Supporting Information

Menconi et al. 10.1073/pnas.0806584105

SI Text

SANG SANG

Direct Sequencing of Exon 2 of the Human HLA-DRB1 Gene. Genomic DNA was amplified and sequenced using allele specific primers as shown in Table S5. PCRs were performed in a $20-\mu$ l reaction mixture containing 50 ng genomic DNA; 5 pmol of each primer; PCR buffer containing 50 mmol/L KCl, 10 mmol/liter Tris-HCl (pH 8.3), 2.25 mmol/liter MgCl₂, 200 mmol/liter each of deoxy (d)-ATP, dGTP, dTTP, and dCTP, and 1 unit of AmpliTaq

DNA polymerase (PE Applied Biosystems). Reaction mixtures were heated to 94°C for 7 min and then cycled 30 times as follows: 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C. The PCR products were sequenced using the same allele-specific primers used for amplification (Table S5). Sequencing was performed using the ABI Big Dye DNA sequencing kit (Applied Biosystems), and the sequencing products were separated on an ABI-3130 automated sequencer (PE Applied Biosystems).

Fig. S1. Structural models of EAT-susceptible and -resistant I-E. (*A*) EAT-susceptible I-E (β 71 Lys). (*B*) EAT-resistant I-E (β 71 Glu). (*C*) EAT-resistant I-E (β 71 Ala). The electrostatic potential was computed in each system to characterize the surface properties of the molecule. The differences are considered to be relevant to the predisposition to EAT. The peptide-binding groove is shown with the moth cytochrome *c* peptide. Significant differences were observed in P1 and P4 pockets (shown in green circles and yellow ellipses, respectively). In EAT-resistant I-E, both the P1 and P4 pockets are larger in size. Thus, EAT-inducing peptides might bind to these larger pockets, but they are more likely to dissociate from MHC.

DNA Nd

S. A

Fig. S2. Power calculation curves calculated for our study dataset of 94 patients and 149 controls. The *x*-axis shows the expected odds ratios (ORs), and the *y*-axis shows the power of the study. Each curve was calculated for a different minor allele frequency of the tested allele in the control population. The power curves show that our study had 80% power to detect a difference between the patients and the controls resulting in $OR \ge 2.2$ with an alpha of 0.05; our study had 90% power to detect a difference between the patients in $OR \ge 2.43$ with an alpha of 0.05. Therefore, our study was adequately powered to detect significant associations of HLA-DR amino acid variants with HT.

DNAS

Table S1. HLA-DR typing in HT patients and controls

	HT (%)	Controls (%)	
HLA-DR	<i>n</i> = 94	<i>n</i> = 153	P value
1	15 (8)	44 (14.4)	0.02
2	22 (11.7)	34 (11.1)	NS
3	29 (15.4)	22 (7.2)	$2 imes10^{-3}$
4	37 (19.7)	43 (14.1)	0.06
7	17 (9)	28 (9.2)	NS
8	3 (1.6)	17 (5.6)	0.03
9	0 (0)	4 (1.3)	NS
10	4 (2.1)	9 (2.9)	NS
11	38 (20.2)	51 (16.7)	NS
12	1 (0.5)	5 (1.6)	NS
13	18 (9.6)	37 (12.1)	NS
14	4 (2.1)	12 (3.9)	NS

NS, not significant.

Table S2. Polymorphic HLA-DR amino acid residues in HT patients and controls

Amino acid		Patients (%)	Controls (%)	
position	Amino acid variants	n = 188	n = 298	P value
26	Tyrosine	34 (18)	24 (8.1)	$6.9 imes10^{-4}$
	Others	154 (82)	274 (91.9)	
28	Aspartic acid	136 (72.3)	191 (64.1)	0.06
	Others	52 (27.7)	107 (35.9)	
30	Tyrosine	149 (79.3)	192 (64.4)	$7.5 imes10^{-4}$
	Others	39 (20.7)	106 (35.6)	
32	Tyrosine	120 (63.8)	187 (62.8)	Not significant
	Others	68 (36.2)	111 (37.2)	
37	Tyrosine	81 (43.1)	103 (34.6)	0.06
	Others	107 (56.9)	195 (65.4)	
47	Tyrosine	99 (52.7)	188 (63.1)	0.02
	Others	89 (47.3)	110 (34.6)	
57	Aspartic acid	149 (79.3)	227 (76.2)	Not significant
	Others	39 (20.7)	71 (23.8)	
67	Phenylalanine	32 (17)	39 (13.1)	Not significant
	Others	156 (20.7)	259 (86.9)	_
70	Glutamine	124 (66)	161 (54)	$4.3 imes10^{-3}$
	Others	64 (34)	137 (46)	
71	Lysine	89 (47.3)	69 (23.2)	$1.7 imes10^{-8}$
	Others	99 (52.7)	229 (76.8)	
74	Arginine	27 (14.4)	14 (4.7)	$1.5 imes10^{-4}$
	Others	161 (85.6)	284 (95.3)	
77	Threonine	139 (73.9)	218 (73.2)	Not significant
	Others	49 (26.1)	80 (26.8)	_
86	Valine	91 (48.4)	141 (47.3)	Not significant
	Others	97 (51.6)	157 (52.7)	-

Table	S3.	Polymorphic	I-E	amino	acid	residues	in	strains	of	mice	susceptible	and	resistant	to	E/	41
-------	-----	-------------	-----	-------	------	----------	----	---------	----	------	-------------	-----	-----------	----	----	----

Amino acid		Susceptible mice (%)	Resistant mice (%)
position	Amino acid variants	<i>n</i> = 12	<i>n</i> = 10
6	Tryptophan	12 (100)	6 (60)
	Arginine		4 (40)
9	Glutamic acid	12 (100)	9 (90)
	Glycine		1 (10)
10	Tyrosine	12 (100)	10 (100)
11	Cysteine	12 (100)	7 (70)
	Valine		3 (30)
12	Lysine	11 (92)	6 (60)
	Threonine	1 (8)	4 (40)
23	Arginine	12 (100)	7 (70)
	Histidine		3 (30)
26	Leucine	11 (92)	5 (50)
	Phenylalanine	1 (8)	5 (50)
28	Glutamic acid	1 (8)	8 (80)
	Valine	11 (92)	
	Lysine		1 (10)
	Aspartic acid		1 (10)
30	Tyrosine	12 (100)	7 (70)
	Phenylalanine		3 (30)
31	Phenylalanine	12 (100)	7 (70)
	Isoleucine		3 (30)
34	Leucine	12 (100)	6 (60)
	Arginine		4 (40)
37	Asparagine	12 (100)	9 (90)
	Tryptophan		1 (10)
38	Leucine	12 (100)	9 (90)
	Valine		1 (10)
47	Phenylalanine	12 (100)	6 (60)
	Tvrosine		4 (40)
51	Threonine	12 (100)	10 (100)
57	Aspartic acid	12 (100)	9 (90)
	Glutamic acid		1 (10)
63	Serine	12 (100)	9 (90)
	Arginine		1 (10)
67	Phenylalanine	11 (92)	5 (50)
	Isoleucine	1 (8)	5 (50)
68	Leucine	12 (100)	10 (100)
70	Glutamine	12 (100)	7 (70)
	Aspartic acid		3 (30)
71	Lysine	11 (92)	6 (60)
	Arginine	1 (8)	1 (10)
	Glutamic acid/Alanine		3 (30)
74	Glutamic acid	10 (83)	5 (50)
	Alanine	2 (17)	2 (20)
	Serine		3 (30)
78	Valine	10 (83)	5 (50)
	Tyrosine	2 (17)	5 (50)
81	Histidine	11 (92)	10 (100)
	Arginine	1 (8)	
86	Serine		9 (100)
	Phenylalanine	10 (83)	1 (10)
	Leucine	2 (17)	
88	Lysine	2 (17)	9 (100)
	Asparagine	10 (83)	1 (10)
92	Arginine	3 (25)	9 (100)
	Proline	9 (75)	1 (10)
			. (10)

Table S4. List of EAT-associated amino acid residues in I-E, their positions in peptide-binding pockets, and changes upon amino acid substitutions

Residue*	MHC pocket ⁺	Susceptible	Resistant	Changes [‡]
β26	P4 (bottom)	Leu	Phe	Larger in size
		(P = 0.03)	(P = 0.03)	-
β28	P4 (bottom)	Val	Glu¶	Negative, polar
	P6 (bottom) [∥]	(P = $1.8 imes 10^{-5}$)	(P = 6.6 $ imes$ 10 $^{-4}$)	
β30	P6 (bottom)	Tyr	Phe	Loss of -OH
		(P = 0.04)		
β71	P4 (side)	Lys [§]	Glu¶/Ala	Smaller in size
		(P = 0.04)	(P = 0.04)	negative/uncharged
β74	P4 (side)	Glu¶	Ser	Smaller in size
		(<i>P</i> = 0.03)	(<i>P</i> = 0.03)	uncharged
β86	P1 (bottom)	Phe	Ser	Smaller in size polar
		$(P = 6.1 \times 10^{-4})$	$(P = 1.9 imes 10^{-5})$	
β88	P1 (side)	Asn	Lys [§]	Larger in size positive
		(P = 6.1 $ imes$ 10 ⁻⁴)	$(P = 6.1 \times 10^{-4})$	

*The five residues shown in bold (β 28, β 30, β 71, β 86, and β 88) interact directly with the antigenic peptide.

[†]The location of amino acid in MHC pocket is described in parentheses, such as bottom, side, and above.

⁺The changes described here reflect the change in the amino acid residue itself (resulting from the amino acid substitution from EAT-susceptible to -resistant residue), not the changes in MHC pocket. Blue, positive charge; red, negative charge.

§Positive charge.

[¶]Negative charge.

Partially.

Table S5. Primers used for direct sequencing of exon 2 of the human HLA-DRB1 gene

HLA-DR	Forward	Reverse	Size, bp
1	TTCTTGTGGCAGCTTAAGTT	CCGCTGCACTGTGAAGCTCT	266
2	TTCCTGTGGCAGCCTAAGAGG	CCGCTGCACTGTGAAGCTCT	266
3	TGGAGTACTCTACGTCT	CAACCCCGTAGTTGTGTCTG	234
4	GTTTCTTGGAGCAGGTTAAAC	CCGCTGCACTGTGAAGCTCT	266
7	CCTGTGGACAGGGTAAGTATA	CCGTAGTTGTGTCTGCACAC	266
9	AACCACGTTTCTTGAAGCAGGA	CCGTAGTTGTGTCTGCACAC	266
10	CCGTTGCTGGAAAGACGCG	CCGCTGCACTGTGAAGCTCT	266
11, 12, 13, 14	AGTGTCTTCTCAGGAGGCCG	TCACAGGGACTCAGGCCCCG	359