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S.1 The derivatives of dipolar coupling restraint potential

The angle θ in Eq. (1) is the angle between the N-H internuclear vector, rNH, and the

magnetic field, n̂ ≡ ẑ,

cos θ =
rNH · n̂

|rNH|
=

zNH

|rNH|
, (S1)

where zNH is the z component of rNH. The derivative of cos θ with respect to rα (α = N or H)

becomes

∂ cos θ

∂rα

=
1

|rNH|

∂zNH

∂rα

−
zNH

|rNH|2
∂|rNH|

∂rα

, (S2)

where the derivative of |rNH| is

∂|rNH|

∂rα

=
1

|rNH|

(

xNH

∂xNH

∂rα

+ yNH

∂yNH

∂rα

+ zNH

∂zNH

∂rα

)

. (S3)

The derivatives of ηNH (η = x, y, or z) with respect to the N atom coordinate ζN (ζ = x, y,

or z) becomes

∂ηNH

∂ζN
=

{

−1 η = ζ
0 η 6= ζ.

(S4)

Similarly, the derivatives of ηNH with respect to the H atom coordinate ζH becomes

∂ηNH

∂ζH
=

{

1 η = ζ
0 η 6= ζ.

(S5)

In the case that the NH distance varies during a simulations, the derivative of the dipolar

coupling constant, ν0 = (γNγHhµ0)/(8π
3|rNH|

3), becomes

∂ν0

∂rα

=
−3ν0

|rNH|

∂|rNH|

∂rα

. (S6)

Utilizing these equations, one can obtain the full expression of the derivatives of the dipolar

coupling in Eq. (4).
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S.2 The derivatives of chemical shift restraint potential

In Eq. (10), the derivatives of the z components (êi,z) of the unit chemical shift tensors,

êi (i = 1, 2, 3), with respect to rα become

∂êi,z

∂rα

=
∂

∂rα

(

ei,z

|ei|

)

=
1

|ei|

∂ei,z

∂rα

−
ei,z

|ei|2
∂|ei|

∂rα

, (S7)

where ei = |ei| êi and ei,z is the z component of ei. The derivative of the magnitude of the

chemical shift tensor vectors, ei, becomes

∂|ei|

∂rα

=
1

|ei|

(

ei,x

∂ei,x

∂rα

+ ei,y

∂ei,y

∂rα

+ ei,z

∂ei,z

∂rα

)

. (S8)

As mentioned in the main text, e1, e2, and e3 are defined in terms of the peptide plane made

by N, C, and H atoms. In general, e1 and e3 are on the peptide plane, and e2 is defined by

the cross product of rNC and rNH. Then, e1 is defined by a rotation angle φ from rNH on the

peptide plane, and e3 = e1 × e2. Alternately, by introducing rp = rNH × e2 and δ = φ - 90◦,

a angle between e3 and rNH, one can simplify the expressions of ei as follows;

e1 = (xNH cosφ+ xp sinφ)x̂+ (yNH cosφ+ yp sin φ)ŷ + (zNH cosφ+ zp sinφ)ẑ (S9)

e2 = (yNH zNC − zNH yNC)x̂+ (zNH xNC − xNH zNC)ŷ + (xNH yNC − yNH xNC)ẑ (S10)

e3 = (xNH cos δ + xp sin δ)x̂+ (yNH cos δ + yp sin δ)ŷ + (zNH cos δ + zp sin δ)ẑ , (S11)

where

rp = (yNH e2,z − zNH e2,y)x̂+ (zNH e2,x − xNH e2,z)ŷ + (xNH e2,y − yNH e2,x)ẑ (S12)

It becomes clear that solving Eq. (S7) involves the derivatives of ηNH, ηNC, and ηp (η = x, y, z)

with respect to rα (α = N, H, and C atoms). Equations (S4) and (S5) describes the derivatives

of ηNH with respect to rN and rH. Similarly, one can obtain the derivatives of ηNC with respect

to rN and rC;

∂ηNC

∂ζN
=

{

−1 η = ζ
0 η 6= ζ

(S13)
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∂ηNC

∂ζC
=

{

1 η = ζ
0 η 6= ζ

(S14)

Therefore, Eq. (S7) can be analytically solved using Eqs. (S8) and (S9)-(S11) through

Eqs. (S4), (S5), (S13), and (S14).
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Figure S1. Total energy profiles as a function of time during 100 ps NVE Cartesian MD sim-
ulations without the SSNMR restraint potentials, with the chemical shift restraint potential
(CS) with kcs = 0.05 kcal/(mol·ppm2), and with the dipolar coupling restraint potential
(DC) with kdc = 1.0 kcal/(mol·kHz2).
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Figure S2. Total energy fluctuations (δE) of 100 ps NVE Cartesian MD simulations as a

function of kcs (kcal/(mol·ppm2), �) and kdc (kcal/(mol·kHz2, △): δE = (〈E2〉−〈E〉2)/ 〈Ek〉),
where E and Ek are the total energy and the kinetic energy, respectively.
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Figure S3. Total energy fluctuations (δE) of 100 ps NVE TAMD simulations as a function
of kcs (�) and kdc (△). The definition of δE as well as the units of kcs and kdc are given in
Fig. S2.
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Figure S4. The experimental (solid line with + symbols) observables and the calculated
values for the best (red) and worst (blue squares) structures in terms of RMSD of SSNMR
observables (δσ and δν) in vacuum (from top to bottom: fd coat, MerF, M2TMP, and
VpuTM). The best/worst δσ and δν are 0.49/0.98 ppm and 0.95/0.99 kHz (fd coat), 1.05/1.16
ppm and 1.00/1.19 kHz (MerF), 0.41/0.86 ppm and 0.48/0.95 kHz (M2TMP), and 0.81/0.98
ppm and 0.88/0.99 kHz (VpuTM).
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Figure S5. The experimental (solid line with + symbols) observables and the calculated
values for the best (red) and worst (blue squares) structures in terms of RMSD of SSNMR
observables (δσ and δν) in GBSW (from top to bottom: fd coat, MerF, M2TMP, and
VpuTM). The best/worst RMSDs of δσ (left) and δν (right) are 0.64/0.86 ppm and 0.93/0.99
kHz (fd coat), 0.98/1.20 ppm and 0.92/1.20 kHz (MerF), 0.45/0.90 ppm and 0.54/0.87 kHz
(M2TMP), and 0.86/0.97 ppm and 0.77/0.93 kHz (VpuTM).
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Figure S6. The torsion angles, φ (red) and ψ (blue), distributions of four monomers (a: fd
coat, b: MerF, c: M2TMP, and d: VpuTM) in vacuum. The values are averaged over the
structures satisfying the selection criteria. The lines at -65◦ and -40◦ represent the torsion
angles φ (red) and ψ (blue) of ideal α-helix. The connecting loop regions (fd coat: residues
19-20 and MerF: residues 42-50) are removed for clarity.
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Figure S7. The torsion angles, φ (red) and ψ (blue), distributions of four monomers (a: fd
coat, b: MerF, c: M2TMP, and d: VpuTM) in GBSW. The values are averaged over the
structures satisfying the selection criteria. The lines at -65◦ and -40◦ represent the torsion
angles φ (red) and ψ (blue) of ideal α-helix. The connecting loop regions (fd coat: residues
19-20 and MerF: residues 42-50) are removed for clarity.
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Figure S8. TM1-TM2 orientations of determined MerF structures: (left) a side view and
(right) the bottom view. The TM1 domains (red) of individual MerF structures are super-
imposed to show the relative orientations of the TM2 domains (red). The connecting loop
regions are removed for clarity.
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