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Supplementary Figure 1 

 

Raw (un-decorrelated) spike-triggered averages (STAs) for the example cells shown in figure 2A-C.  At 63dB, the 

differences in tuning between a temporal (A), spectral (B), and spectro-temporal (C) cell are evident without 

decorrelation.  At 30dB all three cells have much simpler STAs dominated by a single large positive peak. 
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Supplementary Figure 2 

 

A)  The distribution of correlation coefficients between predicted and actual PSTHs for stimuli played at 30dB (left) 

and 63dB (right).  PSTHs were obtained from 13 to 200 repeats of an identical 5 second stimulus segment by 

smoothing the average spike count per millisecond with a 8 msec-wide hanning window.  Predictions were made 

using STRFs and nonlinearities derived from a non-overlapping set of data as described in the Methods.  The first 

500 msec of both the predicted and actual PSTH were omitted to reduce the effects of slow adaptation on the 

comparison.  Prediction quality generally increased with the number of spikes collected, but plateaued at lower 

values for the 63dB stimulus condition.  Better predictions may arise from cells with high firing rates for several 

(not mutually exclusive) reasons: because more data allowed better estimation of these STRFs; because cells with 

high firing rates tend to be sensitive to higher temporal frequencies; or because these cells are often located in a 

lower level of the processing hierarchy.  The mean correlation coefficient was 0.57+/- 0.19 (standard deviation) for 

the 30dB stimulus condition, and 0.52 +/- 0.14 for the 63dB stimulus condition. 

 

B)  Different filter shapes give rise to different modulation spectra.  The filter shapes shown represent either 

temporal or spectral-cross sections through the STRF, and the power spectra represent corresponding cross-sections 

through the two-dimensional modulation spectrum.  If a filter has a single peak (top row), its power spectrum will be 

low-pass, meaning that the cell will respond to all modulations in that domain up to some cutoff determined by the 

width of the STRF peak.  A filter with a single negative peak will give rise to a similar power spectrum.  If the filter 

has balanced positive and negative regions (second row), its power spectrum will be band-pass, meaning that it will 

only respond to modulation frequencies over a narrow range.  Finally, a filter with very profound negative sidebands 

(3rd row), whose negative regions are larger than its positive regions, will have a power spectrum with two peaks.  

The alternating positive and negative regions will give rise to a high frequency band-pass peak, while the overall 

negative sum will give the power spectrum a peak at low frequencies.  This property of power spectra complicates 

our analysis of some strongly spectrally-tuned cells, such as the example in figure 2C, whose STRFs show clear 

sensitivity to spectral modulations, but whose spectral power spectra peak at 0 cycles per octave. 
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C)  Spectral cross-sections through several spectro-temporal STRFs illustrating their similar structure.  Most such 

cells had a single positive peak at 30dB, while at 63dB they showed strong negative sidebands.  These sidebands 

were generally stronger and narrower on the high frequency side, and shallower and broader on the low-frequency 

side.  The STRFs shown here were collected at the depths indicated, in a single bird, and suggest a systematic 

progression of preferred frequencies. 
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Supplementary Figure 3 

 

Distribution of STRF parameters obtained by measuring STRFs directly (A) and by fitting a bi-variate Mexican-hat 

model to each STRF (B).  The measured latency and center frequency of the STRF were defined to be its maximum 

in time and frequency.  The measured temporal half-width, and bandwidth were obtained from cross-sections 

through the peak.  Model parameters were obtained by fitting as described in detail in the Methods.  In general, the 

shape of the two distributions showed a good agreement.  Latencies showed a skewed distribution with more cells 

having shorter latencies.  Center frequencies showed an approximately normal distribution centered around 2.5 kHz.  

Temporal and spectral widths had more exponential distributions, with more cells having short widths.  Latency and 

temporal width were negatively correlated, while center frequency and spectral width (in octaves) were not.  

Correlation coefficients between measured and fitted parameters were 0.97 for latency, 0.86 for center frequency, 

0.89 for temporal widths, and 0.57 for spectral widths). 
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Supplementary Figure 4 

 

A)  Measured spectral versus temporal width for all significant STRFs (n=71) obtained at 63dB.  Width parameters 

were obtained by taking temporal and spectral cross-sections through the peak of the STRF and measuring the 

interval over which the cross section was greater than half the maximum value.  Example cells from figure 2 are 

indicated by green (temporal, panel 2A), red (spectral, panel 2B), and blue (spectro-temporal, panel 2C) squares. 

 

B)  Temporal best modulation frequency of STRFs at obtained at 63dB versus those obtained at 30dB.  Temporal 

best modulation frequencies were obtained by summing the two sides of the modulation spectrum for each STRF, 

averaging across spectral frequencies, and finding the maximum of the resulting temporal power spectrum.  Most 

points lie above the diagonal indicating that most cells become sensitive to faster temporal modulation frequencies 

when the stimulus intensity is higher. 
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Supplementary Figure 5 

 

The anatomical distribution of STRF and spike properties from chronic birds supports our findings in restrained 

sedated birds (figures 7 and 8).  This figure shows temporal half-widths of STRFs and widths of spikes as a function 

of recording depth for four chronic electrode penetrations.  Fast STRFs with short temporal half-widths and narrow 

spikes are mostly found in a restricted region of each penetration.  The strong correlation between a STRF’s 

temporal width and spike width is also clear. 
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Supplementary Figure 6 

 

Spike-triggered averages recorded from the same site under two stimulus conditions, one with faster amplitude 

modulations (50Hz, left) and one with slower amplitude modulations (20 Hz, right).  In general the STRFs obtained 

under the two conditions were very similar, although the STRFs obtained with the slower, 20Hz stimulus are 

smoother and slightly broader in both frequency and time.  Compared to the striking effects of stimulus intensity on 

STRF shape (supplementary figure 1), the effects of stimulus frequency are very mild.  Occasionally, as at the last 

site shown, sensitivity to very slow stimulus features was evident with the 20Hz stimulus but not with the 50 Hz 

stimulus. 

 

Supplementary Analysis 

 

Because the shape of an extracellular spike depends on the distance between the recording electrode and the cell 

(Gold et al, 2006), we worried that the relationship between spike width and temporal tuning could be due to 

differences in recording conditions.  There was a weak correlation between spike width and spike amplitude in our 

data (cc = 0.26, p = 0.03), arising from a few units with large narrow or small wide spikes.  To verify that the 

relationship between spike width and STRF width was not due to recording distance, we excluded cells with the 

largest and smallest amplitudes, below 200µV or above 600µV, leaving 60 of 71 cells in our sample.  Spike and 

STRF width were still strongly correlated in this sub-population (cc = 0.74, p = 9.2-12), but spike width and spike 

amplitude were not (cc = 0.07, p =0.55).  No significant relationship between spike amplitude and STRF width 

remained within this restricted population (correlation coefficient = 0.04, p = 0.79).   

 

Supplementary Methods 

 

Stimulus 
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For a subset of the acute mapping experiments we used a more slowly varying set of log envelopes  to 

modulate the narrowband signals described in Figure 1 and Methods. The power spectrum of these log envelopes 

was given by 

 

P(f) =exp(-f/20Hz) 

 

STRFs estimated with the slower stimulus were generally smoother and less noisy but otherwise did not 

differ significantly from those estimated with the faster stimulus.  Examples of STRFs from the same site estimated 

with both stimuli are shown in figure S6.  For each mapping experiment we used only a single stimulus type. 

 

STRF Estimation and Decorrelation 

 

Our analysis attempted to relate the firing of field L neurons to a linear filter of the stimulus spectrogram.  

If this spectrogram were uncorrelated in both frequency and time, we could calculate this filter, or spectro-temporal 

receptive field (STRF), by simply cross-correlating the spike train with each row of the spectrogram, yielding the 

spike-triggered average, or STA.  Because the spectrogram of our stimulus contains local correlations, this STA will 

instead be equal to the true neural filter, convolved with the autocorrelation of the spectrogram.  The influence of 

these stimulus correlations can be removed from the STA by inverting the autocorrelation matrix, or “decorrelating” 

the STRF.  Preparing our stimulus for analysis thus required two steps: first calculating its spectrogram, and then 

calculating the autocorrelation matrix of the spectrogram envelopes. 

 To calculate the spectrogram S(cf,t), we first filtered the stimulus through the same bank of 32 log-

Gaussian filters used to create the narrowband noise signals.  We then extracted the envelope of each narrowband 

signal by passing its absolute value through the exponential filter used to generate the stimulus envelopes.  We 

down-sampled the resulting low-pass signal to 1kHz to speed analysis, took its logarithm, and normalized it to have 

zero mean and unit variance.  Because of the overlap in our frequency bands, the log envelopes of several of the 

original noise bands contributed to each of these extracted log envelopes and the extracted envelopes S(cf,t) were not 

exactly equal to the envelopes used to create the stimulus.  
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 The autocorrelation matrix of the spectrogram consisted of 128 complex matrices Aω(cf, cf), representing 

the correlations between the log envelopes S(cf,t) at each of 128 temporal frequencies ω.  The diagonals of each 

matrix Aω(cf, cf) represent the power in each log envelope at the temporal frequency ω, while the off-diagonal terms 

represent the correlation between log envelopes at that temporal frequency.  To calculate these complex matrices, 

we broke S(cf,t) into 256 sample-long chunks S(cf,t:t+255), applied a hanning window to each chunk, then took its 

Fourier transform, yielding a complex matrix ˜ S (cf ,ω) .  The complex matrix Aω(cf, cf) was then equal to the average 

cross-product across chunks: 

 

  ˜ S (cf ,ω)'× ˜ S (cf ,ω)  

 

 To estimate each STRF, we first calculated the raw spike-triggered average Cn(cf,τ) by cross-correlating the 

spike train ρ(t) with each log envelope S(cf,t) in the spectrogram: 

 

C(cf ,τ) = 1
n

ρ(t)S(cf ,t − τ )
t
∑  

 

where n is the total number of spikes.  We obtained spike-triggered averages over an interval from 100msec before 

the spike to 100msec after.  The portion of this average that followed the spike was used as an estimate of the noise 

in our averaging process. 

 To decorrelate the spike-triggered average, we first took its Fourier transform, yielding a complex matrix 

˜ C (cf ,ω) .  Each column of this matrix ˜ C (cf ,ω)  corresponding to a particular temporal frequency ω, was then 

decorrelated by applying the pseudo-inverse of the autocorrelation matrix for that temporal frequency Aω(cf, cf).  To 

apply the pseudo-inverse, we first took the singular value decomposition of the matrix Aω(cf, cf): 

 

UΣV '= Aω(cf ,cf )  
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where U and V are square matrices and Σ is a matrix of singular values that has non-zero values only along the 

diagonal.  We then calculated a matrix Σinv, by taking the inverse of the values of Σ along the diagonal: 

Σinv(s,s) = 1
Σ(s,s)

 

 

We used Σinv,with U and V to decorrelate the spike-triggered average: 

 

˜ D (cf ,ω) =VΣinvU ' ˜ C (cf ,ω) 

 

The inverse Fourier transform of this "decorrelated" matrix ˜ D (cf ,ω)  is equal to the decorrelated spike-triggered 

average D(cf,τ).  This method is very similar to the one used by Theunissen et al. (2000). 

 A limit of this decorrelation technique is that it tends to boost the power in high temporal frequencies that 

are poorly sampled by the stimulus, leading to very noisy estimates of the STRF.  This is because the inversion 

increases the magnitude of the smallest singular values.  To limit this noise we systematically reduced the 

amplitudes of the largest inverse singular values.  We first obtained the singular values of all the autocorrelation 

matrices and sorted them in descending order (largest to smallest).  We then found the largest singular value of the 

autocorrelation matrix at a cutoff frequency Aωcut, whose choice is described below.  We call this cutoff singular 

value scut.  Singular values greater than this cutoff value were inverted as described above.  Singular values below 

this cutoff were reduced in amplitude according to their distance from the cutoff value 

 

Σinv(s,s) = 1
Σ(s,s)

× exp(−k /250)  

 

where k is the number of singular values between the current value and the cutoff.  By smoothly reducing the 

amplitude of large inverse singular values, this method reduces "ringing" in the STRF that can arise from using a 

hard cutoff on the decorrelation. 

 We tried several methods for choosing an appropriate cutoff frequency.  The first was to find the frequency 

at which the power in the spike-triggered average fell below 3 times the mean power in the acausal part of the the 
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spike-triggered average.  This "noise cutoff" yielded reasonable results for some cells, but unreasonably high cutoffs 

(150-250 Hz) for others.  STRFs decorrelated using a cutoff frequency greater than 150Hz were uniformly noisy and 

impossible to interpret.  We therefore tried an alternate method, finding a cutoff frequency that contained 99% of the 

power in the raw spike-triggered average.  This "99% cutoff" yielded much better results for STAs with excessively 

high noise cutoffs, but was too high for those with low noise cutoffs.  We therefore chose one of these two cutoffs 

for each STRF depending on whether they yielded a significant STRF.  If the 99% cutoff produced a STRF with at 

least 20 points above the maximum absolute value of the acausal STRF, we used that cutoff (n=50/74).  Otherwise 

we used the lower noise cutoff (n=24/74).  We observed no significant differences between the groups of cells 

decorrelated with one cutoff or the other and results for the two groups are pooled.  Un-decorrelated spike triggered 

averages for the example cells in figure 2A-C are shown in supplementary figure 1.  Both differences in tuning 

between cells, and differences in the same cell's STRF with intensity, are evident in these raw averages. 

Both the causal and acausal parts of the STA were decorrelated together.  STRFs were considered 

significant if the causal part of the STRF contained at least 20 points that were greater than the maximum absolute 

value in the acausal part of the STRF.  74 of 81 single units produced significant STRFs in at least one condition: 71 

using the 63dB stimulus, 68 using the 30dB stimulus.  To obtain error bars on our STRF estimates we divided our 

spikes randomly into 5 groups.  Separate STAs and decorrelated STRFs were calculated from each group of spikes 

although a uniform cutoff was used for all decorrelations.  Error bars shown in the figures represent the standard 

deviation of the jackknife estimate (Sen et al., 2001) 

 

std = n −1
n

(x j− < x j >)2

j
∑  

 

where n is the number of jackknife estimates, and x j  is the jth estimate of the STRF. 

 

Bi-variate Mexican hat model fitting, and a model with orientation 

 

To fit the bivariate Mexican hat model (see Methods) to our data, we used a constrained least-squares 

fitting algorithm based on the Newton method (lsqcurvefit.m, Matlab).  To choose starting values for each of the 
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parameters, we first created a matrix of initial parameter values.  For A, x, and y, there were two initial values, equal 

to the magnitude, and t- and f-coordinates, of the maximum and minimum point on each STRF.  Initial values of α 

and β were 0, 0.25, 0.5, 1, 2, and 4.    The parameters σ and γ were fit by fitting their inverses 1/σ and 1/γ, to avoid 

the possibility of having a zero in the denominator of the function.  Initial values for these two inverse parameters 

were 0.1 to 0.8 in steps of 0.1.  We calculated the mean squared error between the actual STRF and the model 

produced by each of the 18432 combinations of initial parameter values.  The combination of parameters that 

produced the lowest error was chosen as the starting point for the algorithm.  The algorithm was constrained to find 

values of x and y that fell within the temporal and spectral dimensions of our STRF.  The two width parameters σ 

and γ were constrained to be positive, and the two depth parameters α and β were constrained to be greater than or 

equal to zero.  Confidence intervals for parameter estimates were made using the function nlparci.m in Matlab.  

In addition, to estimate the orientation of each STRF, we fit each STRF recorded at 63dB to a version of 

the model containing an orientation term θ: 

' ( ) cos ( )sin
' ( )sin ( ) cos

t t x f y
f t x f y

θ θ
θ θ

= − + −
= − − + −

 

2 2 2 2' ' 2 2 2 2 2 2( , ) (1 ' )(1 ' )t fG t f Ae t fσ γ α σ β γ− −= − −  

The parameter θ was constrained to fall between –45 and +45° to avoid ambiguity between spectral and temporal 

parameters of the model.  To fit this model, we initialized the first seven parameters to the values we found by fitting 

the simpler model, and set θ to zero.  All parameters were allowed to vary during the second fitting. 

 


