Structure of the 1,N²-Etheno-2'-deoxyguanosine Adduct in Duplex DNA at pH 8.6[†] <u>Revised Manuscript</u> <u>Supporting Information</u>

Ganesh Shanmugam[‡], Angela K. Goodenough[‡], Ivan D. Kozekov[‡], F. Peter Guengerich¹¹, Carmelo J. Rizzo[‡], and Michael P. Stone^{*,‡}

Departments of Chemistry and Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235

[‡]Department of Chemistry
[†]Department of Biochemistry
*Author to whom correspondence should be addressed. (615) 322-2589; (615) 322-7591 (FAX); michael.p.stone@vanderbilt.edu
Running Title: 1,N²-ɛdG Adduct in Duplex DNA

[†]We congratulate Professor Lawrence J. Marnett upon the occasion of his sixtieth birthday.

Table S1. Non-exchangeable Proton Chemical Shifts ^a of $1, N^2$ - ε dG duplex in D ₂ O ^b at p	Η
8.6, 7 °C.	

Nucleotide	H8	H6	H1′	H2′	H2"	H3′	H5/H2/CH ₃
C^1		7.68	5.78	2.03	2.46	4.75	5.94
G ²	8.02		5.94	2.72	2.79	5.02	
C ³		7.44	5.65	2.13	2.44	4.89	5.49
A^4	8.37		6.24	2.68	2.91	5.02	7.22
T^5		7.06	5.78	1.74	2.09	4.79	1.50
X6	7.94		5.12	2.34	2.14	4.83	
G ⁷	7.84		5.45	2.74	2.77	5.02	
A ⁸	8.18		5.92	2.77	2.87	5.08	7.22
A ⁹	8.19		6.22	2.60	2.93	5.00	7.75
T^{10}		7.18	5.92	2.09	2.50	4.87	1.33
C ¹¹		7.59	6.06	2.23	2.50	4.85	5.65
C ¹²		7.67	6.26	2.28	2.28	4.59	5.77
G ¹³	7.88		5.67	2.56	2.74	4.85	
G^{14}	7.89		5.69	2.74	2.83	5.06	
A ¹⁵	8.29		6.33	2.74	2.99	5.08	7.89
T ¹⁶		7.23	6.00	2.03	2.60	4.89	1.33
T ¹⁷		7.39	6.10	2.13	2.52	4.98	1.56
C ¹⁸		7.66	6.14	2.36	2.40	4.96	5.77
C ¹⁹		7.63	6.04	1.91	2.25	4.79	5.79
A ²⁰	8.51		6.31	2.81	3.01	5.06	7.54
T^{21}		7.14	5.73	2.07	2.42	4.89	1.42
G ²²	7.91		5.86	2.64	2.70	4.98	

C ²³		7.40	5.77	1.93	2.36	4.85	5.43
G ²⁴	7.98		6.18	2.38	2.64	4.71	

^a Values in parts per million. ^b10 mM phosphate buffer in D₂O, 100 mM NaCl, pH 8.6. Etheno protons H7 and H6 observed at 6.54 and 6.21 ppm, respectively.

Base Pair	$C N^4 H_{nhb}$	C N ⁴ H) _{hb}	G N1H	T N3H
$C^1 \bullet G^{24}$	7.14	8.17		
$G^2 \bullet C^{23}$	6.67	8.48	13.1	
$C^{3} \bullet G^{22}$	6.60	8.40	12.7	
$A^{4\bullet}T^{21}$				13.5
$T^5 \bullet A^{20}$				13.4
X ⁶ •C ¹⁹	nd	nd	nd	
$G^{7} \bullet C^{18}$	6.91	7.97	12.0	
$A^{8} \bullet T^{17}$				13.8
A ⁹ •T ¹⁶				13.7
$T^{10} \bullet A^{15}$				13.6
$C^{11} \bullet G^{14}$	6.71	8.40	12.8	
$C^{12} \bullet G^{13}$	7.17	8.33		

Table S2. Exchangeable Proton Chemical Shifts^a of $1,N^2$ - ε dG duplex in H₂O^b at pH 8.6, 7 °C.

^a Values in parts per million. ^b10 mM phosphate buffer in H₂O, 100 mM NaCl, pH 8.6. nh and nhb refer to the hydrogen-bonded and non-hydrogen bonded cytidine amino protons, respectively. nd, not detected. **Table S3.** Distribution of Experimental NOE Restraints Among Nucleotide Units of the 1,*N*²-εdG duplex^a in D₂O Buffer at pH 8.6.

Nucleotide	Number of Restraints								
Nucleonide	intra-nucleotide	inter-nucleotide ^b	Cross-strand	Total					
C ¹	20	4	0	24					
G ²	7	13	0	20					
C ³	9	14	0	24					
A^4	9	15	1	25					
T ⁵	12	13	0	25					
X ⁶	11	6	6	23					
G ⁷	7	7	0	14					
A ⁸	10	9	0	19					
A ⁹	9	15	2	26					
T ¹⁰	10	17	0	27					
C ¹¹	9	13	1	23					
C ¹²	8	6	0	14					
G ¹³	16	3	0	19					
G ¹⁴	8	7	0	15					
A ¹⁵	11	15	2	28					
T ¹⁶	10	21	0	31					
T ¹⁷	8	16	1	25					
C ¹⁸	6	8	0	14					
C ¹⁹	11	7	2	20					
A ²⁰	11	16	1	28					
T ²¹	9	14	0	23					
G ²²	7	11	0	18					

 C²³
 9
 13
 0
 22

 G²⁴
 9
 5
 0
 14

^aNucleotides $C^1 \rightarrow C^{12}$ and $G^{13} \rightarrow G^{24}$ are in the modified and complimentary strand, respectively. ^bThe internucleotide NOEs includes both 3'- and 5'-neighbors.

Figure S1. NOE cross peak intensities between the base protons and the sugar H1' protons of the attached deoxyribose moieties. **A.** The modified strand. **B.** The complementary strand. Black bars represent intraresidue cross-peaks. Gray bars represent interresidue cross-peaks.

Figure S2. The partial charges assigned to the 1,*N*²-ɛdG adduct, calculated using the RESP protocol in the program GAUSSIAN98.

