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S.1 The derivatives of dipolar coupling restraint potential

The angle 6 in Eq. (1) is the angle between the N-H internuclear vector, ryg, and the

magnetic field, n = 2,

cosf = INH T ANH , (S1)
lenu|  |ra]

where zny is the z component of ryy. The derivative of cos 6 with respect to r, (& = N or H)

becomes
8(3080 . 1 82NH _ ZNH 8|rNH| (52)
or,  |rxu| Org lrng|? Org
where the derivative of |ryy| is
Jlrnu| 1 Ornm Oynu Ozxu
= ) S3
or. | TNH or. + ynu or. + 2NH or. (S3)

The derivatives of nxyg (7 = z, y, or z) with respect to the N atom coordinate (x (¢ = z, v,

or z) becomes

Onne [ —1 n=¢
Do ‘{ 0 n#C (54)

Similarly, the derivatives of nyg with respect to the H atom coordinate (g becomes

O _ [ 1 n=¢
0y _{0 n # ¢. (55)

In the case that the NH distance varies during a simulations, the derivative of the dipolar
coupling constant, vy = (Ynyrhito)/(873|ryu|?), becomes

8V0 . —3U0 8\rNH\
or,  |rnu| Ory

(S6)

Utilizing these equations, one can obtain the full expression of the derivatives of the dipolar

coupling in Eq. (4).
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S.2 The derivatives of chemical shift restraint potential

In Eq. (10), the derivatives of the z components (é;,) of the unit chemical shift tensors,

é; (i =1,2,3), with respect to r, become

aéi,z - 8 (ei,z) 1 aei,z ei,z 8|ez‘

~ or. - - S7
or,  Or, \ e le;] Ory,  |e]? Ory (57)

where e; = |e;| é; and e; , is the z component of e;. The derivative of the magnitude of the

chemical shift tensor vectors, e;, becomes

8|ez|_ 1 ( 862‘,33 862‘,3/ 8€i,z)

or,, e

(S8)

”a—ra €i,ym + €5, or..
As mentioned in the main text, e;, e, and ez are defined in terms of the peptide plane made
by N, C, and H atoms. In general, e; and e3 are on the peptide plane, and e, is defined by
the cross product of ryc and ryy. Then, e; is defined by a rotation angle ¢ from ryy on the
peptide plane, and e; = e; X es. Alternately, by introducing r, = ryy X e and § = ¢ - 90°,

a angle between e; and ryyg, one can simplify the expressions of e; as follows;

er = (2nu cos¢ + xp, sin @)L + (ynu cos @ + yp sin @)y + (2nm cos @ + 2, sing)z (S9)
e = (ynmanc — 2nu Yne)T + (2nm Tne — TN 2ne)¥ + (ONH YNe — Une INe)Z (S10)

e; = (znm cosd+ xp sind)z + (yng cosd + yp sind)y + (2nm cosd + 2, sind)z , (S11)
where

r, = (ynmez. — 2nH€2y)T + (2NH €25 — TN €2,2)Y + (TNH €2,y — UNH €2,2) 2 (S12)

It becomes clear that solving Eq. (S7) involves the derivatives of nx, nne, and 1, (n = 2,9, 2)
with respect tor, (« =N, H, and C atoms). Equations (S4) and (S5) describes the derivatives
of nng with respect to ry and rg. Similarly, one can obtain the derivatives of nyc with respect

to ry and rc;

Ine [ =1 n=¢
Do ‘{ 0 n#C (513)
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Ine [ 1 n=(
Pc ‘{0 n# ¢ (514)

Therefore, Eq. (S7) can be analytically solved using Egs. (S8) and (S9)-(S11) through
Egs. (S4), (S5), (S13), and (S14).
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Figure S1. Total energy profiles as a function of time during 100 ps NVE Cartesian MD sim-
ulations without the SSNMR restraint potentials, with the chemical shift restraint potential

(CS) with ke = 0.05 keal/(mol-ppm?), and with the dipolar coupling restraint potential
(DC) with kg = 1.0 keal/(mol kHz?).
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Figure S2. Total energy fluctuations (6E) of 100 ps NVE Cartesian MD simulations as a
function of ke (keal/(mol-ppm?), 0) and kqe (kcal/(mol-kHz?, A): 6E = ((E2)—(E)*)/ (Ey)),
where E and E; are the total energy and the kinetic energy, respectively.
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Figure S3. Total energy fluctuations (JE) of 100 ps NVE TAMD simulations as a function
of kes (O) and kge (A). The definition of JE as well as the units of k. and kq. are given in
Fig. S2.
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Figure S4. The experimental (solid line with + symbols) observables and the calculated
values for the best (red) and worst (blue squares) structures in terms of RMSD of SSNMR
observables (6o and év) in vacuum (from top to bottom: fd coat, MerF, M2TMP, and
VpuTM). The best/worst do and dv are 0.49/0.98 ppm and 0.95/0.99 kHz (fd coat), 1.05/1.16
ppm and 1.00/1.19 kHz (MerF), 0.41/0.86 ppm and 0.48/0.95 kHz (M2TMP), and 0.81/0.98
ppm and 0.88/0.99 kHz (VpuTM).
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Figure S5. The experimental (solid line with + symbols) observables and the calculated
values for the best (red) and worst (blue squares) structures in terms of RMSD of SSNMR
observables (do and dv) in GBSW (from top to bottom: fd coat, MerF, M2TMP, and
VpuTM). The best/worst RMSDs of 6o (left) and dv (right) are 0.64,/0.86 ppm and 0.93,/0.99
kHz (fd coat), 0.98/1.20 ppm and 0.92/1.20 kHz (MerF), 0.45/0.90 ppm and 0.54/0.87 kHz
(M2TMP), and 0.86/0.97 ppm and 0.77/0.93 kHz (VpuTM).
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Figure S6. The torsion angles, ¢ (red) and ¢ (blue), distributions of four monomers (a: fd
coat, b: MerF, ¢: M2TMP, and d: VpuTM) in vacuum. The values are averaged over the
structures satisfying the selection criteria. The lines at -65° and -40° represent the torsion
angles ¢ (red) and ¢ (blue) of ideal a-helix. The connecting loop regions (fd coat: residues
19-20 and MerF: residues 42-50) are removed for clarity.
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Figure S7. The torsion angles, ¢ (red) and ¢ (blue), distributions of four monomers (a: fd
coat, b: MerF, ¢: M2TMP, and d: VpuTM) in GBSW. The values are averaged over the
structures satisfying the selection criteria. The lines at -65° and -40° represent the torsion
angles ¢ (red) and ¢ (blue) of ideal a-helix. The connecting loop regions (fd coat: residues
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19-20 and MerF: residues 42-50) are removed for clarity.
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Figure S8. TM1-TM2 orientations of determined MerF structures: (left) a side view and
(right) the bottom view. The TM1 domains (red) of individual MerF structures are super-
imposed to show the relative orientations of the TM2 domains (red). The connecting loop
regions are removed for clarity.
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