Recombination Between a Defective Retrovirus and Homologous Sequences in Host DNA: Reversion by Patch Repair

PAMELA SCHWARTZBERG, JOHN COLICELLI, AND STEPHEN P. GOFF*

Department of Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032

Received 26 September 1984/Accepted 12 November 1984

The genomes of mammalian species contain multiple copies of sequences homologous to exogenous retroviruses. When a mutant retrovirus carrying a lethal deletion in an essential viral gene was introduced into mammalian cells, revertant viruses appeared and spread throughout the culture. Analysis of one such revertant showed that the mutation had been repaired by homologous recombination with endogenous sequences. Our results suggest that defective retroviruses can draw upon the genetic complement of the host cell to repair lesions in viral genes.

The murine leukemia viruses are a large family of replication-competent retroviruses which show considerable homology to one another at the nucleotide and gene product levels. These viruses contain three major genes, which are termed gag (for group-specific antigen), pol (for polymerase), and env (for envelope glycoprotein). The products of all three genes are essential for viral replication. The function of each of the gene products is not well understood, but it is becoming increasingly clear that most of the protein products are multifunctional and play roles at several times in the life cycle. These proteins are polyproteins and are cleaved posttranslationally into smaller fragments; the processing and functions of these retroviral gene products are complex and highly interactive.

The genomes of most mammalian species contain sequences with extensive homology to these viral genes. The DNAs of most inbred and feral mice contain from 20 to 100 regions of homology to the leukemia viruses (2, 6-8, 10, 14, 20, 46); these regions are scattered and located on various chromosomes (22). These sequences are thought to represent proviruses or remnants thereof, which have become permanently incorporated into the mouse germ line, perhaps by infection of early embryo cells (45). The majority of these sequences are probably defective, since they do not contain intact copies of all three of the viral genes and rarely lead to the synthesis of functional mRNAs. Several strains with a high incidence of leukemia, such as AKR mice, do carry one or more endogenous copies of nondefective viral genomes (45); these sequences can be expressed, and such expression leads to viremia and disease. Recent studies (5, 31, 36) have shown that the human genome contains a similar number of sequences with homology to primate retroviruses. Analysis of a few of these sequences indicated that they are usually not able to direct the synthesis of complete gene products and are probably defective (36).

Although most of the endogenous sequences in the mouse genome are defective, much attention has been focused on the contribution of these sequences to virally induced leukemogenesis. The induction of leukemia in experimental animals by the replication-competent murine viruses is very slow; between 2 and 6 months are typically required for appearance of the disease. During this long latency period, replicating viruses with new properties appear. These viruses, termed MCF viruses (mink cell focus-forming viruses), show an expanded host range and increased leukemogenicity relative to the input virus (12, 18). Analysis of the genomes of these new viruses has revealed that they are recombinants between the parental virus and endogenous sequences homologous to both the *env* gene and the long terminal repeat region. These endogenous sequences contribute to the new host range (amphotropism) of the recombinant viruses. Thus, replicating viruses can acquire new sequences during growth in an infected animal and can thereby acquire new phenotypes. The battery of endogenous sequences available for this process may be an important component in the process of leukemogenesis. Therefore, it is of some interest to explore the mechanisms used by retroviruses in recombination with host DNA.

We have been involved in efforts to determine the role of the viral gene products in the life cycle of the murine viruses and have generated a library of mutants with deletions (39-41) or insertions (29) that map throughout the viral genome. Each of these mutations blocks the viral life cycle at a particular stage, and since the gene product affected by the mutation is known, it has been possible to assign functions to many of the viral gene products. The product of the pol gene is cleaved into at least three proteins (27). One of these three is reverse transcriptase, the enzyme that synthesizes a DNA copy of the viral RNA soon after infection; another is probably a protease required for the maturation of the gag gene product (S. Crawford and S. P. Goff, manuscript in preparation); and a third cleavage product functions after DNA synthesis is complete to establish the DNA in the cell and probably is required for integration of the proviral DNA (41). Deletion mutations in this third part of the *pol* gene blocked the life cycle at an unusual step; the mutant virus could initiate an infection and carry out reverse transcription normally, but was unable to establish the viral DNA in the cells in a productive form (41). The unintegrated viral DNAs were gradually lost from the infected cells. In this paper we report that virus can eventually be recovered from such abortively infected cells and that the recovered virus is phenotypically reverted. Analysis of the genome of this recovered virus showed that the original deletion had been repaired by homologous recombination with endogenous sequences.

MATERIALS AND METHODS

Cells and viruses. NIH/3T3 and XC fibroblasts were grown in Dulbecco modified Eagle medium (GIBCO Laboratories)

FIG. 1. Flow chart for the generation and analysis of revertant viruses. Proviral DNA of M-MuLV bearing mutation *dl*5401 was introduced into NIH/3T3 cells by cotransformation to form reverse transcriptase-positive cell lines. Mutant virions were harvested from these cells and used to abortively infect fresh NIH/3T3 cells. The recipient cells synthesized unintegrated viral DNA but did not become producers of virions. After extended passage (1:200 weekly), the cultures became reverse transcriptase positive. Cloned cell lines were isolated from the cell population, and virus was harvested from these clones. The virus was found to be replication competent and capable of infecting fresh cells. Revertant viral DNA for analysis was prepared from infected cells.

supplemented with 10% calf serum (MA Bioproducts). The producer cell lines clone 4, expressing wild-type Moloney murine leukemia virus (M-MuLV), and clone F7, expressing dl5401, have been described previously (41). Virus production was detected by the XC plaque assay (38) or by the reverse transcriptase assay (16). Virus infections were carried out with the addition of polybrene (8 µg/ml) for 2 h at 37°C. Viral DNAs were prepared by the procedure of Hirt (19) approximately 24 h after infection. Cells were cloned by plating dilutions of cells into 96-well cloning trays (Corning Glass Works).

DNA manipulations. The methods used for bacterial transformation and plasmid preparation have been described previously (41). Plasmid vector pATH1 was a gift from T. J. Koerner and A. Tzagoloff. Cloning of retroviral DNA in a phage vector was carried out as follows. The cohesive ends of Charon 30A phage DNA were annealed and treated with

T4 DNA ligase, and the DNA was cleaved with *Hin*dIII and treated with calf intestinal phosphatase for 2 h at 37° C in buffer containing 50 mM Tris-chloride (pH 8.3) and 10 mM MgCl₂. The retroviral DNA was cleaved with *Hin*dIII, mixed with the vector DNA, ligated, and packaged into phage coats as described previously (21). Phage were plated onto *Escherichia coli* LE392 host cells and screened by the procedure of Benton and Davis (3). The methods used for blot transfer (43), labeling of DNAs (37), hybridization (50), and preparation of genomic DNAs (15) have been described previously. DNA sequencing was performed by the method of Maxam and Gilbert (32).

RESULTS

Isolation of revertants of a deletion mutant of M-MuLV. We have previously described the construction of deletion mutants in the pol gene of M-MuLV (41). One such mutant, dl5401, has been characterized in detail. This mutant contains a 91-base pair (bp) deletion which removes the SstII site in the 3' portion of the *pol* gene. When proviral DNA containing the deletion was introduced into cells by cotransformation (53), the recipient cell population became a good producer of virions. A cloned producer cell line, termed clone F7, was isolated from this population. Virions from clone F7 cells were applied to fresh cells and were able to direct the synthesis of all three unintegrated DNA forms. The infection was aborted at this point in the life cycle; no progeny virus was formed, and no integrated viral DNA could be found in the infected cells. The virions were also not able to induce XC syncytia (38) as wild-type virus could.

FIG. 2. Kinetics of replication of revertant viruses as determined by the release of virion-associated reverse transcriptase from infected cells. Viral harvests from various cell lines were incubated in reverse transcriptase cocktail containing radioactive deoxyribonucleotides, and the reaction products were spotted onto DEAE paper, washed, and subjected to autoradiography. Row A contained harvests that were taken from different cell lines or cell populations. For rows B through E the harvests were applied without dilution to fresh NIH/3T3 cells, and new harvests of the recipient cells were taken on subsequent days. Whereas mutant virus obtained from clone F7 cells were not able to initiate a productive infection (column 5), viruses from the revertant cell lines (columns 3 and 4) were able to carry out infection as well as the wild type (column 1).

FIG. 3. Structures of mutant and revertant genomes. NIH/3T3 cells were infected with virus released by cell populations or cell lines, and after 24 h the low-molecular-weight DNAs were isolated. The DNAs were treated with excess SstII or Bgll, fractionated by electrophoresis, transferred to nitrocellulose, and hybridized to a radioactive viral DNA probe. The viral DNAs were visualized by autoradiography. (A) Lanes 1 through 6 contained DNAs that were analyzed without restriction enzyme cleavage. Lane 1 contained cells that were mock infected with culture medium. The weak hybridization was due to endogenous sequences present in contaminating cellular chromosomal DNA. Lane 2 contained cells that were infected with wild-type virus. The major species detected were the two circular form I DNAs and the 8.8-kb linear molecule; small amounts of nicked circular form II DNAs are also visible. Lanes 3 through 5 contained cells that were infected with virus from the revertant population (Rev. Pop.) or from revertant clones H11 and F12. Normal amounts of all forms are visible. Lane 6 contained cells that were infected with mutant dl5401 virus from the clone F7 cell line. All forms were made, but at approximately one-tenth normal levels. Lanes 7 through 10 contained DNAs that were treated with SstII. In lane 7 the wild-type DNA was completely sensitive to the enzyme; the linear DNA was cut into fragments 5.4 and 3.4 kb long, and the circular forms were cut into full-length linear molecules. Lanes 8 through 10 show that the revertant viruses were not sensitive. The circular forms were mostly converted to nicked form II DNAs by nonspecific nucleases, but were not converted to linear molecules; the linear DNA was not cut into the two smaller fragments. (B) DNAs treated with Bgll. Lane 1 contained wild-type viral DNA having a 0.8-kb fragment. This fragment contained the SstII site and the sequences that are missing in mutant dl5401. Lanes 2 and 3 contained DNAs of revertant clones H11 and F12, which had a fragment indistinguishable in size from that of the wild type. Lane 4 contained DNA synthesized by mutant dl5401 virus and harvested from clone F7 cells, which contained the 91-bp deletion and released a 0.7-kb fragment.

The procedure used to select for the formation of revertant virus from the deletion mutant is outlined in Fig. 1. NIH/3T3 cells were infected with the defective virions as described above, but these recipient cells were then passaged weekly for many weeks. The supernatant medium from these cells was assayed periodically for the appearance of virion-associated reverse transcriptase. After 4 weeks, very low levels were detected; after 6 weeks, the levels approached the level in wild-type virus-infected cells. At this time 10⁴ cells of the population were divided into 100 cloning wells and grown for 10 days, and the supernatant media were assayed for reverse transcriptase. Approximately 20% of the subpopulations were positive for the enzyme. These subpopulations were not characterized further. After 8 weeks, supernatant from the recipient population was assayed again, and levels which were indistinguishable from the level in wild-type virus-infected cells were found. At this time, a number of single-cell clones were isolated and assayed; all 19 clones tested were producers of virion-associated enzyme. Thus, over the course of 8 weeks a replication-competent virus had appeared and spread throughout the infected population.

Two cloned producer cell lines, termed clone H11 and clone F12, were selected from the 19 clones isolated. Virions were collected from both clones and from the parent population and tested for infectivity after application to fresh NIH/3T3 cells. Unlike parental mutant dl5401, these virions were capable of inducing XC syncytia (data not shown) and showed wild-type titers. Thus, the XC-negative phenotype of the original mutant had reverted. Furthermore, these virions were fully transmissible and were able to induce the formation of progeny virus with kinetics that were indistinguishable from those of wild-type virus (Fig. 2).

Genome structure of revertant virus. Classically, deletion mutations are nonreverting; genetic information has been lost and cannot be regenerated in evolutionarily short times. Thus, it was of interest to determine how the deletion originally present in mutant dl5401 had been repaired. To analyze the genome structure of the revertants, virions were harvested and used to infect fresh NIH/3T3 cells at a high multiplicity. Low-molecular-weight DNA was isolated (19), fractionated by agarose gel electrophoresis, and blotted onto nitrocellulose (43), and the viral species were detected by hybridization with a radioactive viral DNA probe (Fig. 3). Wild-type virus directed the synthesis of the following three viral DNAs: a full-length linear 8.8-kilobase (kb) molecule and two circular species (8.2 and 8.8 kb) (Fig. 3A, lane 2). Viruses from the revertant population and from clones H11 and F12 all produced normal levels of these same DNA forms (lanes 3 through 5). Virus from the original mutant,

FIG. 4. Restriction map of the parental mutant dl5401 genome and revertant H11R. The top line shows the organization of the viral genes. The position of the deletion in dl5401 is indicated by the solid triangle. The next lines show an expanded view of the 3' end of the *pol* gene. The positions of the restriction sites in wild-type DNA are marked. The 91-bp region deleted in mutant dl5401 is indicated by the cross-hatched area. The next line shows the restriction map of revertant H11R. The conserved sites are indicated by the dashed lines, and the patch of new sequence is indicated by the crosshatched area.

clone F7, made these DNAs, although at reduced levels (lane 6) (41).

The DNAs made by the revertant viruses, although indistinguishable in size from wild-type DNA, were not of wild-type structure. When wild-type viral DNA was treated with SstII, the circular forms were cleaved once into linear molecules, and the linear form was cut into two smaller fragments (5.4 and 3.4 kb) (Fig. 3A, lane 7), as predicted by the map of M-MuLV. The revertant DNAs, like the parental mutant DNA, were completely resistant to cleavage by the enzyme (lanes 8 through 10); the circular forms were largely nicked to form II DNAs by nonspecific nucleases during the extended incubation periods. Thus, the reversion event did not restore the SstII site that was originally deleted in parental mutant dl5401.

The DNAs described above were digested with BglI, and the reaction products were analyzed as before (Fig. 3B). As predicted, DNA from the wild-type virus infection was cleaved into several fragments, including one 0.8 kb long (Fig. 3B, lane 1). Viral DNA from clone F7, expressing the original mutant, was not cleaved to give this fragment but instead released a shorter fragment, which migrated at the position of a 0.7-kb DNA (lane 4). This was expected because the 0.8-kb BglI fragment spanned the original deletion introduced into mutant dl5401, and the virus released by clone F7 cells still carried the 91-bp deletion. Cleavage of the revertant DNAs released a 0.8-kb fragment which was indistinguishable in size from the fragment of the wild-type DNA (lanes 2 and 3). Thus, a major change had occurred in the genomes of the revertant viruses: the spacing between the BglI sites had been restored to normal size by the addition of nucleotides. The reversion event, however, had not restored the wild-type sequence, as the genomes were not sensitive to SstII. These data suggested that the mutation of dl5401 had been repaired by the addition of a sequence which was similar to the missing region in length and in function, but which lacked the *SstII* site found in M-MuLV DNA.

Cloning and characterization of a revertant viral genome. To determine the exact structure of a revertant genome, molecular clones of circular proviral DNA were prepared. NIH/3T3 cells were infected with virus released from clone H11 as described above, and the low-molecular-weight DNA was purified after 24 h. Phage Charon 30A vector DNA was prepared by ligation of the cohesive ends, followed by treatment with HindIII and phosphatase, and this DNA was then ligated at a high concentration to low-molecular-weight DNA that was similarly treated with HindIII. The ligation mixture was packaged into phage coats (21), and the resulting phage were screened by plaque hybridization for viral insertions (3). Phage containing viral DNA were recovered at a frequency of about 1 in 10^3 . One recombinant phage was chosen for detailed characterization. This phage contained a single inserted HindIII fragment that was 8.2 kb long; cleavage with XhoI and SalI showed that the insertion contained single cleavage sites for these enzymes, which mapped at the positions found in the wild-type M-MuLV genome. Further mapping showed that the insertion was derived from an 8.2-kb circular DNA containing one long terminal repeat (data not shown). The entire HindIII fragment was excised from the phage and subcloned into the HindIII site of pBR322 for further analysis.

The restriction map of the revertant genome was identical to that of wild-type M-MuLV, except in a 400-bp region near the site of the original deletion (Fig. 4). Recognition sites for four enzymes were missing, and three new sites were present within this 400-bp region. It should be noted that the original *Hind*III site of M-MuLV was lost; the site used for cloning the viral DNA was a new *Hind*III site present at a different location in the 400-bp region. The overall length of the genome was indistinguishable from the wild-type length, and the distance between the nearby *Bgl*I sites was 800 bp in both viruses. These data suggested that a 400-bp stretch of DNA had been used to repair the deletion; this patch had repaired the 91-bp deletion and replaced about 300 bp of the flanking DNA with new sequences.

To define precisely the nature of the new DNA, the nucleotide sequence of this region was determined by the procedure of Maxam and Gilbert (32). The nucleotide sequence and the amino acids encoded by this sequence are compared with those of M-MuLV in Fig. 5. The two sequences could be aligned easily; no gaps or insertions were needed for maximum pairing. All of the nucleotide changes were confined to a 390-bp region, which was almost exactly centered about the position of the original deletion. There were a total of 116 nucleotide changes out of 390 bp; therefore, the sequences were 70% homologous. These alterations resulted in only 28 amino acid substitutions out of a total of 130 amino acids, so that the proteins encoded by the region were 78% homologous. Moreover, 14 of the 28 substitutions were highly conservative. The only clustered region with profound changes was the stretch from amino acid 62 to amino acid 68, with five of seven nonconservative changes. The new sequences were therefore, very closely related to the homologous region of M-MuLV. The new DNA completely restored the wild-type length of the virus and restored much of the deleted sequence missing in dl5401.

Origin of the new sequences. The similarity of the new DNA to the corresponding region of M-MuLV suggested that the sequences were derived from a related virus. Such viruses are known to reside as endogenous sequences in the

1								10										20
Met Pro	Asp	Gln	Phe	Thr	Phe	Glu	Leu	Leu	Asp	Phe	Leu	His	Gln	Leu	Thr	His	Leu	Ser
ATG.CC1	.GAC	.CAG	TTT.	.ACT	.TTT	.GAA	TTA.	.TTA	.GAĊ	.TTC	.CTT	.CAC	.CAG	.CTC	.ACC	.CAC	.CTT	.AGC
*** ***	***	***	***	***	***	***	***	***	***	**	***	**	***	**	**	***	**	***
ATG CCI	GAC	CAG	TTT	ACT	TTT	GAA	ΤΤΔ	TΤΔ	GAC	΄ΤΤΤ	CIT	CAT	CAG	CIG	ACT	CAC.	OTO.	AGC
Mot Pro	. Acn	610	Pho	Thr	Pho	61	1	1	Acn.	Pho	1 011	Hie	610		The	Hie		Sor.
Het rit	, vsh	urn	rne	1111	rne	uru	Leu	Leu	vsh	rne	Leu	1115		TT		1115	Leu	Jei
													FVU	11				
21						VDA	r	20										40
21 •		M				ABA	L.	30	•	~ ~	c		T	T	-			. 40
iyr air	Lys	Met	Arg	Ala	Leu	Leu	ASP	Arg	LYS	610	Ser	Pro	iyr	lyr	INC	Leu	ASN	LYS
TAL.CAG	.AAG	. A T G	.AGG	GCA	.011	.CTA	GAC	AGA	.AAA	.GAA	.AGC	.000	.TAC	.IAC	.ACG	.CIA	• A A I	
*	**	***	* *	**	**	***	**	***	*	*	**	***	***	***	* *	**	**	
TTC.TCA	.AAA	.ATG	.AAG.	.GCT	.CTC	.CTA	.GAG	.AGA	.AGC	.CAC	.AGT	.000	.TAC	.TAC	.ATG	.CTG	.AAC	.CGG
Phe Ser	Lys	Met	Lys	Ala	Leu	Leu	Glu	Arg	Ser	His	Ser	Pro	Tyr	Tyr	Met	Leu	Asn	Arg
	•		•										-	•				•
41								50										60
Acn I He	¥ • 3	1	44.0	<u>01.</u>	¥-1		61		Cvc	61.	A1 a	Cve	¥-1	61.	V a 1	Acn	412	Sor
		CTC	C A C					TCA	TCC			TOT	CTC	C A A		A A T	600	ACT
GAT.AAC			• LAC				. GAA		.100			. 101			.01A			
			2.2				~ ~ ~	***	T O O					~ ~ ~	<u> </u>	<u>.</u>		Â
GAL.CIA	.ACA	.010	. AAA	.AAI	.AIC	• AC I	GAG	ACC	.160	.AAA	• GC 1	.IGI	.GCA	.CAA	.616	.AAC	.666	.AGC
Asp Arg	Thr	Leu	Lys	Asn	Ile	Thr	Glu	Thr	Cys	Lys	Ala	Cys	Ala	Gln	Val	Asn	Ala	Ser
										ΗI	ND I	II						
61								70										80
Lvs Ala	Lvs	Val	61 v	Ser	G1 v	Val.	Ara	Val	Ara	G1 v	His	Ara	Pro	Glv	Thr	His	Tro	Glu
AAA GCI	AAG	0 Ta	GGT	<u> </u>	222	ATA	400	GTA	AGA	4 2 2	C A T	Å a n	Δ 1 1	122	ACC	CAT	aat -	GAA
** **		**			**		*	*	*	**	***	**	**	***	**	***	***	**
		CTT		C.8.C		8CT	100	etc	ccc	ecc	CAT	~ c c c		60P		CAT	TCC	
	Als	Val	- NAA	610	61v	The	Ana	V - 1		C1.	un: ⊔ic	A	Dee	61.	The	+¥nas ∐ic	Tee	61
Lys Jei	nia	Vai	Lys	uin	ury	int	Arg	Val.	e e T	ы ту тт	115	Ary	FFO	ury	1 mr	115	τrp	uiu
									551	••								
01									551	••								100
81		- .						90	-				_					100
81 Ile Asp	Phe	Thr	Glu	Va I	Arg	Pro	Gly	90 Leu	Tyr	Gly	His	Lys	Tyr	Leu	Leu	Val	Phe	100 Val
81 Ile Asp ATT.GAC	Phe TTT.	Thr .ACT	Glu .GAA	Val .gta	Arg .Agg	Pro .CCC	Gly GGA	90 Leu CTG	Tyr .TAT	G1y .GGG	His .CAT	Lys .AAG	Tyr .TAT	Leu .CTT	Leu .CTG	Val .GTG	Phe .TTT	100 Val .GTG
81 Ile Asp ATT.GAC ** **	Phe TTT	Thr .ACT **	Glu .GAA **	Val .GTA	Arg .AGG	Pro CCC	Gly .GGA ***	90 Leu .CTG **	Tyr .TAT ***	G1y .GGG **	His .CAT .**	Lys .AAG **	Tyr .TAT ***	Leu .CTT ***	Leu .CTG **	Val .GTG **	Phe TTT	100 Val .GTG
81 Ile Asp ATT.GAC ** ** ATC.GA1	Phe TTT **	Thr ACT **	Glu .GAA **	Val .GTA .**	Arg .Agg .* *	Pro .CCC ***	G1y .GGA ***	90 Leu CTG **	Tyr .TAT ***	G1y .GGG **	His .Cat .tat	Lys •AAG **	Tyr .TAT *** .TAT	Leu .CTT ***	Leu .CTG **	Val .GTG **	Phe .TTT ***	100 Val .gtg .ata
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp	Phe TTT ** • TTC	Thr ACT ** ACC Thr	Glu .GAA ** . GAG Glu	Val .GTA ** .ATA Ile	Arg .AGG * * .AAG Lys	Pro .CCC *** .CCC Pro	G1y .GGA *** .GGA .GIy	90 Leu CTG ** .TTG Leu	Tyr TAT *** TAT Tyr	Gly .GGG ** .GGC Gly	His .CAT .TAT .TAT Tyr	Lys .AAG ** .AAA Lys	Tyr .TAT .*** .TAT .Tyr	Leu .CTT *** .CTT Leu	Leu .CTG ** .CTA Leu	Val .GTG ** .GTT Val	Phe .TTT *** .TTT Phe	100 Val .GTG .ATA .Ile
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I	Phe TTT ** TTC Phe	Thr ACT ** ACC Thr	Glu .GAA ** . GAG Glu	Val .GTA ** .ATA Ile	Arg .Agg * * .AAg Lys	Pro .CCC *** .CCC Pro	Gly .GGA *** .GGA Gly	90 Leu CTG .CTG .TTG Leu	Tyr TAT *** TAT Tyr	Gly .GGG .GGG .GGC .GGC	His .CAT .TAT .TAT Tyr	Lys •AAG ** •AAA Lys	Tyr •TAT •*** •TAT Tyr	Leu .CTT *** .CTT Leu	Leu .CTG ** .CTA Leu	Val .GTG ** .GTT Val	Phe TTT *** TTT Phe	100 Val .GTG .ATA Ile
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I	Phe TTT ** .TTC Phe	Thr ACT ** ACC Thr	Glu .GAA ** . GAG Glu	Val .GTA ** .ATA Ile	Arg .AGG * * .AAG Lys	Pro .CCC *** .CCC Pro	Gly GGA *** GGA Gly	90 Leu CTG .CTG .TTG Leu	Tyr TAT *** TAT Tyr	Gly .GGG .GGG .GGC .GIy	His .CAT .TAT .TAT Tyr	Lys •AAG ** •AAA Lys	Tyr .TAT .*** .TAT .Tyr	Leu .CTT *** .CTT Leu	Leu .CTG ** .CTA Leu	Val .GTG ** .GTT Val	Phe TTT *** TTT Phe	100 Val .GTG .ATA Ile
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I 101	Phe TTT ** .TTC Phe	Thr ACT ** ACC Thr	Glu .GAA ** . GAG Glu	Val .GTA ** .ATA Ile	Arg .AGG * * .AAG Lys	Pro CCC *** CCC Pro	G1y .GGA *** .GGA G1y	90 Leu .CTG .TTG Leu 110	Tyr .TAT *** .TAT Tyr	Gly .GGG ** .GGC Gly	His .Cat ** .Tat Tyr	Lys •AAG ** •AAA Lys	Tyr .TAT *** .TAT Tyr	Leu .CTT *** .CTT Leu	Leu .CTG ** .CTA Leu	Val .GTG ** .GTT Val	Phe .TTT *** .TTT Phe	100 Val .GTG .ATA Ile
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I 101 Asp Thr	Phe •TTT •** • TTC • Phe	Thr ACT ** ACC Thr	G1u •GAA •** • GAG G1u	Val .GTA ** .ATA Ile	Arg AGG * * AAG Lys	Pro .CCC *** .CCC Pro	G1y .GGA .K** .GGA G1y A1a	90 Leu CTG TTG Leu 110 Phe	Tyr .TAT *** .TAT Tyr	Gly .GGG ** .GGC Gly	His .CAT ** .TAT Tyr	Lys .AAG .** .AAA Lys	Tyr .TAT .*** .TAT Tyr	Leu .CTT *** .CTT Leu Thr	Leu .CTG .** .CTA Leu	Val .GTG .s* .GTT Val	Phe .TTT *** .TTT Phe Val	100 Val GTG ATA Ile 120 Val
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC ACC	Phe •TTT •** • TTC • Phe	Thr ACT ** ACC Thr Ser	G1u •GAA •** • GAG G1u G1y G1y	Val .GTA ** .ATA Ile Trp	Arg .AGG * * .AAG Lys Val	Pro CCC *** Pro Glu	Gly .GGA .GGA .GGA Gly Ala	90 Leu CTG TTG Leu 110 Phe	Tyr TAT *** TAT Tyr Pro	Gly .GGG .GGC .GGC Gly Thr	His .CAT ** .TAT Tyr	Lys .AAG .** .AAA Lys His	Tyr .TAT .*** .TAT Tyr Glu	Leu .CTT .CTT .CTT Leu Thr	Leu .CTG ** .CTA Leu Ala	Val .GTG ** .GTT Val	Phe .TTT *** .TTT Phe Val	100 Val GTG * ATA Ile 120 Val
81 Ile Asp ATT.GAO ** ** ATC.GAI Ile Asp CLA I 101 Asp Thr GAC.ACC	Phe .TTT . TTC . TTC Phe .TTC	Thr ACT ** ACC Thr Ser .TCT	Glu .GAA ** Glu Glu Gly .GGC	Val .GTA ** .ATA Ile Trp .TGG	Arg .AGG * * .AAG Lys Val .GTG	Pro .CCC *** .CCC Pro Glu .GAA	Gly GGA *** GGA Gly Ala .GCC	90 Leu CTG TTG Leu 110 Phe TTC	Tyr TAT *** TAT Tyr Pro .CCA	Gly .GGG .GGC .GGC Gly Thr .ACC	HIS .CAT ** .TAT Tyr Lys .AAG	Lys .AAG ** .AAA Lys His .CAT	Tyr .TAT *** .TAT Tyr .GAG .GAG	Leu .CTT .CTT Leu Thr .ACT	Leu .CTG .CTA Leu Ala .GCC	Val .GTG .GTT Val Lys .AAA	Phe .TTT *** .TTT Phe Val .GTT	100 Val .GTG .ATA Ile 120 Val .GTG
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC ** **	Phe • TTT • ** • Phe • Phe • TTC	Thr ACT ** ACC Thr Ser .TCT	G1u .GAA ** G1u G1u G1y .GGC	Val .GTA ** .ATA Ile Trp .TGG	Arg .AGG * * .AAG Lys Val .GTG	Pro .CCC *** .CCC Pro Glu .GAA	Gly GGA GGA Gly Ala GCC	90 Leu CTG TTG Leu 110 Phe TTC	Tyr TAT *** TAT Tyr Pro .CCA	Gly .GGG .GGC Gly Thr .ACC	His .CAT ** .TAT Tyr Lys .AAG	Lys .AAG ** .AAA Lys His .CAT	Tyr .TAT *** .TAT Tyr Glu .GAG	Leu .CTT .CTT Leu Thr .ACT	Leu .CTG .CTA Leu Ala .GCC	Val .GTG .GTT Val Lys .AAA	Phe .TTT *** .TTT Phe Val .GTT	100 Val .GTG .ATA Ile 120 Val .GTG
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC	Phe TTT ** Phe Phe TTC **	Thr ACT ** ACC Thr Ser .TCT ***	G1u •GAA •** G1u G1y •GGC •***	Val .GTA .ATA Ile Trp .TGG .TGG	APG .AGG * * .AAG Lys Val .GTG *	Pro CCC Pro Glu GAA ***	G1y .GGA .GGA G1y A1a .GCC .***	90 Leu .CTG .TTG Leu 110 Phe .TTC .TTC	Tyr TAT *** TAT Tyr Pro .CCA ***	Gly .GGG .GGC Gly Thr .ACC .ACC	His .Cat .Tat Tyr Lys .AAG .AAG	Lys .AAA Lys His .CAT .AAA	Tyr •TAT •TAT •TAT Tyr •Glu •GAG •AA	Leu .CTT .CTT Leu Thr .ACT .ACT	Leu .CTG .CTA Leu Ala .GCC .SCC	Val .GTG .GTT Val Lys .AAA .AAG	Phe TTT *** TTT Phe Val .GTT .GTC	100 Val GTG ATA Ile 120 Val GTG *
81 Ile Asp ATT.GAC ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr	Phe TTT ** • TTC • Phe • TTC • TTT • Phe	Thr ACT ** ACC Thr Ser .TCT .TCT Ser	G1u •GAA •** G1u G1y •GGC •*** GGC G1y	Val .GTA .ATA Ile .TGG .TGG .TGG Trp	APG AGG * * AAG Lys Val .GTG * .ATA Ile	Pro .CCC Pro Glu .GAA .GAA .GAA	G1y .GGA .GGA .GGA G1y A1a .GCC .GCC A1a	90 Leu CTG TTG Leu 110 Phe TTC *** TTC Phe	Tyr TAT *** TAT Tyr Pro CCA *CCA Pro	Gly .GGG .GGC Gly Thr .ACC .ACC Thr	His .CAT ** .TAT Tyr Lys .AAG *** .AAG Lys	Lys .AAG .AAA Lys .CAT .AAA Lys	Tyr .TAT .TAT .TAT Tyr .Glu .GAG .GAA .GIu	Leu .CTT .CTT Leu Thr .ACT .ACC Thr	Leu .CTG .CTA Leu Ala .GCC *** .GCC Ala	Val .GTG .GTT Val Lys .AAA .AAG Lys	Phe .TTT *** .TTT Phe Val .GTT ** .GTC Val	100 Val GTG ATA Ile 120 Val GTA Val
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr	Phe TTT ** Phe Phe TTC **	Thr ACT ** ACC Thr Ser .TCT .TCT Ser	G1u .GAA . GAG .G1u .GGC .SGC .CC .GGC .G1y	Val .GTA *** .ATA Ile .TGG .TGG .TGG Trp	Arg AGG * * AAG Lys Val .GTG .ATA Ile	Pro .CCC Pro .GAA .SAA .GAA .GIU	Gly GGA GGA Gly Ala GCC *** GCC Ala	90 Leu CTG Leu 110 Phe TTC *** TTC Phe	Tyr .TAT *** .TAT Tyr Pro .CCA .CCA Pro	Gly .GGG .GGC Gly Thr .ACC .ACC Thr	His .CAT ** .TAT Tyr Lys .AAG *** .AAG Lys	Lys .AAG .Ys .AAA Lys .CAT .AAA Lys	Tyr .TAT .TAT .TAT Tyr .GAG .SAA .GAA .GIu	Leu •CTT •CTT Leu Thr •ACT •ACC Thr	Leu .CTG .CTA Leu Ala .GCC *** .GCC Ala	Val .GTG .ext .GTT Val Lys .AAA ** .AAG Lys	Phe TTT *** TTT Phe Val .GTT ** .GTC Val	100 Val GTG ATA Ile 120 Val GTG KTA Val
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr	Phe TTT ** Phe Phe TTC **	Thr ACT ** ACC Thr Ser .TCT .TCT Ser	G1u .GAA .** .GAG G1u .GGC .*** .GGC G1y	Val .GTA *** .ATA Ile .TGG *** .TGG Trp	Arg AGG * * AAG Lys Val .GTG * .ATA Ile	Pro .CCC Pro .GAA .SAA .GAA .GIU	Gly GGA GGA Gly Ala GCC *** GCC Ala	90 Leu CTG Leu 110 Phe TTC *** TTC Phe	Tyr TAT *** TAT Tyr Pro CCA *** CCA Pro	Gly .GGG .GGC Gly Thr .ACC .XCC Thr	His .CAT .TAT Tyr Lys .AAG Lys	Lys .AAG .Ys .AAA Lys .CAT .AAA Lys	Tyr •TAT •*** •TAT Tyr Glu •GAA Glu	Leu •CTT •CTT Leu Thr •ACT •ACC Thr	Leu .CTG .CTA Leu Ala .GCC .KCK Ala	Val .GTG .ett Val Lys .AAA ** .AAG Lys	Phe .TTT *** .TTT Phe Val .GTT Val	100 Val ATA Ile 120 Val GTG ** GTA Val
81 Ile Asp ATT.GAC ** ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr 121	Phe • TTT • * • Phe • Phe • TTC • Phe • TTT • Phe HIN	Thr ACT ** ACC Thr Ser Ser Ser III	Glu GAA ** Glu Gly GGC GGC Gly XBA	Val .GTA ** .ATA Ile Trp .TGG Trp I	Arg .AGG * * Lys Val .GTG .ATA Ile	Pro CCC Pro Glu Glu GAA CAA Glu	G1y .GGA .GGA G1y A1a .GCC .GCC A1a	90 Leu .CTG .TTG Leu 110 Phe .TTC Phe 130	Tyr TAT *** TAT Tyr Pro .CCA *** .CCA Pro	Gly .GGG .** .GGC Gly Thr .ACC .ACC Thr	His .CAT ** .TAT Tyr Lys .AAG Lys	Lys .AAG	Tyr TAT *** TAT Tyr Glu Glu GAA Glu	Leu •CTT •CTT Leu Thr •ACC Thr	Leu .CTG .CTA Leu Ala .GCC *** .GCC Ala	Val .GTG .wal Val Lys .AAG Lys	Phe TTT *** TTT Phe Val .GTC Val	100 Val .GTA .ATA Ile 120 Val .GTG ** .GTA Val
81 Ile Asp ATT.GAC ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys	Phe TTT ** Phe Phe TTC ** TTC HIN Lys	Thr ACT ** ACC Thr Ser .TCT Ser IIII Leu	Glu GAA ** GAG Glu Gly GGC *** GGC Gly XBA Leu	Val .GTA .** .ATA Ile .TGG .TGG Trp I Glu	Arg .AGG .** .AAG Lys Val .GTG .ATA Ile	Pro CCC Pro Glu GAA *** GAA Glu	Gly GGA *** GGA Gly Ala GCC *** Ala Phe	90 Leu .CTG .TTG Leu 110 Phe .TTC *** .TTC Phe 130 Pro	Tyr TAT *** TAT Tyr Pro CCA *** CCA Pro	Gly .GGG .GGC .Gly Thr .ACC .ACC Thr Phe	H1s .CAT .TAT Tyr Lys .AAG .AAG Lys	Lys .AAG .XAA Lys His .CAT .AAA Lys Met	Tyr .TAT .TAT .TAT Tyr .GAG .GAG .SAA .GIu Pro	Leu .CTT Leu Thr .ACC Thr .ACC Thr	Leu .CTG .CTA Leu .GCC .GCC Ala Val	Val .GTG .at .GTT Val Lys .AAA .AAG Lys	Phe .TTT *** .TTT Phe Val .GTT .GTC Val GIV	100 Val .GTG .ATA 11e 120 Val .GTA Val .GTA Val 140 Thr
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAA	Phe • TTT • ** • Phe • TTC • Phe • TTC • ** • TTT • Phe HIN • Lys	Thr ACT ** ACC Thr Ser TCT Ser ILI LEU	Glu GAA ** GAG Glu Gly GGC *** GGC Gly XBA Leu CTA	Val .GTA .** .ATA Ile .TGG .TGG .TCG Trp I Glu .GAA	Arg .AGG .AGG Lys Val .GTG .ATA Ile Glu	Pro .CCC Pro Glu .GAA .SAA Glu Ile	Gly GGA GGA Gly Ala GCC Ala Phe TTT	90 Leu .CTG .TTG Leu 110 Phe .TTC .TTC Phe 130 Pro	Tyr TAT *** TAT Tyr Pro CCA *** CCA Pro Arg	Gly .GGG .GGC Gly Thr .ACC .ACC Thr Phe	H1s .CAT .TAT Tyr Lys .AAG .*** .AAG Lys G1y	Lys .AAG ** .AAA Lys .CAT .AAA Lys Met	Tyr •TAT •*** •TAT Tyr •Glu •GAG •** •GAA Glu Pro	Leu CTT Leu Thr ACT ACC Thr Gln	Leu .CTG .CTA Leu .GCC Ala .GCC Ala Val	Val .GTG .AAT .AAA .AAG Lys .Leu	Phe TTT *** TTT Phe Val GTT ** GTC Val GIy GGG	100 Val .GTG * .ATA Ile 120 Val .GTG ** .GTA Val 140 Thr .ACT
81 Ile Asp ATT.GAC ** ** ATC.GAI Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr 121 Thr Lys ACC.AAA	Phe TTT ** Phe Phe TTC ** HIN Lys **	Thr ACC Thr Ser TCT Ser III Leu .tt	Glu GAA ** Glu Gly GGC ** GGC Gly XBA Leu .CT*	Val .GTA *** .Ile Trp .TGG *** .TGG Trp I Glu .GAA	Arg .AGG * * Lys Val .GTG .ATA Ile .Glu .Glu	Pro CCC Pro Glu GAA *** GAA Glu Ile	Gly GGA GGA Gly Ala GCC Ala Phe TTT	90 Leu CTG Leu 110 Phe TTC *** TTC Phe 130 Pro .CCA	Tyr TAT *** TAT Tyr Pro CCA *** CCA Pro Argg AGG	Gly .GGG .GGC Gly Thr .ACC .ACC Thr Phe .TT	H1s .CAT .TAT Tyr Lys .AAG .AAG Lys GlyA .GlyA	Lys .AAG *** .AAA Lys .CAT .AAA Lys Met .ATG	Tyr •TAT •TAT •Tyr •Glu •GAG •CAA Glu Pro •C*	Leu CTTT Leu Thrr ACT ACC Thr GlnA	Leu CTG *** CTA Leu A!a .GCC *** .GCC Ala Val .TA Val	Val .GTG .ATG Val Lys .AAA .AAG Lys Leu .TTG	Phe TTT *** TTT Phe Val .GTC Val GIG GIG GGG	100 VaT .GTG .ATA Ile 120 Val .GTG .GTA Val 140 Thr .ACT
81 Ile Asp ATT.GAC ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAA *** **	Phe TTT ** Phe Phe TTC ** Phe HIN Lys AAG	Thr .ACT *** ACC Thr .TCT Ser III Leu .CTT ***	Glu .GAA ** Glu Gly .GGC Gly XBA Leu .CTA	Val .GTA .ATA Ile .Trp .TGG .Trp I Glu .GAA	Arg .AGG * * .AAG Lys Val .GTG .ATA Ile Glu .GAA **	Pro .CCC **** .CCC Pro Glu .GAA Glu Ile .ATA	Gly .GGA **** .GGA Gly Ala .GCC Ala Phe .TTT ***	90 Leu .CTG *** .TTG Phe 110 Phe 130 Pro .CCA	Tyr .TAT **** .TAT Tyr Pro .CCA **** .CCA Pro Arg .AGG	Gly .GGG .GGG Gly Thr .ACC Thr Phe .TTT *TC	H1s .CAT .TAT Tyr Lys .AAG Lys Gly .GGA	Lys .AAG ** .AAA Lys .CAT * .AAA Lys Met .ATG	Tyr •TAT •TAT •TAT •Tyr Glu •GAG •GAA Glu Pro •CCC	Leu .CTT .CTT Leu Thr .ACT .ACC Thr .CAA .CAA	Leu .CTG .CTA Leu Ala .GCC Ala Val .GTA	Val .GTG .GTT Val Lys .AAA ** .AAG Lys Leug .TTG	Phe TTT TTT Phe Val GTT •** GTC Val GIGG GGG CC	100 Val .GTG .ATA Ile 120 Val .GTA Val 140 Thr .ACT
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAC	Phe .TTT .TTC Phe .TTC Phe .TTC .TTT Phe HIN Lyss .AAG	Thr ACC Thr Ser .TCT Ser III Leu .CTT ***	Glu .GAA ** Glu Gly .GGC Gly XBA Leu .CTA ***	Val .GTA *** Ile Trp TGG **** .TGG Trp I Glu .GAA **	Arg AGG * * AAG Lys Val .GTG * .ATA Ile Glu .GAA **	Pro .CCC **** .GCC Pro Glu .GAA Glu Ile .ATA **C	Gly .GGA *** .GGA Gly .GCC Ala .CCC Ala .TTT ** .TCC	90 Leu CTG *** 110 Phe 110 Phe 130 Pro .ccA ***	Tyr TAT *** TAT Tyr Pro CCA Pro Argg ***	Gly. .GGG ** .GGC Gly Thr .ACC Thr .ACC Thr .TTT .TTC	His .CAT .TAT Tyr Lys .AAG Lys .Gly .GGA .**	Lys .AAG *** Lys His .CAT * .AAA Lys Met .ATG ***	Tyr .TAT *** .TAT Tyr Glu .GAG Glu Pro .CCC .CCT	Leu .CTT *** .CTT Leu Thr .ACT Thr .CAA .CAA .CAA	Leu .CTG .CTA Leu .GCC Ala Val .GTA .GTA	Val .GTG Val Lys .AAA Lys Leu .TTG .***	Phe TTT *** Phe Val .GTT Val .GGG .GGG .**	100 Val .GTG .ATA Ile 120 Val .GTG ** .GTA Val 140 Thr .ACT **
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAC **** ACC.AAC Thr Lys	Phe TTT Phe Phe TTC Phe HIN Lys AAG Lys	Thr ACT Ser Thr Ser III Leu CTT CTT Leu	Glu .GAA .GAG Glu .GGC .st** .GGC Gly XBA Leu .teu .teu .CTA Leu	Val .GTA .ATA .Trp .TGG **** .TGG Trp I Glu .GAA .GAG Glu	Arg .AGG .AGG Lys Val .GTG .ATA Ile Glu .GAA .CAA .GAG Glu	Proc .CCC .CCC .CCC .CCC .CCC .CCC .CCC .C	Gly GGA GGA Gly Ala GCC Ala Phe TTT ** TTC Phe	90 Leu .CTG ** .TTG Leu 110 Phe .** .TTC Phe 1300 Pro .CCA ** .CCC Pro	Tyr .TAT **** .TAT Tyr Pro .CCA *** .CCA Pro Argg Argg Arg	Gly .GGG .GGC .GGC Gly Thr .ACC Thr .ACC Thr .ACC Thr .TTT .TTT .TTT .TTC Phe	His .CAT Tyr Lyss.AAG **** .AAG Lys Gly .GGA ***	Lyss .AAA Lys .CAT .AAA Lys .AAA Lys .AAA .ATG .ATG .ATG .ATG .ATG	Tyr .TAT .TAT .GAG .GAG Glu .CCC .CCC .CCC Pro	Leu .CTT *** .CTT Leu Thr .ACT Thr .ACC Thr .CAA ** .CAG Gln	Leu .CTA Leu Ala .GCC Ala Val .Yal .TA Val .Yal Val	Val .GTG .GTT Val Lys .AAA .AAG Lys Leu .TTG .TTG Leu	Phe .TTT *** .TTT Phe .GTT Val .GTC Val .GGG .GGG .GGG .GGG .GGG	100 Val .GTG ** 120 Val .GTA Val 140 Thr .ACT *** .ACT Thr
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr 121 Thr Lys ACC.AAC Thr Lys	Phe TTT Phe Phe TTC TTC Phe HIN Lys AAG XAAG	Thr ACT ACT Thr Ser TCT Ser III Leu CTT Leu Leu	Glu GAA Glu Glu Glu Gly XBA Leu XBA Leu CTA Leu	Yal .GTA .H .Trp .TGG .TGG Trp I Glu .GAG Glu	Arg .AGG .AGG .AXAG Lys Val .GTG .ATA Ile .GAG .GAG .GAG .GAG .BIU .BI	Pro .CCC **** .CCC Pro .GAA .G1u .IleA .ATC .Ile GL I	Gly GGA ***A Gly Ala GCC ***C GCC Ala Phe TTT ** TTC Phe I	90 Leug. .CTG Leu 110 Phee. .TTC **** .TTC Phe 130 Pro .CCC .Pro	Tyr .TAT **** Tyr Proo. .CCA Pro Argg Argg Argg	GlyGGG .GGC Gly Thrc.ACC Thr Phe Phe	His .CAT Tyr Lyss.AAG **** .AAG Lys Gly .GGA ** .GGC Gly S	Lys .AAA Lys .CAT .AAA Lys .AAA Lys Met .ATG Met PH I	Tyr .TAT Tyr .GAG .GAG Glu .CCT Pro	Leu .CTT Leu .ACT .ACT Thr .ACC Thr .CAA Gln .CAG Gln	Leu .CTG *TA Leu Ala .GCC Ala Val .GTA .GTA Val	Val .GTG Val Lyss .AAA ** .AAG Lys Leu .TTG .TTG Leu	Phe .TTT Phe .GTT .GTC Val .GGG .GGA .GGA Gly	100 Val .GTG *A 11e 120 Val .GTG Val 140 Thr .ACT Thr
81 Ile Asp ATT.GAC ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAC Thr Lys	Phe .TTT Phe Phe .TTT Phe HIN Lys .AAG Lys	Thr ACT Fr Ser Thr Ser III Leu CTT ** CTA Leu	Glu .GAA Glu .GGC .GGC .SGC Gly XBA Leu .CTA Leu	Yal .GTA .Trp .Trg .TGG *** .TGG Trp I Glu .GAA ** GAG Glu	Arg .AGG * * .AAG Lys Val .GTG * .ATA Ile Glu .GAG Glu Bl	Pro .CCC Pro Glu .GAA .GAA Glu .Ile .ATA .ATC Ile GL I	Gly .GGA .GGA Gly .GCC Ala .GCC Ala .TTT .TTC .Phe I	90 Leug. .TTG Leu 1100 Phe .TTC .TTC Phe 1300 Pro .CCA ** .CCC Pro	Tyr .TAT *** Tyr Pro .CCA Pro Arg .AGG Arg Arg	Gly .GGC Gly Thr.ACC .ACC Thr Phe .TTT *** .TTC Phe	His .CAT Tyr Lyss.AAG *** .AAG Lys .GGA ** .GGC Gly S	Lys .AAA Lys .CAT .AAA Lys .AAA Lys .ATG **** .ATG Met PH I	Tyr .TAT Tyr .GAG .GAG Glu .CCC *** .CCT Pro	Leu .CTT Leu .ACT .ACT Thr .ACC Thr .CAA .CAG Gln .CAG	Leu .CTG .CTA Leu Ala .GCC Ala Val .GTA *** .GTA Val	Val .GTT Val .AAA .AAG Lys .Leu .TTG .Eeu	Phe .TTT Phe .GTT .GTC Val .GGG *** .GGG *** .GGG SGG SGG	100 Val GTG ATA 11e 1200Val GTG ** .GTG Val 140 Thr .ACT *** .ACT Thr
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAC ** ** ACC.AAC Thr Lys 141	Phe TTT Phe Phe TTC Phe HIN Lys AAG Lys	Thr ACT Ser Thr Ser III Leu CTT *** CTA Leu	Glu .GAA ** .GAC Glu .GGC Cly XBA Leu .CTA .CTA Leu	Val .GTA *** .TGG Trp I Glu .GAA *** .GAG Glu	Arg .AGG * * .AAG Lys Val .GTG * .ATA Ile Glu .GAA ** .GAG Glu B	Pro .CCC .CCC .Pro .GAA .GAA .GAA .GAU .Ile .ATA .ATC .Ile .Ile .GL I	Gly GGA Gly Ala GCC Ala .GCC Ala .TTT ** .TTC Phe I	90 Leu .CTG *** .TTG Phe 1300 Pro .CCA ** .CCC Pro	Tyr .TAT **** .TAT Tyr Pro .CCA Pro Argg Argg Arg	Gly .GGG .GGG .Thr .ACC .ACC Thr .ACC Thr .TTT .TTT .TTC Phe	His .CAT Tyr Lys .AAG **** .AAG Lys Gly .GGA ** .GGC Gly S	Lyss .AAG .AAA Lys .CAT .AAA Lys Met .ATG Met PH I	Tyr .TAT .TAT .GAG .GAG Glu .CCC .CCC .CCC .CCT Pro	Leu .CTT .CTT Leu .ACT Thr .ACC Thr .CAA .CAG Gln	Leu .CTG .CTA Leu .GCC .*** .GCC Ala Val .GTA Val	Val .GTG ** .AAA .AAG Lys .TTG .TTG Leu	Phe .TTT *** .TTT Phe .GTT Val .GCC Val .GGG ** .GGA Gly	100 Val .GTG .ATA 11e .GTG ** .GTG ** .GTA Val 1400 Thr .ACT Thr 160
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAC Thr Lys 141 Asp Asr	Phe TTT Phe Phe TTC Phe HIN Lys AAG Lys Gly	Thr ACT Ser Thr Ser III Leu CTA Leu Pro	Glu .GAA .GAG Glu .GGC .*** .GGC Gly XBA Leu .XBA Leu .CTA Leu Ala	Val .GTA .ATA Ile .TGG **** .TGG Trp I Glu .GAA *** .GAG Glu Phe	Arg .AGG .AGG Lys Val .GTG .ATA Ile Glu .GAA .** .GAG Glu .BI	Proc .ccc Pro .GAA .GAA .GAA .GAA .TI .GAA .ATA .ATA .ATC .Ile .GL I .Ser	Gly GGA GGY GGY GGY Alac GCC Ala Phe TTT Fhe I Lys	90 Leu .CTG .TTG Phe .TTC Phe 130 Pro .CCA .** .CCC Pro 150 Val	Tyr .TAT **** .TAT Tyr Pro .CCA Pro Arg Arg Arg Arg Ser	Gly .GGG .GGC .GGC Gly Thr .ACC Thr .ACC Thr Phe .TTT .TTC Phe Gln	His .CAT Tyr Lyss.AAG **** .AAG Lys Gly .GGA ** .GGC Gly S Thr	Lyss .AAA Lys .CAT .AAA Lys Met .ATG Met PH I Val	Tyr .TAT .TAT .GAG .GAG Glu .CCC .CCC .CCC .CCC .CCC .CCC .CCC	Leu .CTT .ttr Leu Thr .ACT Gln .CAA Gln Asp	Leu .CTG .CTA Leu .GCC .Ala .GCC Ala Val .GTA Val Leu	Val .GTG .GTT Val Lys .AAA .AAG Lys Leu .TTG Leu Leu	Phe .TTT Phe .GTT .GTC Val .GGG .GGG .CGG .CGG .CGG .CGG .CGG .CG	100 Val .GTG .ATA Ile .GTG .CTA .GTG .CTA .GTA .GTA .GTA .ACT Thr .ACT Thr 160 Ile
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr 121 Thr Lys ACC.AAC Thr Lys *** ACC.AAC Thr Lys 141 Asp Asp GAT.AA1	Phe TTT Phe Phe Phe TTC *** Phe HIN Lys AAG Lys Gly GGG	Thr ACT Thr Ser TCT Ser III Leu CTT Leu Pro	Glu GAA Glu Glu Gly GGC K*** .GGC Gly XBA Leu Leu Ala .GCC	Yal .GTA .Ile .Trpg .TGG .TGG Trp I Glu .GAA Glu .CAG Glu .TTC	Arg .AGG .AGG .AXA Lys Val .GTG .GTG .GAA .CAG Glu .BI Val .GTC	Pro .CCC Pro Glu.GAA .st* .GAA Glu Ile .ATA .ATC Ile Ser .TCC	Gly GGA **** Gly Alac Gly Alac **** GCC Ala Phet I Lys AAG	90 Leu .CTG .TTG Leu 110 Phe .TTC **** .TTC Phe 130 Pro .CCC Pro 150 Val .GTG	Tyr .TAT *** Tyr Pro .CCA Pro Argg Argg Argg Ser .AGG	GlyGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	His .CAT Tyr Lyss.AAG .AAG Lys .GIy .GGA .GGC Gly .S Thr .ACA	Lys .AAA Lys .CAT .CAT .AAA Lys Met .ATG Met PH I .GTG	Tyr .TAT Tyr .GAG .GAG Glu .CCT Pro .CCT Pro Alac.	Leu .CTT Leu Thrt.ACT .ACT GINA .CAG GIN ASP .GAT	Leu .CTG .CTA Leu Ala .GCC Ala Val .GTA .GTA Val .GTA Val .CTG	Val .GTT Val Lyss .AAA ** .AAG Lys Leu .TTG Leu LEu .TTG	Phe .TTT Phe Val .GTT .GTC Val .GGG Gly .GGG Gly .GGGG	100 Val .GTG .ATA Ile 120 Val .GTG .K* .GTA Val 140 Thr .ACT Thr 160 Ile .ATT
81 Ile Asp ATT.GAC ** ATC.GAT Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAA *** ** ACC.AAA Thr Lys 141 Asp Asr GAT.AAT ** **	Phe TTT Phe Phe TTC Phe HIN Lys AAG Lys GGlyG ***	Thr ACT Ser Thr Ser III Leu CTT CTA Leu Pro CCT	Glu .GAA Glu .GGC .GGC .GGC .CTA Leu .CTA Leu Alac. ***	Yal .GTA .Trp .TGG .TGG .TGG .TGG .TGG .TGG .TGG .GAA .** .GAG Glu Phe 	Arg .AGG * * .AAG Lys Val .GTG .ATA Ile Glu .GAA *** Bl Val .***	Pro .CCC **** .CCC Pro Glu .GAA .GAA Glu Ile .ATA .ATC Ile Ser 	Gly .GGA .GGA .Gly .GCC .Ala .GCC .Ala .TTT .Phe I Lys .AAG	90 Leu .CTG ** .TTG Phe .TTC Phe 1300 Pro .CCA *** .CCC Pro 1500 VaTG	Tyr TAT **** TAT Tyr Proo. CCA **** AGG Arg Ser ****	Gly .GGG .GGG .Thr .ACC .*** .ACC .Thr .Thr .TTT .TTC Phe .TTT .TTC .CAG .***	His .CAT *** .TAT Tyr Lys .AAG *** .AAG Lys .GGA .GGC Gly S Thr .ACA ***	Lys .AAA Lys .CAT .AAA Lys .CAT .ATG **** .ATG Met PH I Val .str	Tyr .TAT *** .GAG Glu .CCC *** .CCT Pro Alac. ***	Leu .CTT .CTT Leu Thrr .ACT .ACT .ACT .ACT .CAA .CAG Gln .CAA .CAG	Leu .CTG .CTA Leu Ala .GCC Ala Val .GTA Val .GTA Val Leu .CTA	Val .GTG ** .GTT Val Lys .AAA ** .AAG Lys Leu .TTG Leu Leu .TTG	Phe .TTT *** .TTT Phe .GTT ** .GTC Val .GGGG ** .GGGA Gly .GGGA .**	100 Val .GTG * .ATA Ile Val .GTG ** Val 1400 Thr .ACT Thr 1600 Ile .ATT
81 Ile Asp ATT.GAC ** ** ATC.GAI Ile Asp CLA I 101 Asp Thr GAC.ACC ** ** GAT.ACC Asp Thr 121 Thr Lys ACC.AAC ** ** ACC.AAC Thr Lys 141 Asp Asr GAC.AAC ** **	Phe TTT Phe Phe TTC TTC Phe HIN Lys AAG Lys GGGG GGGG GGGG	Thr ACT Ser Thr Ser III Leu CTT CTA Leu Proc CCT	Glu .GAA .GAG Glu .GGC .GGC Gly XBA Leu .CTA Leu AlacGCC	Val .GTA .Trp .TGG .TGG .TGG Trp I Glu .GAA .CAA Glu Phe .TTC .TTC	Arg .AGG .AGG Lys Val .GTG .ATA Ile Glu .GAA .CAA Glu B Val .GTC .CAA	Pro .CCC Pro .Glu .GAA .GAA .Glu .Ile .ATA .ATC .Ile .Ser .TCC	Gly Alac GCC Alac CCC Ala Phet TTT AAA Lys AAG AAG	90 Leu .CTG *** .TTG Phe .TTC Phe 130 Pro .CCA *** .CCC Pro 150 Val .GTG .GTG	Tyr .TAT **** .TAT Tyr Pro .CCA **** .CCA Pro Argg Argg Argg Ser .AGG Arg	Gly .GGG .GGG .GGG .ACC Thr .ACC Thr .ACC Thr .ACC Thr .ACC Gln .CAG Gln .CAG	His .CAT Tyr Lys .AAG Lys Gly .GGA .GGA .GGC Gly .S Thr .ACA	Lyss .AAA Lys .CAT .AAA Lys .CAT .ATG Met PH I .GTG .GTG	Tyr .TAT .TAT .TAT .GAG .GAG .GAG .CCC .CCC .CCC .CCC .CCC	Leu .CTT .CTT Leu Thrr .ACT .ACT .CAA Gln .CAA Gln .CAA .CAG Gln .CAA	Leu .CTA .CTA Leu Ala .GCC Ala Val .CTA Val .CTA Leu .CTG .CTG .CTG .CTG	Val .GTG .GTT Val Lyss .AAA .AAG Lys .TTG Leu .TTG Leu .TTG .TTG	Phe .TTT *** .TTT Phe Val .GTT Val Gly .GGG Gly .GGG Gly .GGG .GGG	100 Val .GTG .ATA Ile 120 Val .GTG ** .GTA Val 140 Thr .ACT Thr 160 Ile .ATT
81 Ile Asp ATT.GAC ** ** ATC.GA1 Ile Asp CLA I 101 Asp Thr GAC.ACC Asp Thr 121 Thr Lys ACC.AAA *** ** ACC.AAA Thr Lys 141 Asp Asp GAC.AAT ** **	Phe TTT Phe Phe TTC Phe HIN Lys AAG Lys GGGG Gly	Thr ACT Thr Ser TCT Ser III Leu CCT CCT Leu Pro CCT CCT Pro	Glu .GAA .GAG Glu .GGC .SGC .CTA Leu .CTA Leu .CTA .CTA .GCC .CTA	Val .GTA .ATA .Trp .TGG **** .TGG Trp I Glu .GAA *** .GAG Glu Phe .TTC ****. .Phe	Arg .AGG .AGG .AGA Lys Val .GTG .ATA Ile Glu .GAA .CAA .GAG Glu .GTC .*** .GTC .*** .GTC .***	Proc .ccc Pro Glua. .GAA .GAA .Glu .Ile .AtA .ATCC .Ccc .Ser .ccc .Ser	Gly GGA Gly Alac GCC Ala Phet I Lys AAG AAG AAG AAG Lys	90 Leu .CTG .TTG Phe .TTC .TTC Phe 130 Pro .CCC Pro 150 Val .CCC Val .CCC Val	Tyr .TAT .TAT .TAT Tyr Pro .CCA .CCA Pro Argg AGG Arg Ser .AGG .AGG .AGG .Ser	Gly .GGG .GGG Gly Thrc.ACC Thr .ACC Thr Phe .TTT .TTC Phe Gln .CAG Glp	His .CAT Tyr Lyss.AAG .AAG Lys .GGA .CGGA .CGGA .CGGA .CGGA .ACA .ACA	Lyss .AAA Lys .CAT .AAA Lys .CAT .ATG Met PH I .GTG .STG .CTG 	Tyr .TAT *** .GAG Glu .GAG Glu Pro .CCC *** .CCT Pro Ala .GCC *** .GCC	Leu .CTT .TT Leu Thr .ACT .ACT .CAA GIN ASP .GAT .CAS	Leu .CTG .CTA Leu Ala .GCC Ala Val .CTA Val .CTG .CTG .CTG .CTG	Val .GTG .GTT Val Lys .AAA .AAG Lys Leu .TTG Leu .TTG .Leu	Phe .TTT .TTT Phe .GTT .GTC .GTC .GGG .GGG .SGG .SGG .SGG .SGG .SGG .SG	100 Val ATA 11e 120 Val GTG ** GTA Val 140 Thr Thr 140 Ile ATT *** .ATT

FIG. 5. Comparison of the nucleotide sequences and predicted amino acid sequences of the 3' pol gene products of revertant H11R and wild-type M-MuLV. The top lines show the amino acids and nucleotides of the revertant determined in this study; the bottom lines show those of the parent virus (42). The nucleotide sequence of plasmid pH11R was determined by the procedure of Maxam and Gilbert (32) in the region of interest. The amino acids are numbered beginning with methionine at position 835 of the pol gene; this residue is encoded by a codon beginning at nucleotide 5,189 counting from the left edge of the left long terminal repeat or nucleotide 4,740 counting from the 5' cap of the viral RNA. The 91-bp region deleted in mutant dl5401 is shaded. Conserved nucleotides are marked with asterisks. Amino acids different than those of the parent virus by virtue of nucleotide changes are shaded. The major restriction sites that differ between the two sequences are indicated. Not shown are 100 additional nucleotides of downstream sequences with no differences between revertant and parent.

genome of mouse cells (10). To determine whether the new sequences might have arisen from the mouse genome, Southern blot hybridizations were carried out. A probe containing only novel sequences was prepared by subcloning the 286-bp XbaI-to-HindIII fragment of pH11R into plasmid vector

pATH1 (T. J. Koerner and A. Tzagoloff, personal communication), forming plasmid pXH12 (Fig. 5). This DNA was then labeled by nick translation (37) and used to probe Southern blots of mouse genomic DNA, from either the BALB/c liver or the NIH/3T3 cell line, at moderate strin-

FIG. 6. Southern blot of mouse DNAs hybridized with a radioactive probe from the substitution region of revertant H11R. Mouse DNA (10 μ g/lane) was prepared from BALB/c liver cells (lanes B) or NIH/3T3 cells (lanes N), digested with restriction enzymes, and fractionated by electrophoresis on an agarose gel (0.6%) in Tris-borate-EDTA buffer. The DNA was denatured and transferred to nitrocellulose. The filter was hybridized with a radioactively labeled probe specific for the novel patch of DNA (plasmid pXH12) and washed at moderate stringency with 0.5× SSC at 65°C. The sizes and positions of migration of the *Hin*dIII fragments of phage lambda DNA are indicated.

gency. Sequences homologous to the probe were indeed detected. Cleavage of the mouse DNA with either EcoRI or HindIII released a spectrum of 10 to 20 bands ranging in size from 5 to more than 20 kb; the BALB/c and NIH/3T3 DNAs showed some bands of similar size, but there were many differences (Fig. 6). The number of bands, the sizes of the fragments, and the high degree of polymorphism are all consistent with the properties of the endogenous retroviral sequences (46, 47). Cleavage of the DNAs with *BamHI* released a few large fragments and in addition an intensely hybridizing 2.5-kb fragment (Fig. 6). The intensity of the signal suggests that this fragment is present 10 to 20 times in the mouse genome. Thus, this region is common to many of

the large EcoRI and HindIII fragments; the 2.5-kb fragment behaves like an internal fragment present in many members of a large family of related genes. The size of the *Bam*HI fragment is consistent with the notion that the repaired sequences originate from the family of endogenous type C viruses: a highly conserved fragment of this size has been found in NIH/3T3 DNA (26, 47) and in many molecular clones of these viruses (25). The blots could be washed stringently with 0.2× SSC at 65°C (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) without significant loss of signal (data not shown), suggesting close homology between the pXH12 probe and the endogenous genes.

DISCUSSION

Our initial characterization of deletion mutant dl5401 showed that the virus could enter cells and carry out reverse transcription normally, but could not establish the DNA product in a productive form in infected cells (41). In this report, we describe a reversion event which followed such an abortive infection and led ultimately to the formation of a replication-competent virus. Reversion of the mutation was unexpected because the original mutation was a deletion and removed part of an essential gene; no simple event would be able to restore this gene to allow normal function. Our analysis of the genome structure of the revertant revealed that the virus had repaired the lesion with an homologous region provided by the host genome of the infected cell. Thus, we have shown that defective viruses can repair their mutations by drawing on the complement of virus-like sequences in the host cell. This process may provide a good in vitro model for the recombination events which occur in experimental animals during the formation of MCF viruses from murine leukemia viruses and during the formation of "recovered" transforming viruses from transformation-defective avian sarcoma viruses (17, 51).

The source of the new DNA was apparently one of the many endogenous virus-like sequences present in the mouse germ line DNA. The close homology of the DNA to the genome of M-MuLV suggests that the DNA is part of a type C viral genome and that it could not have come from other endogenous virus-like DNAs, such as the genes encoding the VL30 RNAs (24) or the intracisternal type A particle genes (30). The source could be either an ecotropic or xenotropic type C provirus. The number and size of the homologous fragments released by cleavage with EcoRI and HindIII are consistent with this idea, and the abundant fragment released by cleavage with BamHI is the size of the internal BamHI fragment present in many endogenous genomes (47). Based on the available data, the source of the DNA could be a provirus closely related to the DNA of clone A12 (25, 26) obtained from AKR/J mice. In addition, the map of the new DNA is similar to, but not identical to, that of ecotropic Friend murine leukemia virus (33). The new DNA contains a pattern of restriction sites which is unusual for this region of the known murine leukemia viruses; there are no SstII, ClaI, or SphI sites, and there are one new HindIII site and two new XbaI sites. The existence of this pattern could be used to screen molecular clones of the endogenous sequences, and ultimately it might be possible to isolate the genomic DNA which served as the parent to the recombination event.

The mechanism of the recombination event and even the structure of the two partners at the time of the event remain unclear. One possibility is that homologous recombination between the unintegrated mutant DNA and the endogenous DNA occurred; this could have been either by an integration-excision cycle or by gene conversion. The size of the patch of DNA, about 400 bp, is a size commonly seen in gene conversion events in other systems (13). It should be noted, however, that homologous recombination between exogenous DNAs and host chromosomal DNA is exceedingly rare; numerous attempts to artificially induce such recombination events after the introduction of DNA into cells have met with little success (44; I. Lowy, Ph.D. thesis, Columbia University, New York, N.Y., 1984; R. Axel, personal communication). The appearance of the revertant required several weeks. Thus, the viral DNA would have to have persisted for some time in the abortively infected cells, at least until the rare recombination event could occur. One means by which the mutant virus could persist is by a low level of viral spread; if virus could spread at very low levels through the culture without integration, then there would be an extended period of time for the recombination to occur. We cannot detect viral DNA or virion-associated reverse transcriptase during the latency period, but low levels cannot be ruled out. Cells infected with a mutant of spleen necrosis virus that is unable to integrate by virtue of a deletion of the site for recombination do in fact support the spread of low levels of the virus (34).

A second possibility is that recombination occurred during reverse transcription of the mutant viral RNA. The process of replication is thought to be highly recombinogenic (4, 52); recombination frequencies as high as 10% during viral replication have been reported (54). Reverse transcriptase may actually switch from one template to a homologous template many times during synthesis of one molecule of viral DNA (11). Alternatively, strand displacement and assimilation could lead to similar products; the predicted recombination intermediates have been visualized as H-forms by electron microscopy (23). If this process is utilized in the reversion event, the endogenous sequences must be transcribed, and the resulting mRNAs must be brought in proximity to the mutant genome during reverse transcription. The NIH/3T3 cell line is not known to express its endogenous genomes, and viable viruses are not usually recovered from the cells of NIH/Swiss mice (28, 35) by the procedures which do induce virus from BALB/c and other mouse cell lines (1, 48). Northern blots of our strain of NIH/3T3 cells with an M-MuLV probe did not reveal any detectable mRNAs with homology to the virus (data not shown), but low levels of such mRNAs may be synthesized. If they are formed, these mRNAs could be copackaged into virions along with the mutant genome because the retroviral genome is packaged as a 70S dimer. This would also require at least some spread of the mutant virus through the culture before the recombination event.

The recovery of recombinant virus demonstrates that at least some of the endogenous viral genomes in the host contain long stretches of sequence which are fully functional. The region acquired by mutant dl5401 encodes a protein needed for establishment of the proviral DNA in the infected cells; most probably this protein is a nuclease involved in the integration of the provirus (41). This region has been noted as particularly well conserved among the retroviruses (9, 49). Furthermore, it is interesting that good homology to exactly this region has been detected in human DNA (5). Thus, the genomes of both mice and humans may contain intact genes which are involved in carrying out site-specific recombination reactions; it seems likely that intact genes for other viral functions, such as reverse transcription and membrane fusion, might also be present. The systematic application of this procedure should allow a rapid

survey of the capability of the complement of endogenous viral sequences of a cell to provide functional viral genes. These genes represent a repository of functional sequences which can be used by an exogenous virus as needed; they offer unexpected flexibility to such viruses to evolve very rapidly. Similar events presumably allow the formation of recombinant viruses with enhanced leukemogenicity in infected animals. It is possible that these genes may even be used by uninfected cells to carry out reactions such as reverse transcription and DNA transposition.

ACKNOWLEDGMENTS

We are indebted to Jan Van Oostrum for T4 DNA ligase, to Fred Alt for phage packaging extracts, and to Margaret Grimes for technical assistance.

This work was supported by Public Health Service grant CA 30488 from the National Cancer Institute and by an award from the Chicago Community Trust/Searle Scholars Program. Salary support for S.P.G. was provided by the Irma T. Hirschl Trust.

LITERATURE CITED

- 1. Aaronson, S., G. J. Todaro, and E. M. Scolnick. 1971. Induction of murine C-type viruses from clonal lines of virus-free BALB/3T3 cells. Science 174:157–159.
- 2. Aaronson, S. A., and J. R. Stephenson. 1976. Endogenous type-C RNA viruses of mammalian cells. Biochim. Biophys. Acta 458:323–354.
- 3. Benton, W. D., and R. W. Davis. 1977. Screening lambda gt recombinant clones by in situ hybridization to single plaques. Science 196:180-182.
- 4. Blair, D. G. 1977. Genetic recombination between avian leukosis and sarcoma viruses. Virology 77:534–544.
- Bonner, T. I., C. O'Connell, and M. Cohen. 1982. Cloned endogenous retroviral genomes from human DNA. Proc. Natl. Acad. Sci. U.S.A. 79:4709–4713.
- Chattopadhyay, S. K., M. R. Lander, S. Gupta, E. Rands, and D. Lowy. 1981. Origin of mink cytopathic focus-forming (MCF) viruses: comparison with ecotropic and xenotropic murine leukemia virus genomes. Virology 113:465–483.
- Chattopadhyay, S. K., M. R. Lander, E. Rands, and D. R. Lowy. 1980. Structure of endogenous murine leukemia virus DNA in mouse genomes. Proc. Natl. Acad. Sci. U.S.A. 77:5774–5778.
- Chattopadhyay, S. K., W. P. Rowe, N. M. Teich, and D. R. Lowy. 1975. Definitive evidence that the murine C-type virus inducing locus Akv-1 is viral genetic material. Proc. Natl. Acad. Sci. U.S.A. 72:906–910.
- Chiu, I.-M., R. Callahan, S. R. Tronick, J. Schlom, and S. A. Aaronson. 1984. Major pol progenitors in the evolution of oncoviruses. Science 223:364–370.
- Coffin, J. 1982. Endogenous viruses, p. 1109–1203. In R. Weiss, N. Teich, H. Varmus, and J. Coffin (ed.), RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Coffin, J. M. 1979. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42:1-26.
- 12. Fischinger, P. J., S. Nomura, and D. P. Bolognesi. 1975. A novel murine oncornavirus with dual eco- and xenotropic properties. Proc. Natl. Acad. Sci. U.S.A. 72:5150-5155.
- Fogel, S., R. K. Mortimer, and K. Lusnak. 1981. Mechanisms of meiotic gene conversion, or wanderings on a foreign strand, p. 289-339. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
- Gelb, L. D., J. B. Milstein, M. A. Martin, and S. A. Aaronson. 1973. Characterization of murine leukemia virus-specific DNA present in normal mouse cells. Nature (London) New Biol. 244:76-79.
- 15. Goff, S. P., E. Gilboa, O. N. Witte, and D. Baltimore. 1980. Structure of the Abelson murine leukemia virus genome and the

homologous cellular gene: studies with cloned viral DNA. Cell 22:777-785.

- Goff, S. P., P. Traktman, and D. Baltimore. 1981. Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J. Virol. 38:239-248.
- Hanafusa, H., C. C. Halpern, D. L. Buchhagen, and S. Kawai. 1977. Recovery of avian sarcoma virus from tumors induced by transformation-defective mutants. J. Exp. Med. 146:1735–1747.
- Hartley, J. W., N. K. Wolford, L. J. Old, and W. P. Rowe. 1977. A new class of murine leukemia virus associated with development of spontaneous leukemias. Proc. Natl. Acad. Sci. U.S.A. 74:789-792.
- Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365–371.
- Hoggan, M. D., C. E. Buckler, J. F. Sears, W. P. Rowe, and M. A. Martin. 1983. Organization and stability of endogenous xenotropic murine leukemia virus proviral DNA in mouse genomes. J. Virol. 45:473–477.
- Hohn, B. 1979. In vitro packaging of lambda and cosmid DNAs. Methods Enzymol. 68:299–309.
- Jenkins, N. A., N. G. Copeland, B. A. Taylor, and B. K. Lee. 1982. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of *Mus musculus*. J. Virol. 43:26–36.
- Junghans, R. P., L. R. Boone, and A. M. Skalka. 1982. Retroviral DNA H structures: displacement-assimilation model of recombination. Cell 30:53-62.
- Keshet, E., Y. Shaul, J. Kaminchik, and H. Aviv. 1980. Heterogeneity of "virus-like" genes encoding retrovirus-associated 30S RNA and their organization within the mouse genome. Cell 20:431-439.
- 25. Khan, A. S. 1984. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses. J. Virol. 50:864–871.
- Khan, A. S., W. P. Rowe, and M. A. Martin. 1982. Cloning of endogenous murine leukemia virus-related sequences from chromosomal DNA of BALB/c and AKR/J mice: identification of an *env* progenitor of AKR-247 mink cell focus-forming proviral DNA. J. Virol. 44:625-636.
- Kopchick, J. J., W. L. Karshin, and R. B. Arlinghaus. 1979. Tryptic peptide analysis of gag and gag-pol gene products of Rauscher murine leukemia virus. J. Virol. 30:610-623.
- Levy, J. A. 1978. Xenotropic type C viruses. Curr. Top. Microbiol. Immunol. 79:109–213.
- Lobel, L. I., and S. P. Goff. 1984. Construction of mutants of Moloney murine leukemia virus by suppressor-linker insertional mutagenesis: positions of viable insertion mutations. Proc. Natl. Acad. Sci. U.S.A. 81:4149–4153.
- Lueders, K. K., and E. L. Kuff. 1977. Sequences associated with intracisternal A particles are reiterated in the mouse genome. Cell 12:963-972.
- Martin, M. A., T. Bryan, S. Rasheed, and A. S. Khan. 1981. Identification and cloning of endogenous retroviral sequences present in human DNA. Proc. Natl. Acad. Sci. U.S.A. 78:4892-4896.
- 32. Maxam, A., and W. Gilbert. 1979. Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
- 33. Oliff, A. I., G. L. Hager, E. H. Chang, E. M. Scolnick, H. W. Chan, and D. Lowy. 1980. Transfection of molecularly cloned friend murine leukemia virus DNA yields a highly leukemogenic helper-independent type C virus. J. Virol. 33:475–486.
- 34. Panganiban, A. T., and H. M. Temin. 1983. The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature (London) 306:155–160.
- 35. Pincus, T. 1980. The endogenous murine type C viruses, p.

77-130. In J. Stephenson (ed.), Molecular biology of RNA tumor viruses. Academic Press, Inc., New York.

- Repaske, R., R. R. O'Neill, P. E. Steele, and M. A. Martin. 1983. Characterization and partial nucleotide sequence of endogenous type C retrovirus segments in human chromosomal DNA. Proc. Natl. Acad. Sci. U.S.A. 80:678–682.
- Rigby, P. W. J., M. Dieckmann, C. Rhodes, and P. Berg. 1977. Labelling of DNA to high specific activity by nick translation. J. Mol. Biol. 113:237–258.
- Rowe, W. P., W. E. Pugh, and J. W. Hartley. 1970. Plaque assay techniques for murine leukemia viruses. Virology 42:1136–1139.
- Schwartzberg, P., J. Colicelli, and S. P. Goff. 1983. Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent. J. Virol. 46:538-546.
- Schwartzberg, P., J. Colicelli, and S. P. Goff. 1984. Mutations in the gag gene of Moloney murine leukemia virus: effects on production of virions and reverse transcription. J. Virol. 49:918–924.
- 41. Schwartzberg, P., J. Colicelli, and S. P. Goff. 1984. Construction and analysis of deletion mutations in the *pol* gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043-1052.
- Shinnick, T. M., R. A. Lerner, and J. G. Sutcliffe. 1981. Nucleotide sequence of Moloney murine leukemia virus. Nature (London) 293:543-548.
- Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
- 44. Steele, R. E., A. H. Bakken, and R. H. Reeder. 1984. Plasmids containing mouse rDNA do not recombine with cellular ribosomal genes when introduced into cultured mouse cells. Mol. Cell. Biol. 4:576-582.
- 45. Steffen, D., S. Bird, W. P. Rowe, and R. A. Weinberg. 1979. Identification of DNA fragments carrying ecotropic proviruses of AKR mice. Proc. Natl. Acad. Sci. U.S.A. 76:4554–4558.
- Steffen, D., and R. A. Weinberg. 1978. The integrated genome of murine leukemia virus. Cell 15:1003–1010.
- Steffen, D. L., R. Mural, D. Cowing, J. Mielcarz, J. Young, and R. Roblin. 1982. Most of the murine leukemia virus sequences in the DNA of NIH/Swiss mice consist of two closely related proviruses, each repeated several times. J. Virol. 43:127–135.
- Teich, N., D. R. Lowy, J. W. Hartley, and W. P. Rowe. 1973. Studies of the mechanism of induction of infectious murine leukemia virus from AKR mouse embryo cell lines by 5-iododeoxyuridine and 5-bromodeoxyuridine. Virology 51:163–173.
- Toh, H., H. Hayashida, and T. Miyata. 1983. Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. Nature (London) 305:827–829.
- 50. Wahl, G. M., M. Stern, and G. R. Stark. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization using dextran sulphate. Proc. Natl. Acad. Sci. U.S.A. 76:3683–3687.
- Wang, L.-H., C. C. Halpern, M. Nadel, and H. Hanafusa. 1978. Recombination between viral and cellular sequences generates transforming sarcoma virus. Proc. Natl. Acad. Sci. U.S.A. 75:5812-5816.
- 52. Weiss, R. A., W. S. Mason, and P. K. Vogt. 1973. Genetic recombinants and heterozygotes derived from endogenous and exogenous avian RNA tumor viruses. Virology 52:535-552.
- Wigler, M., R. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel. 1979. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16:777-785.
- Wyke, J. A., J. G. Bell, and J. A. Beaumand. 1975. Genetic recombination among temperature-sensitive mutants of Rous sarcoma virus. Cold Spring Harbor Symp. Quant. Biol. 39:897-905.