Supporting Information

Hydrazone and Hydrazide-Containing N-Substitued Glycines as Peptoid Surrogates for Expedited Library Synthesis: Application to the Preparation of Tsg101-Directed HIV-1 Budding Antagonists

Fa Liu,¹ Andrew G. Stephen,² Catherine Adamson,³ Karine Gousset,³ M. Javad Aman,⁴ Eric O. Freed,³ Robert J. Fisher,² Terrence R. Burke, Jr.^{1*}

¹Laboratory of Medicinal Chemistry, CCR, NCI-Frederick, NIH, Bldg. 376 Boyles St., Frederick, MD 21702 and ²Protein Chemistry Laboratory, SAIC-Frederick, Inc. and ³HIV Drug Resistance Program, CCR, NCI-Frederick and ⁴U.S. Army Medical Research Institute for Infectious Diseases, Frederick, MD

Human Tsg101 UEV Domain E.coli Expression and Purification

The human Tsg101 UEV domain with a C-terminal His-Tag (hTsg101-UEV-His) was expressed in *E.coli* using the pET expression system and host strain BL21(DE3)pLysS (Novagen). Briefly, hTsg101-UEV was PCR amplified using the following primers; 5'-GGCCATGGCGGTGTCGGAGAGCCAGC-3' and 5'-CCTCGAGAGGACGAGAGAA GACTGG-3' and cloned into pET21b (Novagen), placing hTsg101-UEV in-frame with a C-terminal His-Tag. Protein expression was induced at O.D₆₀₀ 0.4-0.6 with 1 mM IPTG (Novagen) for 3 hours at 37° C. The resultant bacterial pellet was sonicated in 1 x phosphate buffer containing 20mM Imidazole and Benzoase nuclease (Novagen). The hTsg101-UEV-His protein was purified to approximately 90% purity using the HisTrap HP kit (Amersham Biosciences) (Figure 1). The manufacture's protocol was optimized with a pre-elution wash using 1 x phosphate buffer containing 80 mM imidazole and elution performed with 1 x phosphate buffer containing 300 mM Imidazole. Buffer exchange into PBS and protein concentration was performed using vivaspin 20, 5000 MWCO columns (Vivascience). The purified protein was verified by SDS-PAGE stained with GelCode Blue (Pierce; Figure 1) and protein concentration estimated with the Quick start Bradford protein assay (Bio-Rad).

Figure 1. The human Tsg101-UEV domain with a C-terminal His-Tag was expressed in *E.coli* using the pET expression system and host strain BL21(DE3)pLysS (Novagen). Protein purification was performed using the His-tagged HP kit (Amersham Biosciences). The purified and concentrated protein was verified by SDS-PAGE stained with GelCode blue (Pierce).

Fluorescence Anisotropy Assays

Fluorescence anisotropy is based on the observation that when a fluorescent molecule is excited with plane-polarized light, it emits polarized fluorescent light into a fixed plane if the molecules are stationary between excitation and emission.¹ Because molecules are not stationary but tumble and rotate the fluorescence anisotropy of the molecule is proportional to the molecule's molecular volume (if viscosity and temperature are constant). Smaller molecules rotate fast but when they interact with large molecules and there rotation is slowed and the anisotropy of the smaller molecule is increased. This phenomenon can be used to study molecular interactions. The fluorescence anisotropy is a measure of the ratio of the emission intensities from the parallel and perpendicular planes.

Equilibrium binding isotherms for TSG101 binding to peptoids were monitored by fluorescence anisotropy using methods developed previously.² Serial dilutions of TSG101 protein were mixed in 96-well Costar polypropylene plates (Corning, NY) with 20 - 50 nM peptoids labeled at the N-terminus with fluorescein in 20 mM HEPES, 150 mM NaCl, pH 7.5, 5 mM β -mercaptoethanol, 100 μ M TCEP. After 10min incubation, 2

aliquots of 50 μ L were removed and transferred into 384-well Costar polypropylene plates (Corning, NY) and read using a Tecan Ultra plate reader (Durham, NC) with excitation and emission wavelengths at 485 nm and 535 nm, respectively. Curves were fit assuming a single binding site per oligonucleotide, using the relation:

$$An(C) = \frac{\left(\left(R \cdot An_{bound} - An_{free}\right) \cdot \left(\left\{K_{d} + C + Lt\right) - \left[\left(K_{d} + C + Lt\right)^{2} - 4 \cdot Lt \cdot C\right]^{1/2}\right\} \cdot 2Lt\right) + An_{free}\right)}{\left(\left(R - 1\right) \cdot \left(\left\{K_{d} + C + Lt\right) - \left[\left(K_{d} + C + Lt\right)^{2} - 4Lt \cdot C\right]^{1/2}\right\} \cdot (2Lt)\right) + 1\right)}$$
(1)

where An(C) is the measured anisotropy as a function of concentration, Lt is the oligonucleotide concentration, An_{free} is the anisotropy of unbound peptoid, An_{bound} is the anisotropy of the bound peptoid solution, R is the ratio of the fluorescence intensity of bound peptoid relative to free peptoid, C is the protein concentration, and K_d is the measured dissociation constant resulting from the fit.¹ A plot of binding data is shown in Figures 2 and 3.

Figure 2. Results of FA assays measuring the binding of peptide analogues to Tsg101 protein: (A) Peptoid hydrazones; (B) Peptoid hydrazides.

Figure 3. Results of FA assays measuring the binding of peptide analogues to Tsg101 protein.

Synthetic Experimental

Bromoacetic acid 2-propenyl ester (6). To a soluton of allyl alcohol (20.5 mL, 0.30 mol), triethylamine (46 mL, 0.33 mol) and 4-dimethylaminopyridine (1.83 g, 1.50 mmol) in dichloromethane (600 mL) at 0° C, was added bromoacetyl bromide (26.0 mL, 0.30 mol) dropwise then the reaction mixture was warmed to room temperature, and stirred overnight. The solution was washed with H₂O (2 x 150 mL) and brine (150 mL), dried (Na₂SO₄) and solvent was removed under vacuum. Distillation (80° C at 3.5 Torr) afforded known **6**³ as a colorless oil (27.2 g, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.92 (m, 1 H), 5.35 (m, 2 H), 4.67 (m, 2 H), 3.87 (s, 2 H).

C₁₀H₁₈N₂O₄ Exact Mass: 230.13 Mol. Wt.: 230.26

2-[(2'-Propenyloxy)-2-oxoethyl]hydrazinecarboxylic acid 1,1-dimethylethyl ester (7). A mixture of ester 6 (25.0 g, 0.140 mol) and *tert*-butyl carbazate (17.5 g, 0.126 mol) in *N*, *N*-diisopropylethylamine (150 mL) was stirred at room temperature (48 h). Solvent was removed under vacuum, the residue was dissolved in ethyl acetate (200 mL), washed with H₂O (2 x100 mL) and brine (50 mL), dried (Na₂SO₄) and solvent was removed under vacuum. Purification by silical flash chromatography (hexane and ethyl acetate) afforded 7 as a viscous colorless oil (21.0 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.40 (brs, 1 H), 5.92 (m, 1 H), 5.32 (m, 2 H), 4.65 (m, 2 H), 3.70 (s, 2 H), 1.45 (s, 9H). FAB-MS (+VE) *m/z*: 231.1 (M + H)⁺. HR-MS (NH₃/Cl) (M + H)⁺: 231.1355, Calc: 231.1350.

NHFmoc Boc C₂₈H₃₃N₃O₇ Exact Mass: 523.23 Mol. Wt.: 523.58

2-[(1,1-Dimethylethoxy)carbonyl]-1-[2-(2'-propenyloxy)-2-oxo-1ethyl]hydrazide-N-[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine (8). To a solution of N-Fmoc-L-Ala-OH (5.42 g, 17.4 mmol) in N,N-dimethylforamide (30 mL) at 0° C was added 4-methylmorpholine (2.40 mL, 21.7 mmol) followed by isobutyl chloroformate (2.50 mL, 19.1 mmol) and the reaction mixture was stirred at 0° C (10 minutes). A solution of 7 (2.00 g, 8.70 mmol) in N,N-dimethylforamide (10 mL) was added then the reaction mixture was warmed to room temperature and stirred overnight. The reaction mixture was diluted by ethyl acetate (200 mL), washed with H₂O (3 x 50 mL) and brine, dried (Na₂SO₄) and solvent was removed under vacuum. Purification by silical flash chromatography (hexane and ethyl acetate) afforded 8 as a colorless oil (3.60 g, 79%) yield). ¹H NMR (400 MHz, DMSO-d6) δ 9.80 (brs, 1 H), 7.84 (d, J = 7.2 Hz, 2 H), 7.70 (t, J = 7.4 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 1 H), 7.64 (m, 2 H), 7.28 (t, J = 7.6 Hz, 2 H), 5.85 (m, 1 H), 5.25 (d, J = 15.6 Hz, 1 H), 5.15 (d, J = 10.4 Hz, 1 H), 4.70 – 4.40 (brs, 3 H, rotamers), 4.40 - 3.50 (brs, 5 H, rotamers), 1.50 - 1.30 (m, 9 H), 1.20 (m, 3 H). ¹³C NMR (400 MHz, DMSO-d6) & 175.2, 170.6, 169.5, 169.3, 168.1, 155.8, 144.4, 144.2, 141.1, 132.9, 132.6, 128.0, 127.5, 125.7, 120.5, 118.2, 81.0, 79.0, 66.1, 65.4, 64.9, 47.1, 46.9, 28.5, 28.3. FAB-MS (+VE) m/z: 524.2 (M + H)+. HR-FAB (M + Na)⁺: 546.2255, Calc: 546.2236.

C₂₅H₂₉N₃O₇ Exact Mass: 483.20 Mol. Wt.: 483.51

2-[(1,1-Dimethylethoxy)carbonyl]-1-[2-carboxy-1-ethyl]hydrazide-*N*-**[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine (9)**. A solution of dipeptide **8** (3.60 g, 6.88 mmol) in anhydrous tetrahydrofuran (120 mL) was degassed under argon for 5 minutes, then morpholine (3.10 mL, 34.3 mmol) and tetrakis(triphenylphosphine)palladium (0)

(824 mg, 0.71 mmol) was added and the mixture was stirred at room temperature (30 minutes). The reaction mixture was acidified with aqueous HCl (0.10 N, 50 mL) then tetrahydrofuran was removed under vacuum. The residue was extracted with ethyl acetate (2 x100 mL), washed with aqueous HCl (0.10 N, 2 x 50 mL), brine (50 mL) and purified by silical gel flash chromatography (dichloromethane and methanol) to afford a viscous yellow oil. This was dissolved in 50% aqueous acetonitrile (50 mL) and lyophilized to provided **9** as a pale yellow powder in (3.00 g, 90% yield). ¹H NMR (400 MHz, DMSO-d6) δ 9.70 (brs, 1 H), 7.83 (d, *J* = 7.6 Hz, 2 H), 7.69 (t, *J* = 8.0 Hz, 2 H), 7.60 – 7.35 (m, 3 H), 7.28 (dt, *J* = 7.6, 1.2 Hz, 2 H), 4.70 – 4.40 (brs, 2 H, rotamers), 4.25 – 4.15 (m, 3 H), 4.00 – 3.40 (m, 1 H, rotamers), 1.50 – 1.30 (m, 9 H), 1.18 (m, 3 H). ¹³C NMR (400 MHz, DMSO-d6) δ 175.0, 170.3, 155.8, 155.0, 144.4, 144.2, 141.1, 133.5, 132.5, 132.0, 129.2, 129.1, 128.1, 127.5, 125.8, 120.5, 81.0, 66.2, 50.5, 47.1, 46.8, 28.3. FAB-MS (-VE) *m/z*: 482.1 (M - H)⁻. HR-FAB (M + Na)⁺: 506.1907, Calc: 506.1905.

C₁₀H₁₉NO₂ Exact Mass: 185.14 Mol. Wt.: 185.26

Pentylamine-acetic acid allyl ester (14a). To a solution of Bromoacetic acid 2propenyl ester **6** (2.0 g, 11.2 mmol) in dichloromethane (50 mL), was added triethylamine (3.2 mL, 22.4 mmol) and pentylamine (1.94 mL, 16.8 mmol). The mixture was stirred overnight and diluted by ethyl acetate (150 mL), washed by H₂O (50 mL x 2) and brine (50 mL), dried over sodium sulfate and purified by silical gel column (hexane and ethyl acetate) to afford 1.40 g pale yellow oil in 63% yield.¹H NMR (400 MHz, CDCl₃) δ 5.94 (m, 1 H), 5.30 (m, 2 H), 4.63 (dt, *J* = 5.6, 1.2 Hz, 2 H), 3.44 (s, 2 H), 2.60 (t, *J* = 7.2 Hz, 2 H), 1.65 (brs, 1 H), 1.50 (m, 2 H), 1.34 – 1.29 (m, 4 H), 0.90 (m, 3 H). ¹³C NMR (400 MHz, DMSO-d6) δ 172.3, 133.0, 118.0, 64.7, 50.7, 49.1, 29.6, 29.4, 22.5, 14.3. FAB-MS (+VE) *m/z*: 186.2 (M + H)⁺. HR-MS (NH₃/Cl) (M + H)⁺: 186.1482, Calc: 186.1488.

(3,4-Dimethoxy-phenethylamino)-acetic acid allyl ester (14b). Nuclearphilic replacement of 6 to 14b as reported above for conversion 6 to 14a yielded the XX in 86% yield as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.82 – 6.75 (m, 3 H), 5.90 (m, 1 H), 5.26 (m, 2 H), 4.62 (dt, *J* = 5.6, 1.2 Hz, 2 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.46 (s, 2 H)

H), 2.88 (m, 2 H), 2.77 (t, J = 7.0 Hz, 2 H), 1.80 (brs, 1 H). ¹³C NMR (400 MHz, DMSO-d6) δ 172.3, 149.1, 147.5, 133.1, 120.8, 118.1, 112.9, 112.3, 64.8, 55.9, 55.7, 50.7, 50.5, 35.8. FAB-MS (+VE) m/z: 280.3 (M + H)⁺. HR-MS (NH₃/Cl) (M + H)⁺: 280.1555, Calc: 280.1552.

C₂₈H₃₄N₂O₅ Exact Mass: 478.25 Mol. Wt.: 478.58

N-[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine-N-pentyl-glycine allyl ester (15a). Coupling 14a with Fmoc-Ala-OH as reported above for conversion 7 to 8 yielded the product in 42% yield as a white wax.¹H NMR (400 MHz, DMSO-d6) δ 7.83 (d, *J* = 7.6 Hz, 2 H), 7.70 – 7.60 (m, 3 H), 7.36 (t, *J* = 7.6 Hz, 2 H), 7.27 (t, *J* = 7.6 Hz, 2 H), 5.84 (m, 1 H), 5.23 (dt, *J* = 17.2, 1.6 Hz, 1 H), 5.16 (m, 1 H), 4.55 – 4.45 (m, 3 H, rotamers), 4.30 – 4.10 (m, 4.2 H, rotamers), 3.85 (AB, *J*_{AB} = 17.2 Hz, 0.8 Hz), 3.35 – 3.20 (m, 2 H), 1.53 (m, 1.3 H, rotamers), 1.35 (m, 0.7 H, rotamers), 1.25 – 1.05 (m, 7 H), 1.05 – 0.80 (m, 3 H). ¹³C NMR (400 MHz, DMSO-d6) δ 173.2, 173.0, 170.0, 169.3, 156.0, 144.2, 141.1, 132.8, 128.0, 127.4, 125.7, 120.5, 118.1, 66.2, 65.1, 48.7, 48.2, 47.1, 46.6, 28.8, 28.6, 22.3, 18.2, 14.3. FAB-MS (+VE) *m/z*: 479.5 (M + H)⁺. HR-FAB (M + Na)⁺: 501.2411, Calc: 501.2388.

C₃₃H₃₆N₂O₇ Exact Mass: 572.25 Mol. Wt.: 572.65

N-[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine-N-(3,4-Dimethoxyphenenthyl)-glycine allyl ester (15b). Coupling 14b with Fmoc-Ala-OH as reported above for conversion 7 to 8 yielded the product in quantitive yield as a white wax. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2 H), 7.59 (d, *J* = 7.6 Hz, 2 H), 7.38 (m, 2 H), 7.29 (m, 2 H), 6.80 – 6.69 (m, 3 H), 5.95 – 5.85 (m, 2 H), 5.26 (m, 2 H), 4.67 – 4.60 (m, 3 H), 4.40 – 4.30 (m, 3 H), 4.20 (m, 1 H), 3.85 (s, 3 H), 3.81 (s, 3 H), 3.73 – 3.52 (m, 3 H), 2.88 (t, *J* = 4.8 Hz, 1.3 H, rotamers), 2.80 (t, *J* = 4.8 Hz, 0.7 H, rotamers), 1.46 (d, *J* = 6.8 Hz, 0.5 H, rotamers, 1.33 (d, J = 6.8 Hz, 2.5 H). FAB-MS (+VE) m/z: 573.3 (M + H)⁺. HR-FAB (M + Na)⁺: 595.2474, Calc: 595.2447.

Mol. Wt.: 438.52

N-[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine-N-pentyl-glycine (16a). Deprotection of 15a as reported above for conversion 8 to 9 yielded the product in 82% yield as a pale yellow powder. ¹H NMR (400 MHz, DMSO-d6) δ 7.83 (d, *J* = 7.6 Hz, 2 H), 7.69 (m, 2 H), 7.59 (m, 1 H), 7.36 (t, *J* = 7.2 Hz, 2 H), 7.28 (t, *J* = 7.6 Hz, 2 H), 4.48 – 4.36 (m, 1 H, rotamers), 4.25 – 4.13 (m, 3.3 H, rotamers), 4.08 – 3.94 (m, 1 H, rotamers), 3.69 (AB, *J*_{AB} = 17.2 Hz, 0.7 H, rotamers), 3.35 – 3.10 (m, 2 H), 1.52 (m, 1.2 H, rotamers), 1.36 (m, 0.8 Hz, rotamers), 1.25 – 1.05 (m, 7 H), 0.79 (m, 3 H). ¹³C NMR (400 MHz, DMSO-d6) δ 172.9, 171.7, 171.0, 156.0, 144.2, 141.1, 133.6, 132.5, 131.9, 129.1, 128.0, 127.5, 125.7, 120.4, 66.2, 48.5, 48.0, 47.2, 46.6, 28.8, 28.4, 22.3, 18.2, 14.3. FAB-MS (-VE) *m/z*: 437.1 (M - H)⁻. HR-FAB (M + Na)⁺: 461.2029, Calc: 461.2041.

C₃₀H₃₂N₂O₇ Exact Mass: 532.22 Mol. Wt.: 532.58

N-[(9H-fluorenyl-9-ylmethoxy)carbonyl]-L-alanine-N-(3,4-Dimethoxyphenenthyl)-glycine (16b). Deprotection of 15b as reported above for conversion 8 to 9 yielded the product in 86% yield as a pale yellow powder. ¹H NMR (400 MHz, DMSOd6) δ 7.84 (d, *J* = 7.2 Hz, 2 H), 7.70 – 7.62 (m, 3 H), 7.36 (t, *J* = 7.6 Hz, 2 H), 7.28 (m, 2 H), 6.87 – 6.65 (m, 3 H), 4.46 (m, 1 H), 4.32 – 4.13 (m, 4 H, rotamers), 4.04 – 3.85 (m, 1 H, rotamers), 3.67 – 3.63 (m, 6 H), 3.47 (m, 1.6 H, rotamers), 3.32 (m, 0.4 H, rotamers), 2.78 (m, 1.4 H, rotamers), 2.59 (m, 0.6 H, rotamers), 1.10 (d, J = 6.8 Hz, 3 H). ¹³C NMR (400 MHz, DMSO-d6) δ 174.9, 173.0, 171.7, 171.1, 156.1, 149.4, 147.8, 144.3, 141.1, 133.6, 132.5, 132.0, 131.4, 129.2, 128.1, 127.5, 125.7, 121.2, 120.5, 113.2, 113.0, 112.2, 66.2, 55.8, 50.5, 50.0, 48.5, 47.0, 46.6, 35.0, 18.2. FAB-MS (-VE) *m/z*: 531.3 (M - H)⁻. HR-FAB (M + H)⁺: 533.2302, Calc:533.2295.

General procedure for solid-phase peptide synthesis. Peptides and peptoids were synthesize on NovaSyn[®]TGR resin (purchased from Novabiochem, cat. no. 01-64-0060) using standard Fmoc solid-phase protocols using active ester coupling (1hydroxybenzotriazole (HOBT) and N, N'-diisopropylcarbodiimide (DIC) as coupling reagents, once, 2 hours) for primary amines and bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PvBroP) (double coupling, 2 hours each) for the secondary amines. All peptides and peptoids were tagged with FITC for fluorescence anisotropy assays by reacting with 5 equivalents of fluorescein isothiocvanate in the presence of 5 equivalents of N, N-diisopropylethylamine in N, N-dimethylforamide (overnight). The final resin was washed with N. N-dimethylforamide, methanol, dichloromethane and ether then dried under vacuum (overnight). Peptides and peptoids was cleaved from resin (200 mg) by treatment with 5 mL of trifluoroacetic acid : triisbutylsilane : $H_2O(90:5:5)$ (4 h). The resin was filtered off and the filtrate was concentrated under vacuum, then precipitated with ether and the precipitate washed with ether. The resulting solid was dissolved in 50% aqueous acetonitrile 5 mL) and purified by reverse phase preparative HPLC using a Phenomenex C₁₈ column (21 mm dia x 250 mm, cat. no: 00G-4436-P0) with a linear gradient from 0% aqueous acetonitrile (0.1% trifluoroacetic acid) to 50% acetonitrile (0.1% trifluoroacetic acid) over 35 minutes at a flow rate of 10.0 mL/minute (detection at 254 nm). Lyophilization provided products as yellow powders.

Synthesis of peptide hydrazones 11a - 11r. To a solution of unsubstitued peptide hydrazide 10 (1.0 mg, 0.00070 mmol) in 50% aqueous acetonitrile (0.5 mL) was added the appropriate aldehyde (10 equivalents) and the mixture was gently agitated at room temperature (overnight). The product mixture was subjected directly to purification by reverse phase preparative HPLC using a VYDAC Protein and Peptide C₁₈ column (10 mm dia x 250 mm; catalog no. 218TP510) with a linear gradient of from 0% aqueous acetonitrile (0.1% trifluoroacetic acid) to 50% acetonitrile (0.1% trifluoroacetic acid) over 20 minutes at a flow rate of 8.0 mL/minute (detection at 254 nm). Lyophilization provided the peptoid hydrazones 11a - 11q as yellow powders (mass spectral data, Table S1).

Reduction of peptoid hydrazones to yield *N*-substituted peptoid hydrazides 12a - 12r. Samples of peptide hydrazones 11a - 11r (~ 0.50 mg, 0.00035 mmol) were dissolved in aqueous acetonitrile (0.5 mL) containing 0.1% trifluoroacetic acid and 20 equivalents of sodium cyanoborohydride (NaBH₃CN, 1 M, in H₂O, 8 uL) was added and the mixtures were agitated at room temperature (overnight). Purification by preparative HPLC was as indicated above for peptoid hydrazones (mass spectral data, Table S1).

References

(1) Lakowicz, J. R. *Principles of Fluorescence Spectroscopy*; Second Edition ed.; Plenum Publishers, 1999.

(2) Fisher, R. J.; Fivash, M. J.; Stephen, A. G.; Hagan, N. A.; Shenoy, S. R.; Medaglia, M. V.; Smith, L. R.; Worthy, K. M.; Simpson, J. T.; Shoemaker, R.; McNitt, K. L.; Johnson, D. G.; Hixson, C. V.; Gorelick, R. J.; Fabris, D.; Henderson, L. E.; Rein, A. *Nucleic Acids Res.* **2006**, *34*, 472-484.

(3) Toke, L.; Jaszay, Z. M.; Petnehazy, I.; Clementis, G.; Vereczkey, G. D.; Kovesdi, I.; Rockenbauer, A.; Kovats, K. *Tetrahedron* **1995**, *51*, 9167-78

R	number	M.W.	M.W.	number	M.W.	M.W.
		(theoretical)	(observed) ^a		(theoretical)	(observed)
СНО	11a	1529.58	1530.79	12a	1531.60	1533.51
СНО	11b	1574.57	1575.30	12b	1576.58	1545.90 ^b
NO ₂						
СНО	11c	1574.57	1575.54	12c	1576.58	1546.25 ^b
O ₂ N						
CHO	11d	1589.60	1590.80	12d	1591.62	1592.90
MeO						
ÓMe	11.	15(1.57	1562 49	12.	15(2.50	1564.06
ССон	11e	1301.37	1302.48	12e	1303.39	1304.90
ОН	110		1.500.00	1.0.0	1.500.50	1.601.0.7
	llf	1597.57	1598.88	12f	1599.58	1601.05
F ₃ C						
СНО	11g	1547.57	1570.17 ^c	12g	1549.59	1550.27
СНО	11h	1572.62	1573.88	12h	1574.64	1599.12°
Ť						
N	11i	1532.59	1533.66	12i	1534.61	1535.07
[- сно						
	11i	1519 56	1520.78	12i	1521 58	1523 39
Сно	11j	1019.00	1520.70	1 2 J	1521.50	1525.57
	11k	1519 56	1520.37	12k	1521 58	1522.28
		1019.00	1020.07		1021.00	1022.20
Сно						
СНО	111	1523.59	1524.40	12l	1525.61	1548.22 °
$\langle \rangle$						
СНО	11m	1521.61	1522.24	12m	1523.63	1524.20
	11n	1557.61	1558.34	12n	1559.63	1583.70 ^c
СНО						
	110	1500 61	1510.52	120	1511 62	1512.00
сно	110	1309.01	1310.32	120	1311.03	1312.09
CHO	11n	1495 60	1496 57	12n	1497 61	1598 29
	11.	1507.57	1520.74	12 ₁ 2	1520.59	1520.51
СНО	11q	1527.57	1528.74	12q	1529.38	1530.51

Table S1. Mass spectral data for peptoid hydrazones and N-substitued peptoid hydrazides.

^aObserved mass obtained by MALDI-TOF operating in linear mode using α -cyano-4-hydroxy-cinnamic acid as matrix; ^bThe NO₂ group was reduced to NH₂; ^c(M + Na)⁺ peak.

