## **Supplemental Material Section For**

Induced Fit Conformational Changes of a "Reversed Amidine" Heterocycle:

## **Optimized Interactions in a DNA Minor Groove Complex**

Manoj Munde,<sup>†</sup>Michael Lee,<sup>‡</sup> Stephen Neidle,<sup>‡,\*</sup> Reem Arafa,<sup>†</sup> David W. Boykin,<sup>†,\*</sup>

Yang Liu,<sup>†</sup> Christian Bailly,<sup>x, #</sup> W. David Wilson<sup>†,\*</sup>

## Scheme 1



Reagents and reaction conditions: a. ZnCl<sub>2</sub>, benzene, *t*-BuOH, TEA, r.t.; b. NH<sub>4</sub>OAc, EtOH, HOAc, reflux, 5 h; c. Pd/C (10%), H<sub>2</sub>, EtOH, EtOAc, 6 h; d. MeCN, EtOH, r.t.

## Chemistry.

Melting points were recorded using a Thomas-Hoover (Uni-Melt) capillary melting point apparatus and are uncorrected. TLC analysis was carried out on silica gel 60  $F_{254}$  precoated aluminum sheets and detected under UV light. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded employing a Varian Unity Plus 300 spectrometer, and chemical shifts ( $\delta$ ) are in

ppm relative to TMS as internal standard. Mass spectra were recorded on a VG analytical 70-SE spectrometer. Elemental analyses were obtained from Atlantic Microlab Inc. (Norcross, GA) and are within  $\pm 0.4$  of the theoretical values, except for DB1419, which was validated by HRMS. The compounds reported as salts frequently analyzed for fractional moles by water and/or ethanol of solvation. In each case proton NMR showed the presence of indicated solvent(s). All chemicals and solvents were purchased from Aldrich Chemical Co., Fisher Scientific or Lancaster.

**DB1390 2,5-Bis[4-(acetimidoylamino)phenyl]pyrrole.** Yield 83%, mp 175-7  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  2.21 (s, 6H), 6.55 (br s, 4H), 6.62 (s, 2H), 7.15 (d, J = 8.4 Hz, 4H), 7.82 (d, J = 8.4 Hz, 4H), 11.31 (br s, 1H).

**Salt:** mp 248-50  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  2.36 (s, 6H), 6.71 (s, 2H), 7.30 (d, J = 8.4 Hz, 4H), 9.97 (d, J = 8.4 Hz, 4H), 8.56 (br s, 2H), 9.58 (br s, 2H), 11.58 (br s, 3H); <sup>13</sup>C-NMR  $\delta$  164.0, 132.6, 132.0, 131.7, 125.2, 108.7, 18.8. HRMS Calc. for C<sub>20</sub>H<sub>22</sub>N<sub>5</sub> ms 332.1875; observed 332.1860. Anal. Calcd. for C<sub>20</sub>H<sub>21</sub>N<sub>5</sub>-2HCl-1.6H<sub>2</sub>O-0.8C<sub>2</sub>H<sub>5</sub>OH (470.01): C % 55.19, H % 6.64, N % 14.90. Found: C % 55.35, H % 6.87, N % 14.52.

**DB1393 2,5-Bis[4-(4-ethylbenzimido)aminophenyl]pyrrole.** Yield 63%, mp 252-4  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.20 (t, J = 7.5 Hz, 6H), 2.65 (q, J = 7.5 Hz, 4H), 6.29 (br s, 4H), 6.46 (s, 2H), 6.88 (d, J = 8.1 Hz, 4H), 7.26 (d, J = 8.1 Hz, 4H), 7.71 (d, J = 8.1 Hz, 4H), 7.88 (d, J = 8.1 Hz, 4H), 11.02 (br s, 1H). <sup>13</sup>C-NMR  $\delta$  153.9, 148.0, 145.8, 133.3, 132.7, 127.3, 127.0, 126.6, 124.7, 121.8, 106.2, 27.9, 15.4.

**Salt:** mp >300 <sup>0</sup>C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) δ 1.22 (t, J = 7.5 Hz, 6H), 2.73 (q, J = 7.5 Hz, 4H), 6.76 (s, 2H), 7.45-7.52 (m, 8H), 7.85-8.05 (m, 8H), 8.98 (br s, 2H), 9.80 (br s, 2H),

11.46 (br s, 2H), 11.62 (br s, 1H). HRMS Calc. for  $C_{34}H_{34}N_5$  ms 512.2814; observed 512.2800. Anal. Calcd. for  $C_{34}H_{33}N_5$ -2HCl-2H<sub>2</sub>O-0.25C<sub>2</sub>H<sub>5</sub>OH (632.13): C % 65.55, H % 6.45, N % 11.07. Found: C % 65.66, H % 6.08, N % 10.75.

**DB1419 2,5-Bis[4-(4-***t***-butylbenzimido)aminophenyl]pyrrole.** Yield 59%, mp 269-71  ${}^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.30 (s, 18H), 6.26 (br s, 4H), 6.47 (s, 2H), 6.87 (d, J = 8.4 Hz, 4H), 7.44 (d, J = 8.4 Hz, 4H), 7.71 (d, J = 8.4 Hz, 4H), 7.89 (d, J = 8.4 Hz, 4H), 11.03 (br s, 1H). MS (ESI) m/e (rel. int.): 568 (M<sup>+</sup> + 1, 14), 409 (15), 284 (100).

**Salt:** mp 265-7  ${}^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.34 (s, 18H), 6.76 (s, 2H), 7.46 (d, J = 8.1 Hz, 4H), 7.68 (d, J = 8.1 Hz, 4H), 7.88 (d, J = 8.1 Hz, 4H), 8.03 (d, J = 8.1 Hz, 4H), 9.01 (br s, 2H), 9.80 (br s, 2H), 11.45 (br s, 2H), 11.62 (br s, 1H). <sup>13</sup>C-NMR  $\delta$  162.8, 157.1, 132.7, 132.2, 128.7, 125.8, 125.6, 125.2, 108.9, 35.0, 30.8. HRMS Calc. for C<sub>38</sub>H<sub>42</sub>N<sub>5</sub> ms 568.3440; observed 568.3433. Anal. Calcd. for C<sub>38</sub>H<sub>41</sub>N<sub>5</sub>-2HCl-2.75H<sub>2</sub>O (690.22): C % 66.12, H % 7.08, N % 10.14. Found: C % 65.77, H % 6.54, N % 10.07.

**DB1480 2,5-Bis[4-(4-biphenylimino)aminophenyl]pyrrole** Yield 54%, mp >300  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  6.41 (br s, 4H), 6.49 (s, 2H), 6.90 (d, J = 8.4 Hz, 4H), 7.36-7.51 (m, 8H), 7.72-7.75 (m, 10H), 8.07 (d, J = 8.4 Hz, 4H), 11.05 (br s, 1H). HRMS Calc. for C<sub>42</sub>H<sub>34</sub>N<sub>5</sub> ms 608.2814; observed 608.2827.

**Salt:** mp 252-4  ${}^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  6.78 (s, 2H), 7.46-7.56 (m, 10H), 7.81 (d, J = 8.1Hz, 4H), 7.97-8.04 (m, 12H), 9.07 (br s, 2H), 9.93 (br s, 2H), 11.64 (br s, 3H). <sup>13</sup>C-NMR  $\delta$  162.6, 145.0, 138.2, 132.6, 132.0, 129.3, 128.9, 128.4, 127.1, 126.7, 126.6, 125.4, 125.0, 119.7, 108.5. Anal. Calcd. for C<sub>42</sub>H<sub>33</sub>N<sub>5</sub>-2HCl-1.75H<sub>2</sub>O (712.19): C % 70.83, H % 5.44, N % 9.83. Found: C % 70.84, H % 5.45, N % 9.84.

*S*-(2-Naphthylmethyl)-4-ethylbenzothioimidate.HBr. Yield 75%, mp 190-2  $^{\circ}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.18 (t, J = 7.5 Hz, 3H), 2.70 (q, J = 7.5 Hz, 4H), 4.93 (s, 2H), 7.47-7.65 (m, 5H), 7.83-7.99 (m, 5H), 8.07 (s, 1H). MS (ESI) m/e (rel. int.): 307 (M<sup>+</sup> + 2, 16), 306 (M<sup>+</sup> + 1, 100).

*S*-(2-Naphthylmethyl)-4-*t*-butylbenzothioimidate.HBr. Yield 60%, mp 193-4  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.29 (s, 9H), 4.91 (s, 2H), 7.52-7.61 (m, 3H), 7.65 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.90-7.99 (m, 3H), 8.06 (s, 1H). MS (ESI) m/e (rel. int.): 335 (M<sup>+</sup> + 2, 22), 334 (M<sup>+</sup> + 1, 100).

*S*-(2-Naphthylmethyl)-2-naphthylthioimidate.HBr. Yield 65%, mp 192-4  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  4.91 (s, 2H), 7.51-7.57 (m, 4H), 7.71-7.85 (m, 6H), 8.01-8.15 (m, 3H), 8.58 (s, 1H). MS (ESI) m/e (rel. int.): 329 (M<sup>+</sup> + 2, 23), 328 (M<sup>+</sup> + 1, 100).

*S*-(2-Naphthylmethyl)-4-biphenylthioimidate.HBr. Yield 73%, mp 215-6  $^{0}$ C; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$  4.93 (s, 2H), 7.45-7.57 (m, 5H), 7.65 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.91-8.02 (m, 7H), 8.08 (s, 1H). MS (ESI) m/e (rel. int.): 335 (M<sup>+</sup> + 2, 10), 354 (M<sup>+</sup> + 1, 100).



**Figure S1.** (A)Thermal melting curves of polydA.polydT in the absence and presence of DB884, DB613 and DB890 in cacodylic acid buffer. The ratio of compound to base pair of DNA is 0.3:1. (B)Thermal melting curves of DNA oligomer containing AATT sites in the absence and presence of DB884, DB613 DB890 and Db1390 at 1:1 ratio of compound to DNA oligomer.



Figure S2. RU values are plotted against the unbound compound concentration,  $C_f$  (flow solution) for DB262 binding to AATT DNA hairpin. The data was fitted to one site model using equation 1.

| Supporting Information Table 1. | Crystallographic data. |
|---------------------------------|------------------------|
|---------------------------------|------------------------|

| Structure                                     | DB 884 - d(CGCGAATTCGCG) <sub>2</sub>                 |
|-----------------------------------------------|-------------------------------------------------------|
| Space group                                   | <i>P</i> 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |
| Unit cell dimensions (Å)                      | a = 24.380, b = 40.102, c = 65.627                    |
| Date of collection                            | 10-Feb-2006                                           |
| Wavelength (Å)                                | 1.54178                                               |
| Resolution range (Å)                          | 25.00 - 1.86                                          |
| Data cut-off ( $\sigma$ )                     | 0.0                                                   |
| Measured reflections                          | 15784                                                 |
| Unique reflections                            | 5536                                                  |
| $I/\sigma$ (I) for the data (in outer shell)  | 35.93 (4.31)                                          |
| Data redundancy                               | 2.85                                                  |
| R <sub>merge</sub> (in outer shell) (%)       | 4.3 (21.4)                                            |
| Completeness (in outer shell) (%)             | 94.7 (91.3 for 1.93 - 1.86)                           |
| Free R (%)                                    | 31.0                                                  |
| R-factor (%)                                  | 21.9                                                  |
| R.m.s.d. bond lengths (Å)                     | 0.006                                                 |
| R.m.s.d. bond angle distances (Å)             | 0.025                                                 |
| DNA atoms                                     | 486                                                   |
| DB 884 atoms                                  | 35                                                    |
| Hydrated magnesium atoms                      | 7                                                     |
| Full occupancy water molecules                | 38                                                    |
| DNA B-factor $(Å^2)$                          | 30.3                                                  |
| DB 884 B-factor (Å <sup>2</sup> )             | 54.3                                                  |
| Hydrated magnesium B-factor (Å <sup>2</sup> ) | 26.0                                                  |
| Water molecules B-factor ( $Å^2$ )            | 40.6                                                  |