Supporting Information

Schupf et al. 10.1073/pnas.0805902105

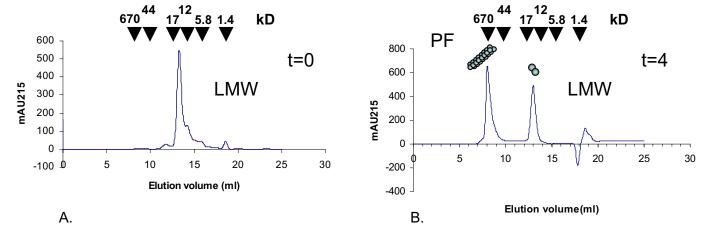


Fig. S1. Separating protofibrillar $A\beta42$ and low molecular weight (LMW) $A\beta42$. To purify the protofibrillar form of $A\beta$ from the LMW proteins, samples were fractionated with an AKTA chromatography system by using a Superdex 75 size-exclusion column. (A) Without incubation, the $A\beta42$ synthetic peptides migrate as a LMW form at room temperature. (B) After a 4-h incubation at room temperature, the $A\beta42$ synthetic peptides migrate as a high-molecular weight protofibrillar fraction.

				BIAG	BIACORE Binding Assay		
Name	source	epitope	isotype	LMW	PF	Ratio(PF/LMW)	
13C3	Ravetch	structure	IgG₁	9.8	51.6	5.3	
19A6	Ravetch	NT	IgG_3	2.3	13.3	5.8	
1D1	Ravetch	structure	IgG₁	NT	NT	NT	
4G8	Seneteck Inc.	Αβ 17-22	lgG2 _b	75.1	33.4	0.4	
6E10	Seneteck Inc.	Αβ 3-8	lgG2 _b	28.2	28.5	1.0	
3D6	Lilly	Αβ 1-5	lgG2 _b	312.0	234.6	8.0	

Fig. S2. Specificity of monoclonal antibodies to the protofibrillar form of $\Delta\beta42$ using surface plasmon resonance (Biacore). The purified monoclonal antibodies listed were immobilized to a Biacore sensor chip. The high sensitivity of the Biacore optical response quantified a change in reflectivity, and a baseline response for the ligand alone was generated. The interaction analysis was performed as the analytes, the LMW form or the PF form of $\Delta\beta42$, were injected in solution over the sensor chip and the change in surface plasmon resonance generated a response identifying the specificity of each antibody's ability to bind LMW and PF $\Delta\beta42$. Both the 13C3 and the 19A6 antibodies bound the PF form of $\Delta\beta42$ with higher specificity than the LMW form. The other commercial antibodies showed higher specificity for the LMW $\Delta\beta42$ over the PF form of $\Delta\beta42$.

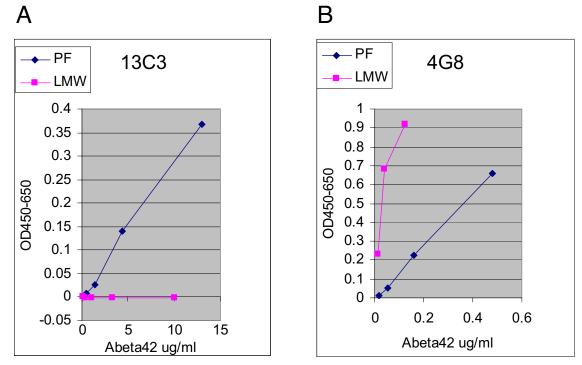


Fig. S3. The protofibrillar (PF) and the LMW forms of the A β 42 peptide were used to test the specificity of the 13C3 antibody in antibody-capture immunoassays. 3D6 was used as the capture antibody in these experiments. (*A*) The plot generated from the ELISA data showed that the 13C3 antibody is specific for the protofibrillar form of A β 42 and does not recognize the LMW forms of the protein. (*B*) The ELISA data, with the commercially available 4G8 antibody, showed that it recognized both the LMW and the protofibrillar forms of the A β 42 protein.