= (df/ﬂ'/C)UZ\ZH(Pfold);

that is, the Z¢ is equal to the square root of Zy multiplied by
a constant, if they are both computed along p¢,4. The equation
for the natural coordinate dy/dptoida = Zu(ptoid)/Zc(Prold) ~
\/ZH(pfold) ~ Zc(prola), which corresponds to equation 19 of
ref. 2. Although the method of Rhee and Pande leaves the
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diffusion constant undetermined (they suggest determining it
by examining the correlation function of the dynamics (3, 4)
projected on the transformed coordinate (where the diffusion
coefficient is constant), the approach presented here allows
one to determine the profile together with the diffusion
coefficient. Moreover, the method can be applied to any
reaction coordinate, whereas that of Rhee and Pande is limited
to the use of pgoiq as the reaction coordinate, an important case,
for which the Fy completely specifies the Fc.

Related Formulations

A number of papers (5-7) concerned with reactions have
introduced alternative forms of the free energy expressed as a
function of a chosen coordinate, the so-called reaction coordi-
nate. That these alternatives are meaningful for a “reduced” free
energy contrasts such a quantity with the free energy difference
between two thermodynamically stable states; the latter is
unique and independent of the choice of the measurement path
between the two states. Such reduced path-dependent free
energies were first introduced very early in the development of
transition-state theory, which is based on defining an optimal
dividing surface between reactants and products. In particular,
in reference to transition-state theory (5), two free energies have
been considered, one identical to Fy(g) and the other with
“dynamical” aspects related to but different from F¢(q).

Most germane to the present development is an E and
Vanden-Eijnden paper (6). One of the free energies of ref. 6
[F(g)] is the same as used by us (Fp), but the other [G(g)] of ref.
6 and the F¢ of our paper are not. The more standard “free
energy”’ Fr(q), where g is the reaction coordinate, is defined in
terms of the relative probabilities of the values of g. The other
free energy, Fc(q), is defined as the number of transitions
through a given point ¢ (surface in the multidimensional case)
during the time interval d¢. The relation between F¢ and Fy is
exp(—BFc(g)) = VD(q)dt/m exp(—BFru(g)), where D(q) is a
coordinate-dependent diffusion coefficient. The “correspond-
ing” quantity of that in ref. 6, termed G(g), is defined via an
integral (equation 47 in ref. 6), which for the one-dimensional
case is exp(—BG(q)) = CHg/dxCexp(—BF(q)) (equation 48 in ref.
6) with [lq/dx0 a Jacobian factor that makes G(g) gauge-
invariant, as is Fc(q). Implicitly, E and Vanden-Eijnden assume
a constant diffusion coefficient, as can be seen by comparing the
equations; the value of the constant diffusion coefficient is not
determined by their approach. The F¢(gq) takes into account the
coordinate-dependent diffusion coefficient and, with a knowl-
edge of Fy, makes possible the evaluation of that diffusion
coefficient, thus completely determining the kinetics. This is the
essential difference between the two developments. Moreover,
this is why the development in our paper is more fundamental
than what is presented by E and Vanden-Eijnden.

F¢ and Fy are computed directly from the time series of the
reaction coordinate evaluated with a given time scale. This is
done irrespective of the precise formulation of the dynamics in
the original space [what makes it more general than G(g)], which
is valid only for Langevin dynamics. In particular, we have
applied F¢ to analyze Hamiltonian dynamics of a dipeptide in the
diffusive regime, whereas G(g) cannot be used for that. E and
Vanden-Eijnden state: “The main remaining theoretical diffi-
culty is associated with pure Hamiltonian dynamics. This is the
case of most practical interest. We hope that some of the notions
reviewed here can at least serve as a starting point for developing
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approximations for transition pathways and transition rates in
that case.”

One could consider G(g) as a limiting case of F¢(q), for a
constant diffusion coefficient and Langevin dynamics, even
though it does not allow one to determine the diffusive constant.
In this case, D(q) = D(x)(dq/dx)> = D(dq/dx)? and
exp(—BFc(q)) = VD(q)dt/mexp(—BFu(g)) = VDdi/m X Lg/
dxOexp(—BFu(q)) so that G(q) = Fc(q) + log(Ddt/m)/2p3 [i.e., in
this limiting case, G(q) and F¢(q) differ just by the constant].

Transformation to the natural coordinate we introduce is a
more general concept compared with the transformations de-
scribed by equations 81 and 88 in ref. 6, because it will “undo”
the possible coordinate dependence of the diffusion coefficient.

Apart from the fact that we consider general dynamics and
introduce a coordinate-dependent diffusion coefficient, there is
another major difference between the two formulations for the
“variational” reaction coordinate. In section 11 of ref. 6 it is
assumed that pgoig (equation 96) is the correct reaction coordi-
nate and that one then only has to find the functional whose
minimum has equation 96 as the solution. Thus, in the variational
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formulation of E and Vanden-Eijnden one tries to approximate
Prola but not necessarily the true reaction coordinate. In our
variational principle, we make no assumptions about the nature
of the reaction coordinate. It should be noted, also, that E and
Vanden-Eijnden state: “Another nice property of the solution of
(96) offers possible ways of generalizing the concept to other
type of dynamics or to use more than one reaction coordinate.”
The set of other dynamics seems to be rather restricted, because
equation 96 implicitly assumes that the diffusion coefficient is
constant, as does equation 99 (6). For the case of Hamiltonian
dynamics, the diffusion coefficient is not known a priori and
should be determined on the basis of dynamics, as we do.

We also would like to add something to the debate in the
mentioned articles about which of F¢ (G(q)) or Fy (F(q)) is the
“true” free energy. F¢ is invariant with respect to nonlinear
transformations, which allows one to correctly locate the tran-
sition state and partition the FES into basins. However, one has
to use Fpy to correctly describe equilibrium probabilities and
define the kinetics as diffusion on the (Fy) profile with the
transformed diffusion coefficient. This is why the natural coor-
dinate, for which the two profiles are identical, is useful.
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Fig. S1.  Fc(x) at various quench time intervals dt = 2°. . .220 for the model system.
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