Supporting information for

Mechanistic Insight into N=N Cleavage by a Low-Coordinate Iron(II) Hydride Complex

Azwana R. Sadique, Elizabeth A. Gregory, William W. Brennessel, and

Patrick L. Holland

Kinetic experiments	S-2
Trapping and control experiments related to Scheme 3	S-4
Table S1: Activation parameters	S-5
Figure S1: Eyring plot	S-6
Figure S2: Kinetic data in the presence of L^{tBu} FeClK(solvent) _x	S-6
Figure S3: Kinetic data in the presence of L ^{tBu} FeNPhNPh	S-7
Figure S4: Kinetic data in the presence of L ^{tBu} FeCl	S-7
Figure S5: Plot of vinyl % vs [hexyne]	S-8
Figure S6: Mass spectra from crossover experiments	S-9
Tables of Crystal data for $[L^{tBu'}FeH]_2$	S-10 - S-27
Tables of Crystal data for L ^{tBu} FeNPhNPh	S-28 - S-32
Details on reaction of $[L^{tBu'}FeH]_2$ with BEt ₃	S-33
References	S-33

Kinetic Experiments.

1. Thermolysis of L^{tBu}FeNPhNHPh at different temperatures. A J. Young resealable NMR tube was charged with L^{tBu}FeNPhNHPh (8.5 mg) and C₇D₈ or C₆D₆ (0.30 mL). The NMR tube was placed into the NMR probe, which was already equilibrated at the appropriate temperature (358 K unless otherwise specified). After the sample had equilibrated for 2 min, ¹H NMR spectra were recorded at preset times using an automated program. Fourier transform, phasing, calibrating and integrating of each spectrum was done using MestReC. The plot of normalized L^{tBu}FeNPhNHPh concentration (y) *vs.* time (M0) was fit to the general, integrated equation: $y = m1 + m2^*exp(-M0^*M3)$, where m1, m2 and M3 are variables, M3 being the first order rate constant. For this purpose, KaleidaGraph 3.51 was used. The error bars on the rate constant came either from the least-squares fit to the data (Method A) or the range of values seen in multiple experiments (Method B). Temperatures in the NMR probe were calibrated using 100% ethylene glycol.¹

2. Thermolysis of L^{tBu}FeNPhNHPh in the presence of PhN=NPh. A solution of L^{tBu}FeNPhNHPh (10.0 mg), PhN=NPh (2.5 mg), and C₆D₆ (0.30 mL) was heated to 358 K. First order rate constant obtained was $7.0 \pm 0.1 \times 10^{-4}$ s⁻¹. Error estimation used Method A. Therefore, *added diazene does not inhibit the rate of the reaction*.

3. Thermolysis of L^{tBu}FeNPhNHPh in the presence of $[L^{tBu}FeH]_2$. A solution of L^{tBu}FeNPhNHPh (8.8 mg), $[L^{tBu}FeH]_2$ (4.0 mg), and C₆D₆ (0.30 mL) was heated to 358 K. First order rate constant obtained was 5.3 ± 0.7 × 10⁻⁴ s⁻¹. Error estimation used Method B.

S-2

4. Thermolysis of L^{tBu}FeNPhNHPh in the presence of L^{tBu}FeCl. A solution of L^{tBu}FeNPhNHPh (8.3 mg), L^{tBu}FeCl (2.2 mg), and C₇D₈ (0.30 mL) was heated to 315 K. Kinetic plot showed the presence of an induction period.

5. Thermolysis of L^{tBu} FeNPhNHPh in the presence of L^{tBu} FeNPhNPh. A solution of L^{tBu} FeNPhNHPh (8.1 mg), L^{tBu} FeNPhNPh (3.1 mg), and C_7D_8 (0.30 mL) was heated to 315 K. Kinetic plot showed the absence of induction period.

6. Thermolysis of L^{tBu}FeNPhNHPh in the presence of L^{tBu}FeKCl(solvent)_x. A solution of L^{tBu}FeNPhNHPh (8.0 mg) and L^{tBu}FeKCl(solvent)_x (prepared *in situ* by reacting L^{tBu}FeCl (2.5 mg) with KC₈ (0.6 mg) in C₇D₈ (0.30 mL)²) was heated to 315 K. Kinetic plot showed the absence of induction period.

7. Thermolysis of L^{tBu}FeNPhNHPh in THF- d_8 . A solution of L^{tBu}FeNPhNHPh (8.5 mg) and THF- d_8 (0.3 mL) was heated to 352 K. First order rate constant obtained was 4.6 $\pm 0.2 \times 10^{-4} \text{ s}^{-1}$. Error estimation used Method A.

8. Thermolysis of L^{tBu}FeNPhNHPh in the presence of lutidine. A solution of L^{tBu}FeNPhNHPh (10.0 mg), lutidine (1.6 μ L), and C₆D₆ (0.40 mL) was heated to 359 K. First order rate constant obtained was 6.5 ± 0.2 × 10⁻⁴ s⁻¹. Error estimation used Method A.

9. Thermolysis of L^{tBu}FeNPhNHPh in the presence of Ph₃CH. A solution of L^{tBu}FeNPhNHPh (3.0 mg), Ph₃CH (34 mg), and C₆D₆ (0.30 mL) was heated to 358 K. First order rate constant obtained was $9.8 \pm 0.3 \times 10^{-4}$ s⁻¹. Error estimation used Method A.

10. Thermolysis of L^{tBu}FeNPhNHPh in the presence of DHA. A solution of L^{tBu}FeNPhNHPh (6.0 mg), DHA (19 mg), and C₆D₆ (0.30 mL) was heated to 358 K. First order rate constant obtained was $9.3 \pm 0.2 \times 10^{-4}$ s⁻¹. Error estimation used Method A.

Trapping and Control Experiments Related to Scheme 3

L^{tBu}FeNPhNHPh and 3-hexyne (attempt to trap LFeH). A J. Young resealable NMR tube was charged with L^{tBu}FeNPhNHPh (8.0 mg) and C₆D₆ (0.20 mL). To this was added 3-hexyne (0.12 mL). The contents of the NMR tube were mixed for 10 minutes at room temperature and the ¹H NMR spectrum was recorded. The paramagnetic components of the mixture were identical to that of L^{tBu}FeNPhNHPh. The ¹H NMR spectrum was recorded after heating the contents at 80 °C for 2 h and it showed the presence of L^{tBu}FeNHPh (83%) and L^{tBu}FeCEtCHEt (17%). This amount of vinyl complex was independent of [hexyne] (see Figure S-5 below).

L^{tBu}FeCEtCHEt and PhN=NPh (if trapping of LFeH was reversible, these would react). To test whether the formation of the vinyl complex is reversible, L^{tBu}FeCEtCHEt was prepared charging a J. Young resealable NMR tube with $[L^{tBu}FeH]_2$ (14.0 mg), C₆D₆ (0.3 mL), and 3-hexyne (3 μ L). PhN=NPh (23 mg) was added to the NMR tube containing the vinyl compound. ¹H NMR spectra were recorded after mixing the contents for 10 minutes at room temperature and after heating the contents at 80 °C for 2 h. The paramagnetic components of the mixture were identical to an experiment without PhN=NPh, showing that the vinyl complex does not revert to the hydride complex.

L^{tBu}FeNPhNHPh and L^{tBu}FeCEtCHEt (another attempt to see any potential reversibility of attempted trapping experiment). A J. Young resealable NMR tube was

charged with L^{tBu} FeNPhNHPh (5.3 mg) and C_6D_6 (0.1 mL), A scintillation vial was charged with L^{tBu} FeCEtCHEt (4.6 mg) and C_6D_6 (0.2 mL). The solution of the vinyl complex was added to the NMR tube containing the hydrazido complex, the contents were mixed well for 10 minutes at room temperature, and the ¹H NMR spectrum was recorded. The NMR spectra showed only the presence of L^{tBu} FeNPhNHPh and L^{tBu} FeCEtCHEt.

L^{tBu}FeNPhNHPh, 3-hexyne, and [L^{tBu}FeH]₂ (showing branching ratio in Scheme 3). A J. Young resealable NMR tube was charged with [L^{tBu}FeH]₂ (3.0 mg) and C₆D₆ (0.1 mL). A scintillation vial was charged with L^{tBu}FeNPhNHPh (8.0 mg), C₆D₆ (0.1 mL), and 3hexyne (1.2 μ L). This reaction mixture was added to the NMR tube, the contents were mixed well for 10 minutes at room temperature, and the ¹H NMR spectrum was recorded. The ¹H NMR spectrum showed the expected ratio of L^{tBu}FeNPhNHPh and L^{tBu}FeCEtCHEt if all hydride complex had reacted only with 3-hexyne. The resultant mixture was heated at 80 °C for 2 h and the ¹H NMR spectrum showed the presence of L^{tBu}FeCEtCHEt and L^{tBu}FeNHPh.

T/ K	1/T	k/ s ⁻¹	ln k	$\ln(k/T)$
363	2.75 x 10 ⁻³	13.27 x 10 ⁻⁴	-6.62	-12.52
352	2.84 x 10 ⁻³	6.93 x 10 ⁻⁴	-7.27	-13.14
344	2.90 x 10 ⁻³	8.46 x 10 ⁻⁴	-7.07	-12.92
338	2.95 x 10 ⁻³	3.01 x 10 ⁻⁴	-8.11	-13.93
329	3.04 x 10 ⁻³	1.13 x 10 ⁻⁴	-9.09	-14.88
315	3.18×10^{-3}	$0.70 \ge 10^{-4}$	-9.57	-15.32

Table S1. Activation Parameters

Figure S-1. Eyring plot for the reaction of L^{tBu} FeNPhNHPh $\rightarrow L^{tBu}$ FeNHPh.

Figure S-2. Kinetic data for the conversion of L^{tBu} FeNPhNHPh to L^{tBu} FeNHPh in the presence of L^{tBu} FeClK(solvent)_x at 315 K: (\circ), [L^{tBu} FeNPhNHPh]; (\times), [L^{tBu} FeNHPh].

Figure S-3. Kinetic data for the conversion of L^{tBu} FeNPhNHPh to L^{tBu} FeNHPh in the presence of L^{tBu} FeNPhNPh at 315 K: (°), [L^{tBu} FeNPhNHPh]; (×), [L^{tBu} FeNHPh].

Figure S-4. Kinetic data for the conversion of L^{tBu} FeNPhNHPh to L^{tBu} FeNHPh in the presence of L^{tBu} FeCl at 315 K: (\circ), [L^{tBu} FeNPhNHPh]; (\times), [L^{tBu} FeNHPh].

Figure S-5. In the decomposition of L^{tBu}FeNPhNHPh with added 3-hexyne, a small amount of vinyl product is observed. This graph shows the amount of vinyl product vs the excess of [hexyne] (in M).

Figure S-6a. Mass spectrum of the organic byproducts from the crossover experiment.

Figure S-6b. Mass spectrum of the products from the double crossover experiment.

Table S2. Crystal data and structure refinement for [L^{tBu'}FeH]₂

Identification code	holas09		
Empirical formula	npirical formula C96 H148 Fe2 N4		
Formula weight	1469.88		
Temperature	100.0(1) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/ <i>c</i>		
Unit cell dimensions	a = 50.910(3) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 14.3387(9) Å	$\beta=123.668(1)^\circ$	
	<i>c</i> = 28.6998(18) Å	$\gamma=90^{\circ}$	
Volume	17436.1(19) Å ³		
Ζ	8		
Density (calculated)	1.120 g/cm ³		
Absorption coefficient	0.379 mm ⁻¹		
<i>F</i> (000)	6432		
Crystal color, morphology	dark red, block		
Crystal size	0.32 x 0.32 x 0.24 mm ³		
Theta range for data collection	1.71 to 30.51°		
Index ranges	$-72 \le h \le 71, -20 \le k \le 20, -40 \le l \le 40$		
Reflections collected	134195		
Independent reflections	26222 [R(int) = 0.0332]		
Observed reflections	21241		
Completeness to theta = 30.51°	98.5%		
Absorption correction	Multi-scan		
Max. and min. transmission	0.9146 and 0.8884		
Refinement method	Full-matrix least-squares of	on F^2	
Data / restraints / parameters	26222 / 15 / 978		
Goodness-of-fit on F^2	1.017		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0467, wR2 = 0.1235		
<i>R</i> indices (all data)	R1 = 0.0607, wR2 = 0.1328		
Largest diff. peak and hole	2.696 and -1.040 e.Å ⁻³		

	Х	у	Z	U _{eq}	
Fel	1440(1)	9034(1)	1037(1)	16(1)	
Fe2	1195(1)	9961(1)	140(1)	16(1)	
N11	1602(1)	7732(1)	1187(1)	16(1)	
N21	1395(1)	9128(1)	1677(1)	16(1)	
C11	1884(1)	5692(1)	1498(1)	25(1)	
C21	1396(1)	5492(1)	1476(1)	29(1)	
C31	1895(1)	6093(1)	2335(1)	32(1)	
C41	1685(1)	6134(1)	1689(1)	21(1)	
C51	1564(1)	7165(1)	1515(1)	17(1)	
C61	1408(1)	7470(1)	1769(1)	18(1)	
C71	1354(1)	8359(1)	1899(1)	17(1)	
C81	1226(1)	8332(1)	2288(1)	23(1)	
C91	1245(1)	9223(1)	2604(1)	26(1)	
C101	877(1)	8056(2)	1912(1)	40(1)	
C111	1402(1)	7575(2)	2747(1)	48(1)	
C12	1762(1)	7420(1)	927(1)	17(1)	
C22	2080(1)	7659(1)	1164(1)	19(1)	
C32	2237(1)	7271(1)	936(1)	22(1)	
C42	2086(1)	6686(1)	472(1)	23(1)	
C52	1765(1)	6537(1)	215(1)	22(1)	
C62	1599(1)	6883(1)	433(1)	18(1)	
C72	2259(1)	8309(1)	1664(1)	20(1)	
C82	2531(1)	7804(1)	2178(1)	35(1)	
C92	2379(1)	9152(1)	1514(1)	39(1)	
C102	1658(1)	12595(1)	2886(1)	26(1)	
C112	1474(1)	12613(1)	3161(1)	38(1)	
C122	1603(1)	13473(1)	2542(1)	37(1)	
C132	890(1)	10584(1)	1233(1)	24(1)	

Table S3. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for[L^{tBu'}FeH]₂.

C142	639(1)	10677(2)	1369(1)	35(1)
C152	816(1)	11295(1)	776(1)	37(1)
C13	1454(1)	10020(1)	1950(1)	17(1)
C23	1759(1)	10193(1)	2431(1)	20(1)
C33	1817(1)	11030(1)	2720(1)	22(1)
C43	1587(1)	11711(1)	2544(1)	21(1)
C53	1294(1)	11546(1)	2053(1)	20(1)
C63	1222(1)	10717(1)	1750(1)	18(1)
C73	2030(1)	9505(1)	2647(1)	26(1)
C83	2145(1)	9137(2)	3232(1)	61(1)
C93	2304(1)	9949(2)	2657(1)	49(1)
C103	2267(1)	6209(1)	260(1)	29(1)
C113	2227(1)	5149(1)	246(1)	37(1)
C123	2168(1)	6570(2)	-318(1)	38(1)
C133	1248(1)	6670(1)	130(1)	20(1)
C143	1067(1)	7295(1)	-388(1)	26(1)
C153	1165(1)	5650(1)	-52(1)	28(1)
N14	1371(1)	11048(1)	-67(1)	17(1)
N24	748(1)	10024(1)	-533(1)	17(1)
C14	1596(1)	12673(1)	-482(1)	34(1)
C24	1071(1)	12308(2)	-1319(1)	37(1)
C34	1129(1)	13435(1)	-598(1)	36(1)
C44	1250(1)	12509(1)	-685(1)	24(1)
C54	1172(1)	11677(1)	-428(1)	19(1)
C64	842(1)	11624(1)	-655(1)	21(1)
C74	641(1)	10892(1)	-739(1)	19(1)
C84	283(1)	11185(1)	-1098(1)	25(1)
C94	240(1)	12046(2)	-828(1)	39(1)
C104	181(1)	11445(2)	-1692(1)	42(1)
C114	46(1)	10459(2)	-1154(1)	56(1)
C15	1709(1)	11135(1)	233(1)	17(1)
C25	1867(1)	11707(1)	711(1)	19(1)
C35	2194(1)	11795(1)	999(1)	20(1)
C45	2369(1)	11343(1)	830(1)	19(1)
C55	2208(1)	10748(1)	369(1)	19(1)
C65	1881(1)	10625(1)	70(1)	17(1)

C75	1694(1)	12224(1)	927(1)	29(1)
C85	1776(1)	13266(1)	1024(1)	42(1)
C95	1769(1)	11772(2)	1470(1)	46(1)
C105	2720(1)	11541(1)	1125(1)	21(1)
C115	2775(1)	12243(1)	785(1)	32(1)
C125	2921(1)	10671(1)	1252(1)	31(1)
C135	1721(1)	9958(1)	-425(1)	19(1)
C145	1805(1)	8948(1)	-223(1)	25(1)
C155	1805(1)	10161(1)	-853(1)	28(1)
C16	558(1)	9216(1)	-819(1)	16(1)
C26	436(1)	8660(1)	-576(1)	16(1)
C36	245(1)	7901(1)	-875(1)	19(1)
C46	176(1)	7655(1)	-1403(1)	21(1)
C56	313(1)	8184(1)	-1620(1)	21(1)
C66	506(1)	8956(1)	-1340(1)	18(1)
C76	511(1)	8842(1)	9(1)	18(1)
C86	745(1)	8109(1)	415(1)	22(1)
C96	221(1)	8842(1)	43(1)	27(1)
C106	-38(1)	6835(1)	-1723(1)	26(1)
C116	70(1)	5934(1)	-1379(1)	33(1)
C126	-381(1)	7039(1)	-1923(1)	36(1)
C136	671(1)	9440(1)	-1583(1)	21(1)
C146	966(1)	8888(1)	-1429(1)	30(1)
C156	465(1)	9570(1)	-2219(1)	30(1)
C17	288(1)	6126(4)	820(2)	85(2)
C27	435(1)	5333(3)	699(2)	58(1)
C37	601(1)	4664(3)	1084(2)	69(1)
C47	740(2)	3921(3)	970(2)	88(2)
C57	698(1)	3879(3)	451(2)	71(1)
C67	530(1)	4537(3)	61(2)	73(1)
C77	401(1)	5256(4)	188(2)	69(1)
C17'	757(4)	3834(11)	259(7)	85(2)
C27'	626(2)	4511(7)	538(4)	58(1)
C37'	482(4)	5346(10)	335(5)	69(1)
C47'	404(4)	5949(10)	640(5)	88(2)
C57'	485(3)	5641(8)	1162(5)	71(1)

C67'	651(3)	4846(9)	1402(5)	73(1)
C77'	721(4)	4274(11)	1086(5)	69(1)
C18	342(1)	6419(2)	2338(1)	46(1)
C28	566(1)	5648(1)	2682(1)	35(1)
C38	498(1)	5022(2)	2969(1)	37(1)
C48	709(1)	4318(2)	3298(1)	40(1)
C58	992(1)	4239(2)	3343(1)	42(1)
C68	1062(1)	4853(2)	3054(1)	48(1)
C78	851(1)	5546(2)	2727(1)	45(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for [L^{tBu}'FeH]₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Fe1	15(1)	15(1)	17(1)	-1(1)	10(1)	-1(1)
Fe2	13(1)	15(1)	17(1)	-1(1)	6(1)	-1(1)
N11	13(1)	18(1)	15(1)	-3(1)	7(1)	-1(1)
N21	15(1)	15(1)	17(1)	-3(1)	8(1)	-1(1)
C11	25(1)	20(1)	26(1)	2(1)	12(1)	7(1)
C21	31(1)	18(1)	35(1)	-1(1)	18(1)	-2(1)
C31	33(1)	34(1)	20(1)	6(1)	9(1)	12(1)
C41	21(1)	18(1)	19(1)	1(1)	8(1)	4(1)
C51	14(1)	16(1)	15(1)	-3(1)	4(1)	-1(1)
C61	18(1)	17(1)	18(1)	0(1)	9(1)	-1(1)
C71	13(1)	20(1)	14(1)	-2(1)	6(1)	-1(1)
C81	28(1)	23(1)	23(1)	-1(1)	18(1)	0(1)
C91	31(1)	29(1)	22(1)	-4(1)	18(1)	-1(1)
C101	36(1)	51(1)	50(1)	-22(1)	34(1)	-19(1)
C111	85(2)	39(1)	44(1)	17(1)	51(1)	23(1)
C12	15(1)	18(1)	16(1)	-1(1)	7(1)	3(1)
C22	15(1)	21(1)	17(1)	-1(1)	8(1)	2(1)
C32	16(1)	29(1)	20(1)	-1(1)	9(1)	3(1)

C42	20(1)	29(1)	21(1)	-1(1)	11(1)	7(1)
C52	20(1)	24(1)	17(1)	-4(1)	8(1)	5(1)
C62	15(1)	19(1)	16(1)	-2(1)	6(1)	3(1)
C72	15(1)	24(1)	18(1)	-3(1)	7(1)	-2(1)
C82	29(1)	37(1)	23(1)	-5(1)	3(1)	6(1)
C92	48(1)	37(1)	32(1)	-8(1)	22(1)	-20(1)
C102	30(1)	20(1)	27(1)	-8(1)	15(1)	-3(1)
C112	50(1)	37(1)	35(1)	-11(1)	28(1)	-2(1)
C122	49(1)	19(1)	39(1)	-6(1)	21(1)	-5(1)
C132	19(1)	25(1)	21(1)	-3(1)	6(1)	5(1)
C142	17(1)	45(1)	36(1)	-3(1)	10(1)	5(1)
C152	43(1)	37(1)	22(1)	4(1)	11(1)	14(1)
C13	16(1)	16(1)	18(1)	-4(1)	10(1)	-2(1)
C23	16(1)	20(1)	20(1)	-4(1)	9(1)	-2(1)
C33	20(1)	22(1)	22(1)	-6(1)	11(1)	-5(1)
C43	26(1)	17(1)	23(1)	-5(1)	16(1)	-4(1)
C53	23(1)	18(1)	23(1)	-2(1)	14(1)	1(1)
C63	18(1)	19(1)	18(1)	-2(1)	10(1)	0(1)
C73	17(1)	25(1)	28(1)	-7(1)	6(1)	0(1)
C83	54(1)	74(2)	44(1)	24(1)	20(1)	39(1)
C93	25(1)	34(1)	90(2)	-18(1)	32(1)	-5(1)
C103	23(1)	40(1)	27(1)	-5(1)	15(1)	7(1)
C113	38(1)	38(1)	41(1)	2(1)	26(1)	16(1)
C123	46(1)	44(1)	38(1)	0(1)	31(1)	9(1)
C133	15(1)	20(1)	18(1)	-4(1)	6(1)	2(1)
C143	21(1)	27(1)	20(1)	-1(1)	6(1)	7(1)
C153	25(1)	23(1)	26(1)	-6(1)	8(1)	-2(1)
N14	16(1)	17(1)	19(1)	-4(1)	10(1)	-2(1)
N24	14(1)	16(1)	17(1)	-2(1)	7(1)	-1(1)
C14	33(1)	28(1)	48(1)	12(1)	27(1)	0(1)
C24	46(1)	40(1)	30(1)	6(1)	25(1)	1(1)
C34	47(1)	17(1)	57(1)	3(1)	37(1)	2(1)
C44	30(1)	18(1)	31(1)	3(1)	21(1)	2(1)
C54	22(1)	16(1)	21(1)	-3(1)	13(1)	-1(1)
C64	21(1)	16(1)	23(1)	1(1)	11(1)	3(1)
C74	16(1)	19(1)	18(1)	-1(1)	8(1)	2(1)

C84	17(1)	23(1)	28(1)	4(1)	9(1)	5(1)
C94	27(1)	48(1)	34(1)	-4(1)	13(1)	16(1)
C104	29(1)	59(1)	25(1)	3(1)	7(1)	17(1)
C114	17(1)	38(1)	97(2)	27(1)	22(1)	10(1)
C15	16(1)	17(1)	17(1)	-2(1)	10(1)	-3(1)
C25	21(1)	19(1)	20(1)	-6(1)	14(1)	-6(1)
C35	22(1)	22(1)	17(1)	-7(1)	11(1)	-8(1)
C45	18(1)	22(1)	15(1)	-1(1)	8(1)	-4(1)
C55	17(1)	23(1)	16(1)	-2(1)	9(1)	-1(1)
C65	18(1)	18(1)	15(1)	-2(1)	9(1)	-2(1)
C75	24(1)	35(1)	32(1)	-19(1)	19(1)	-10(1)
C85	41(1)	34(1)	51(1)	-22(1)	26(1)	-6(1)
C95	52(1)	65(1)	40(1)	-22(1)	38(1)	-27(1)
C105	17(1)	29(1)	16(1)	-3(1)	7(1)	-5(1)
C115	23(1)	45(1)	24(1)	1(1)	12(1)	-11(1)
C125	20(1)	38(1)	26(1)	-5(1)	7(1)	1(1)
C135	16(1)	21(1)	16(1)	-4(1)	7(1)	0(1)
C145	29(1)	20(1)	22(1)	-3(1)	12(1)	-1(1)
C155	35(1)	32(1)	17(1)	-4(1)	14(1)	-4(1)
C16	11(1)	18(1)	14(1)	-1(1)	3(1)	0(1)
C26	12(1)	20(1)	13(1)	-2(1)	4(1)	1(1)
C36	16(1)	22(1)	17(1)	-2(1)	7(1)	-3(1)
C46	17(1)	23(1)	16(1)	-5(1)	6(1)	-4(1)
C56	18(1)	25(1)	15(1)	-4(1)	6(1)	-3(1)
C66	14(1)	21(1)	15(1)	0(1)	6(1)	0(1)
C76	15(1)	21(1)	14(1)	-2(1)	6(1)	1(1)
C86	18(1)	26(1)	16(1)	0(1)	6(1)	2(1)
C96	19(1)	42(1)	21(1)	-2(1)	11(1)	5(1)
C106	25(1)	28(1)	20(1)	-8(1)	10(1)	-10(1)
C116	35(1)	24(1)	35(1)	-7(1)	17(1)	-6(1)
C126	22(1)	36(1)	34(1)	-7(1)	6(1)	-10(1)
C136	19(1)	24(1)	18(1)	-1(1)	9(1)	-2(1)
C146	20(1)	37(1)	32(1)	5(1)	14(1)	1(1)
C156	26(1)	41(1)	19(1)	4(1)	11(1)	0(1)
C17	99(4)	75(3)	101(4)	-34(3)	69(3)	-28(3)
C27	56(2)	60(2)	56(2)	-8(2)	29(2)	-23(2)

C37	80(2)	64(2)	53(2)	0(1)	31(2)	-19(2)	
C47	102(4)	56(2)	64(3)	5(2)	20(3)	-11(3)	
C57	72(3)	47(2)	87(3)	-6(2)	39(2)	-9(2)	
C67	90(3)	76(3)	56(2)	1(2)	43(2)	-13(2)	
C77	80(2)	64(2)	53(2)	0(1)	31(2)	-19(2)	
C17'	99(4)	75(3)	101(4)	-34(3)	69(3)	-28(3)	
C27'	56(2)	60(2)	56(2)	-8(2)	29(2)	-23(2)	
C37'	80(2)	64(2)	53(2)	0(1)	31(2)	-19(2)	
C47'	102(4)	56(2)	64(3)	5(2)	20(3)	-11(3)	
C57'	72(3)	47(2)	87(3)	-6(2)	39(2)	-9(2)	
C67'	90(3)	76(3)	56(2)	1(2)	43(2)	-13(2)	
C77'	80(2)	64(2)	53(2)	0(1)	31(2)	-19(2)	
C18	48(1)	34(1)	51(1)	5(1)	24(1)	0(1)	
C28	36(1)	31(1)	35(1)	-6(1)	16(1)	-5(1)	
C38	31(1)	47(1)	30(1)	2(1)	15(1)	1(1)	
C48	39(1)	50(1)	32(1)	6(1)	19(1)	5(1)	
C58	39(1)	45(1)	36(1)	-2(1)	18(1)	7(1)	
C68	40(1)	45(1)	66(2)	-6(1)	33(1)	-2(1)	
C78	48(1)	34(1)	62(1)	-3(1)	35(1)	-7(1)	

Table S5. Bond lengths [Å] and angles [°] for [L^{tBu}'FeH]₂

Fe(1)-N(21)	1.9780(12)	N(21)-C(13)	1.4418(17)
Fe(1)-N(11)	1.9885(12)	C(11)-C(41)	1.535(2)
Fe(1)-Fe(2)	2.5292(3)	C(11)-H(11A)	0.9800
Fe(1)-H(1)	1.48(2)	C(11)-H(11B)	0.9800
Fe(1)-H(2)	1.58(2)	C(11)-H(11C)	0.9800
Fe(2)-N(24)	2.0097(12)	C(21)-C(41)	1.545(2)
Fe(2)-N(14)	2.0429(12)	C(21)-H(21A)	0.9800
Fe(2)-H(1)	1.49(2)	C(21)-H(21B)	0.9800
Fe(2)-H(2)	1.70(2)	C(21)-H(21C)	0.9800
N(11)-C(51)	1.3369(18)	C(31)-C(41)	1.545(2)
N(11)-C(12)	1.4468(17)	C(31)-H(31A)	0.9800
N(21)-C(71)	1.3455(18)	C(31)-H(31B)	0.9800

C(31)-H(31C)	0.9800	C(92)-H(92B)	0.9800
C(41)-C(51)	1.572(2)	C(92)-H(92C)	0.9800
C(51)-C(61)	1.416(2)	C(102)-C(43)	1.519(2)
C(61)-C(71)	1.3964(19)	C(102)-C(112)	1.523(3)
C(61)-H(61)	0.9500	C(102)-C(122)	1.527(3)
C(71)-C(81)	1.573(2)	C(102)-H(102)	1.0000
C(81)-C(101)	1.532(2)	C(112)-H(11J)	0.9800
C(81)-C(91)	1.539(2)	C(112)-H(11K)	0.9800
C(81)-C(111)	1.553(3)	C(112)-H(11L)	0.9800
C(91)-H(91A)	0.9800	C(122)-H(12G)	0.9800
C(91)-H(91B)	0.9800	C(122)-H(12H)	0.9800
C(91)-H(91C)	0.9800	C(122)-H(12I)	0.9800
C(101)-H(10A)	0.9800	C(132)-C(63)	1.518(2)
C(101)-H(10B)	0.9800	C(132)-C(152)	1.534(2)
C(101)-H(10C)	0.9800	C(132)-C(142)	1.538(2)
C(111)-H(11P)	0.9800	C(132)-H(132)	1.0000
C(111)-H(11Q)	0.9800	C(142)-H(14M)	0.9800
C(111)-H(11R)	0.9800	C(142)-H(14N)	0.9800
C(12)-C(22)	1.4045(19)	C(142)-H(14O)	0.9800
C(12)-C(62)	1.4083(19)	C(152)-H(15J)	0.9800
C(22)-C(32)	1.400(2)	C(152)-H(15K)	0.9800
C(22)-C(72)	1.520(2)	C(152)-H(15L)	0.9800
C(32)-C(42)	1.390(2)	C(13)-C(63)	1.4074(19)
C(32)-H(32)	0.9500	C(13)-C(23)	1.4134(19)
C(42)-C(52)	1.390(2)	C(23)-C(33)	1.393(2)
C(42)-C(103)	1.518(2)	C(23)-C(73)	1.521(2)
C(52)-C(62)	1.392(2)	C(33)-C(43)	1.385(2)
C(52)-H(52)	0.9500	C(33)-H(33)	0.9500
C(62)-C(133)	1.5214(19)	C(43)-C(53)	1.394(2)
C(72)-C(92)	1.521(2)	C(53)-C(63)	1.396(2)
C(72)-C(82)	1.533(2)	C(53)-H(53)	0.9500
C(72)-H(72)	1.0000	C(73)-C(93)	1.515(3)
C(82)-H(82A)	0.9800	C(73)-C(83)	1.534(3)
C(82)-H(82B)	0.9800	C(73)-H(73)	1.0000
C(82)-H(82C)	0.9800	C(83)-H(83A)	0.9800
C(92)-H(92A)	0.9800	C(83)-H(83B)	0.9800

C(83)-H(83C)	0.9800	C(34)-H(34B)	0.9800
C(93)-H(93A)	0.9800	C(34)-H(34C)	0.9800
C(93)-H(93B)	0.9800	C(44)-C(54)	1.565(2)
С(93)-Н(93С)	0.9800	C(54)-C(64)	1.427(2)
C(103)-C(113)	1.531(3)	C(64)-C(74)	1.392(2)
C(103)-C(123)	1.532(3)	C(64)-H(64)	0.9500
C(103)-H(103)	1.0000	C(74)-C(84)	1.574(2)
C(113)-H(11M)	0.9800	C(84)-C(104)	1.528(3)
C(113)-H(11N)	0.9800	C(84)-C(114)	1.531(3)
С(113)-Н(11О)	0.9800	C(84)-C(94)	1.536(2)
C(123)-H(12J)	0.9800	C(94)-H(94A)	0.9800
C(123)-H(12K)	0.9800	C(94)-H(94B)	0.9800
C(123)-H(12L)	0.9800	C(94)-H(94C)	0.9800
C(133)-C(143)	1.530(2)	C(104)-H(10D)	0.9800
C(133)-C(153)	1.531(2)	C(104)-H(10E)	0.9800
С(133)-Н(133)	1.0000	C(104)-H(10F)	0.9800
C(143)-H(14D)	0.9800	C(114)-H(11S)	0.9800
C(143)-H(14E)	0.9800	C(114)-H(11T)	0.9800
C(143)-H(14F)	0.9800	C(114)-H(11U)	0.9800
C(153)-H(15D)	0.9800	C(15)-C(65)	1.4061(19)
C(153)-H(15E)	0.9800	C(15)-C(25)	1.4076(19)
C(153)-H(15F)	0.9800	C(25)-C(35)	1.397(2)
N(14)-C(54)	1.3235(19)	C(25)-C(75)	1.520(2)
N(14)-C(15)	1.4391(17)	C(35)-C(45)	1.389(2)
N(24)-C(74)	1.3571(18)	C(35)-H(35)	0.9500
N(24)-C(16)	1.4392(17)	C(45)-C(55)	1.3951(19)
C(14)-C(44)	1.535(2)	C(45)-C(105)	1.520(2)
C(14)-H(14J)	0.9800	C(55)-C(65)	1.3952(19)
C(14)-H(14K)	0.9800	C(55)-H(55)	0.9500
C(14)-H(14L)	0.9800	C(65)-C(135)	1.5216(19)
C(24)-C(44)	1.543(2)	C(75)-C(95)	1.529(3)
C(24)-H(24A)	0.9800	C(75)-C(85)	1.535(3)
C(24)-H(24B)	0.9800	C(75)-H(75)	1.0000
C(24)-H(24C)	0.9800	C(85)-H(85A)	0.9800
C(34)-C(44)	1.542(2)	C(85)-H(85B)	0.9800
C(34)-H(34A)	0.9800	C(85)-H(85C)	0.9800

C(95)-H(95A)	0.9800	C(86)-H(86B)	0.9800
C(95)-H(95B)	0.9800	C(86)-H(86C)	0.9800
С(95)-Н(95С)	0.9800	C(96)-H(96A)	0.9800
C(105)-C(125)	1.524(2)	C(96)-H(96B)	0.9800
C(105)-C(115)	1.533(2)	C(96)-H(96C)	0.9800
С(105)-Н(105)	1.0000	C(106)-C(116)	1.530(3)
C(115)-H(11D)	0.9800	C(106)-C(126)	1.534(2)
С(115)-Н(11Е)	0.9800	C(106)-H(106)	1.0000
C(115)-H(11F)	0.9800	C(116)-H(11G)	0.9800
C(125)-H(12D)	0.9800	C(116)-H(11H)	0.9800
С(125)-Н(12Е)	0.9800	C(116)-H(11I)	0.9800
C(125)-H(12F)	0.9800	C(126)-H(12A)	0.9800
C(135)-C(145)	1.530(2)	C(126)-H(12B)	0.9800
C(135)-C(155)	1.533(2)	C(126)-H(12C)	0.9800
С(135)-Н(135)	1.0000	C(136)-C(156)	1.530(2)
C(145)-H(14A)	0.9800	C(136)-C(146)	1.530(2)
C(145)-H(14B)	0.9800	С(136)-Н(136)	1.0000
C(145)-H(14C)	0.9800	C(146)-H(14G)	0.9800
C(155)-H(15A)	0.9800	C(146)-H(14H)	0.9800
C(155)-H(15B)	0.9800	C(146)-H(14I)	0.9800
С(155)-Н(15С)	0.9800	C(156)-H(15G)	0.9800
C(16)-C(26)	1.410(2)	С(156)-Н(15Н)	0.9800
C(16)-C(66)	1.4162(19)	C(156)-H(15I)	0.9800
C(26)-C(36)	1.3923(19)	C(17)-C(27)	1.504(6)
C(26)-C(76)	1.5232(19)	C(17)-H(17A)	0.9800
C(36)-C(46)	1.397(2)	C(17)-H(17B)	0.9800
C(36)-H(36)	0.9500	C(17)-H(17C)	0.9800
C(46)-C(56)	1.390(2)	C(27)-C(37)	1.348(6)
C(46)-C(106)	1.520(2)	C(27)-C(77)	1.384(6)
C(56)-C(66)	1.399(2)	C(37)-C(47)	1.412(8)
C(56)-H(56)	0.9500	C(37)-H(37)	0.9500
C(66)-C(136)	1.526(2)	C(47)-C(57)	1.383(8)
C(76)-C(86)	1.531(2)	C(47)-H(47)	0.9500
C(76)-C(96)	1.536(2)	C(57)-C(67)	1.346(6)
C(76)-H(76)	1.0000	C(57)-H(57)	0.9500
C(86)-H(86A)	0.9800	C(67)-C(77)	1.375(7)

C(67)-H(67)	0.9500	N(11)-Fe(1)-H(1)	105.7(8)
C(77)-H(77)	0.9500	Fe(2)-Fe(1)-H(1)	31.7(8)
C(17')-C(27')	1.620(13)	N(21)-Fe(1)-H(2)	91.2(7)
C(17')-H(17D)	0.9800	N(11)-Fe(1)-H(2)	166.7(7)
C(17')-H(17E)	0.9800	Fe(2)-Fe(1)-H(2)	41.2(7)
C(17')-H(17F)	0.9800	H(1)-Fe(1)-H(2)	68.3(11)
C(27')-C(37')	1.355(15)	N(24)-Fe(2)-N(14)	97.60(5)
C(27')-C(77')	1.404(14)	N(24)-Fe(2)-Fe(1)	131.17(4)
C(37')-C(47')	1.432(16)	N(14)-Fe(2)-Fe(1)	130.43(4)
C(37')-H(37')	0.9500	N(24)-Fe(2)-H(1)	147.5(8)
C(47')-C(57')	1.388(15)	N(14)-Fe(2)-H(1)	109.6(8)
C(47')-H(47')	0.9500	Fe(1)-Fe(2)-H(1)	31.5(8)
C(57')-C(67')	1.356(14)	N(24)-Fe(2)-H(2)	117.5(7)
C(57')-H(57')	0.9500	N(14)-Fe(2)-H(2)	117.9(7)
C(67')-C(77')	1.411(15)	Fe(1)-Fe(2)-H(2)	37.8(7)
C(67')-H(67')	0.9500	H(1)-Fe(2)-H(2)	65.0(10)
C(77')-H(77')	0.9500	C(51)-N(11)-C(12)	121.14(12)
C(18)-C(28)	1.502(3)	C(51)-N(11)-Fe(1)	121.19(9)
C(18)-H(18A)	0.9800	C(12)-N(11)-Fe(1)	117.68(9)
C(18)-H(18B)	0.9800	C(71)-N(21)-C(13)	120.71(12)
C(18)-H(18C)	0.9800	C(71)-N(21)-Fe(1)	120.77(9)
C(28)-C(38)	1.387(3)	C(13)-N(21)-Fe(1)	117.89(9)
C(28)-C(78)	1.389(3)	C(41)-C(11)-H(11A)	109.5
C(38)-C(48)	1.392(3)	C(41)-C(11)-H(11B)	109.5
C(38)-H(38A)	0.9500	H(11A)-C(11)-H(11B)	109.5
C(48)-C(58)	1.377(3)	C(41)-C(11)-H(11C)	109.5
C(48)-H(48A)	0.9500	H(11A)-C(11)-H(11C)	109.5
C(58)-C(68)	1.385(3)	H(11B)-C(11)-H(11C)	109.5
C(58)-H(58A)	0.9500	C(41)-C(21)-H(21A)	109.5
C(68)-C(78)	1.382(3)	C(41)-C(21)-H(21B)	109.5
C(68)-H(68A)	0.9500	H(21A)-C(21)-H(21B)	109.5
C(78)-H(78A)	0.9500	C(41)-C(21)-H(21C)	109.5
N(21)-Fe(1)-N(11)	96.41(5)	H(21A)-C(21)-H(21C)	109.5
N(21)-Fe(1)-Fe(2)	131.62(4)	H(21B)-C(21)-H(21C)	109.5
N(11)-Fe(1)-Fe(2)	128.63(3)	C(41)-C(31)-H(31A)	109.5
N(21)-Fe(1)-H(1)	157.1(8)	C(41)-C(31)-H(31B)	109.5

H(31A)-C(31)-H(31B)	109.5	H(10B)-C(101)-H(10C)	109.5
C(41)-C(31)-H(31C)	109.5	С(81)-С(111)-Н(11Р)	109.5
H(31A)-C(31)-H(31C)	109.5	C(81)-C(111)-H(11Q)	109.5
H(31B)-C(31)-H(31C)	109.5	H(11P)-C(111)-H(11Q)	109.5
C(11)-C(41)-C(21)	106.72(13)	C(81)-C(111)-H(11R)	109.5
C(11)-C(41)-C(31)	104.90(13)	H(11P)-C(111)-H(11R)	109.5
C(21)-C(41)-C(31)	109.01(14)	H(11Q)-C(111)-H(11R)	109.5
C(11)-C(41)-C(51)	119.58(13)	C(22)-C(12)-C(62)	119.96(13)
C(21)-C(41)-C(51)	108.48(12)	C(22)-C(12)-N(11)	119.96(12)
C(31)-C(41)-C(51)	107.79(12)	C(62)-C(12)-N(11)	120.08(12)
N(11)-C(51)-C(61)	121.17(13)	C(32)-C(22)-C(12)	118.61(13)
N(11)-C(51)-C(41)	127.80(13)	C(32)-C(22)-C(72)	119.03(13)
C(61)-C(51)-C(41)	111.00(12)	C(12)-C(22)-C(72)	122.35(12)
C(71)-C(61)-C(51)	132.02(13)	C(42)-C(32)-C(22)	122.26(14)
C(71)-C(61)-H(61)	114.0	C(42)-C(32)-H(32)	118.9
C(51)-C(61)-H(61)	114.0	C(22)-C(32)-H(32)	118.9
N(21)-C(71)-C(61)	121.07(13)	C(32)-C(42)-C(52)	117.54(13)
N(21)-C(71)-C(81)	126.13(12)	C(32)-C(42)-C(103)	121.42(14)
C(61)-C(71)-C(81)	112.71(12)	C(52)-C(42)-C(103)	121.03(14)
C(101)-C(81)-C(91)	107.33(14)	C(42)-C(52)-C(62)	122.40(13)
C(101)-C(81)-C(111)	108.30(17)	C(42)-C(52)-H(52)	118.8
C(91)-C(81)-C(111)	105.12(14)	C(62)-C(52)-H(52)	118.8
C(101)-C(81)-C(71)	106.30(13)	C(52)-C(62)-C(12)	118.74(13)
C(91)-C(81)-C(71)	118.85(13)	C(52)-C(62)-C(133)	118.81(12)
C(111)-C(81)-C(71)	110.56(13)	C(12)-C(62)-C(133)	122.45(12)
C(81)-C(91)-H(91A)	109.5	C(22)-C(72)-C(92)	110.14(13)
C(81)-C(91)-H(91B)	109.5	C(22)-C(72)-C(82)	111.65(13)
H(91A)-C(91)-H(91B)	109.5	C(92)-C(72)-C(82)	110.96(15)
C(81)-C(91)-H(91C)	109.5	С(22)-С(72)-Н(72)	108.0
H(91A)-C(91)-H(91C)	109.5	C(92)-C(72)-H(72)	108.0
H(91B)-C(91)-H(91C)	109.5	C(82)-C(72)-H(72)	108.0
C(81)-C(101)-H(10A)	109.5	C(72)-C(82)-H(82A)	109.5
C(81)-C(101)-H(10B)	109.5	C(72)-C(82)-H(82B)	109.5
H(10A)-C(101)-H(10B)	109.5	H(82A)-C(82)-H(82B)	109.5
С(81)-С(101)-Н(10С)	109.5	C(72)-C(82)-H(82C)	109.5
H(10A)-C(101)-H(10C)	109.5	H(82A)-C(82)-H(82C)	109.5

H(82B)-C(82)-H(82C)	109.5	H(14N)-C(142)-H(14O)	109.5
C(72)-C(92)-H(92A)	109.5	С(132)-С(152)-Н(15Ј)	109.5
С(72)-С(92)-Н(92В)	109.5	С(132)-С(152)-Н(15К)	109.5
H(92A)-C(92)-H(92B)	109.5	H(15J)-C(152)-H(15K)	109.5
С(72)-С(92)-Н(92С)	109.5	C(132)-C(152)-H(15L)	109.5
H(92A)-C(92)-H(92C)	109.5	H(15J)-C(152)-H(15L)	109.5
H(92B)-C(92)-H(92C)	109.5	H(15K)-C(152)-H(15L)	109.5
C(43)-C(102)-C(112)	110.72(14)	C(63)-C(13)-C(23)	119.59(13)
C(43)-C(102)-C(122)	112.19(14)	C(63)-C(13)-N(21)	122.21(12)
C(112)-C(102)-C(122)	112.08(16)	C(23)-C(13)-N(21)	118.19(12)
C(43)-C(102)-H(102)	107.2	C(33)-C(23)-C(13)	119.16(13)
С(112)-С(102)-Н(102)	107.2	C(33)-C(23)-C(73)	118.18(13)
С(122)-С(102)-Н(102)	107.2	C(13)-C(23)-C(73)	122.66(13)
C(102)-C(112)-H(11J)	109.5	C(43)-C(33)-C(23)	122.25(14)
С(102)-С(112)-Н(11К)	109.5	C(43)-C(33)-H(33)	118.9
H(11J)-C(112)-H(11K)	109.5	С(23)-С(33)-Н(33)	118.9
C(102)-C(112)-H(11L)	109.5	C(33)-C(43)-C(53)	117.61(13)
H(11J)-C(112)-H(11L)	109.5	C(33)-C(43)-C(102)	120.19(14)
H(11K)-C(112)-H(11L)	109.5	C(53)-C(43)-C(102)	122.19(14)
C(102)-C(122)-H(12G)	109.5	C(43)-C(53)-C(63)	122.60(14)
С(102)-С(122)-Н(12Н)	109.5	C(43)-C(53)-H(53)	118.7
H(12G)-C(122)-H(12H)	109.5	C(63)-C(53)-H(53)	118.7
C(102)-C(122)-H(12I)	109.5	C(53)-C(63)-C(13)	118.64(13)
H(12G)-C(122)-H(12I)	109.5	C(53)-C(63)-C(132)	118.75(13)
H(12H)-C(122)-H(12I)	109.5	C(13)-C(63)-C(132)	122.54(13)
C(63)-C(132)-C(152)	111.54(14)	C(93)-C(73)-C(23)	110.65(15)
C(63)-C(132)-C(142)	111.85(13)	C(93)-C(73)-C(83)	109.53(19)
C(152)-C(132)-C(142)	108.22(14)	C(23)-C(73)-C(83)	112.09(15)
С(63)-С(132)-Н(132)	108.4	С(93)-С(73)-Н(73)	108.2
С(152)-С(132)-Н(132)	108.4	С(23)-С(73)-Н(73)	108.2
С(142)-С(132)-Н(132)	108.4	C(83)-C(73)-H(73)	108.2
C(132)-C(142)-H(14M)	109.5	C(73)-C(83)-H(83A)	109.5
C(132)-C(142)-H(14N)	109.5	C(73)-C(83)-H(83B)	109.5
H(14M)-C(142)-H(14N)	109.5	H(83A)-C(83)-H(83B)	109.5
С(132)-С(142)-Н(14О)	109.5	С(73)-С(83)-Н(83С)	109.5
H(14M)-C(142)-H(14O)	109.5	H(83A)-C(83)-H(83C)	109.5

H(83B)-C(83)-H(83C)	109.5	H(14E)-C(143)-H(14F)	109.5
C(73)-C(93)-H(93A)	109.5	C(133)-C(153)-H(15D)	109.5
C(73)-C(93)-H(93B)	109.5	С(133)-С(153)-Н(15Е)	109.5
H(93A)-C(93)-H(93B)	109.5	H(15D)-C(153)-H(15E)	109.5
С(73)-С(93)-Н(93С)	109.5	C(133)-C(153)-H(15F)	109.5
H(93A)-C(93)-H(93C)	109.5	H(15D)-C(153)-H(15F)	109.5
H(93B)-C(93)-H(93C)	109.5	H(15E)-C(153)-H(15F)	109.5
C(42)-C(103)-C(113)	110.88(15)	C(54)-N(14)-C(15)	123.47(12)
C(42)-C(103)-C(123)	111.81(14)	C(54)-N(14)-Fe(2)	118.61(10)
C(113)-C(103)-C(123)	110.35(15)	C(15)-N(14)-Fe(2)	117.62(9)
С(42)-С(103)-Н(103)	107.9	C(74)-N(24)-C(16)	120.53(12)
C(113)-C(103)-H(103)	107.9	C(74)-N(24)-Fe(2)	115.37(9)
C(123)-C(103)-H(103)	107.9	C(16)-N(24)-Fe(2)	123.87(9)
C(103)-C(113)-H(11M)	109.5	C(44)-C(14)-H(14J)	109.5
C(103)-C(113)-H(11N)	109.5	C(44)-C(14)-H(14K)	109.5
H(11M)-C(113)-H(11N)	109.5	H(14J)-C(14)-H(14K)	109.5
C(103)-C(113)-H(11O)	109.5	C(44)-C(14)-H(14L)	109.5
H(11M)-C(113)-H(11O)	109.5	H(14J)-C(14)-H(14L)	109.5
H(11N)-C(113)-H(11O)	109.5	H(14K)-C(14)-H(14L)	109.5
C(103)-C(123)-H(12J)	109.5	C(44)-C(24)-H(24A)	109.5
C(103)-C(123)-H(12K)	109.5	C(44)-C(24)-H(24B)	109.5
H(12J)-C(123)-H(12K)	109.5	H(24A)-C(24)-H(24B)	109.5
C(103)-C(123)-H(12L)	109.5	C(44)-C(24)-H(24C)	109.5
H(12J)-C(123)-H(12L)	109.5	H(24A)-C(24)-H(24C)	109.5
H(12K)-C(123)-H(12L)	109.5	H(24B)-C(24)-H(24C)	109.5
C(62)-C(133)-C(143)	108.87(13)	C(44)-C(34)-H(34A)	109.5
C(62)-C(133)-C(153)	113.80(12)	C(44)-C(34)-H(34B)	109.5
C(143)-C(133)-C(153)	109.01(12)	H(34A)-C(34)-H(34B)	109.5
С(62)-С(133)-Н(133)	108.3	C(44)-C(34)-H(34C)	109.5
C(143)-C(133)-H(133)	108.3	H(34A)-C(34)-H(34C)	109.5
C(153)-C(133)-H(133)	108.3	H(34B)-C(34)-H(34C)	109.5
C(133)-C(143)-H(14D)	109.5	C(14)-C(44)-C(34)	106.52(14)
C(133)-C(143)-H(14E)	109.5	C(14)-C(44)-C(24)	106.19(15)
H(14D)-C(143)-H(14E)	109.5	C(34)-C(44)-C(24)	108.95(15)
C(133)-C(143)-H(14F)	109.5	C(14)-C(44)-C(54)	118.35(13)
H(14D)-C(143)-H(14F)	109.5	C(34)-C(44)-C(54)	110.57(13)

C(24)-C(44)-C(54)	105.93(13)	C(25)-C(15)-N(14)	118.68(12)
N(14)-C(54)-C(64)	121.14(13)	C(35)-C(25)-C(15)	118.54(13)
N(14)-C(54)-C(44)	127.20(13)	C(35)-C(25)-C(75)	119.07(13)
C(64)-C(54)-C(44)	111.57(13)	C(15)-C(25)-C(75)	122.39(13)
C(74)-C(64)-C(54)	133.47(13)	C(45)-C(35)-C(25)	122.54(13)
C(74)-C(64)-H(64)	113.3	C(45)-C(35)-H(35)	118.7
C(54)-C(64)-H(64)	113.3	C(25)-C(35)-H(35)	118.7
N(24)-C(74)-C(64)	122.34(13)	C(35)-C(45)-C(55)	117.51(13)
N(24)-C(74)-C(84)	124.86(13)	C(35)-C(45)-C(105)	119.99(13)
C(64)-C(74)-C(84)	112.80(13)	C(55)-C(45)-C(105)	122.42(13)
C(104)-C(84)-C(114)	106.78(18)	C(45)-C(55)-C(65)	122.30(13)
C(104)-C(84)-C(94)	108.14(15)	C(45)-C(55)-H(55)	118.9
C(114)-C(84)-C(94)	106.00(17)	C(65)-C(55)-H(55)	118.9
C(104)-C(84)-C(74)	110.47(14)	C(55)-C(65)-C(15)	118.74(13)
C(114)-C(84)-C(74)	116.42(13)	C(55)-C(65)-C(135)	119.46(12)
C(94)-C(84)-C(74)	108.67(13)	C(15)-C(65)-C(135)	121.80(12)
C(84)-C(94)-H(94A)	109.5	C(25)-C(75)-C(95)	109.55(16)
C(84)-C(94)-H(94B)	109.5	C(25)-C(75)-C(85)	112.91(14)
H(94A)-C(94)-H(94B)	109.5	C(95)-C(75)-C(85)	109.73(15)
C(84)-C(94)-H(94C)	109.5	C(25)-C(75)-H(75)	108.2
H(94A)-C(94)-H(94C)	109.5	C(95)-C(75)-H(75)	108.2
H(94B)-C(94)-H(94C)	109.5	C(85)-C(75)-H(75)	108.2
C(84)-C(104)-H(10D)	109.5	C(75)-C(85)-H(85A)	109.5
C(84)-C(104)-H(10E)	109.5	C(75)-C(85)-H(85B)	109.5
H(10D)-C(104)-H(10E)	109.5	H(85A)-C(85)-H(85B)	109.5
C(84)-C(104)-H(10F)	109.5	C(75)-C(85)-H(85C)	109.5
H(10D)-C(104)-H(10F)	109.5	H(85A)-C(85)-H(85C)	109.5
H(10E)-C(104)-H(10F)	109.5	H(85B)-C(85)-H(85C)	109.5
C(84)-C(114)-H(11S)	109.5	C(75)-C(95)-H(95A)	109.5
C(84)-C(114)-H(11T)	109.5	C(75)-C(95)-H(95B)	109.5
H(11S)-C(114)-H(11T)	109.5	H(95A)-C(95)-H(95B)	109.5
C(84)-C(114)-H(11U)	109.5	C(75)-C(95)-H(95C)	109.5
H(11S)-C(114)-H(11U)	109.5	H(95A)-C(95)-H(95C)	109.5
H(11T)-C(114)-H(11U)	109.5	H(95B)-C(95)-H(95C)	109.5
C(65)-C(15)-C(25)	120.19(13)	C(45)-C(105)-C(125)	113.91(13)
C(65)-C(15)-N(14)	121.06(12)	C(45)-C(105)-C(115)	109.93(12)

C(125)-C(105)-C(115)	110.69(14)	C(66)-C(16)-N(24)	119.24(12)
C(45)-C(105)-H(105)	107.3	C(36)-C(26)-C(16)	119.03(12)
С(125)-С(105)-Н(105)	107.3	C(36)-C(26)-C(76)	118.43(13)
С(115)-С(105)-Н(105)	107.3	C(16)-C(26)-C(76)	122.52(12)
C(105)-C(115)-H(11D)	109.5	C(26)-C(36)-C(46)	122.38(14)
C(105)-C(115)-H(11E)	109.5	C(26)-C(36)-H(36)	118.8
H(11D)-C(115)-H(11E)	109.5	C(46)-C(36)-H(36)	118.8
C(105)-C(115)-H(11F)	109.5	C(56)-C(46)-C(36)	117.48(13)
H(11D)-C(115)-H(11F)	109.5	C(56)-C(46)-C(106)	121.50(13)
H(11E)-C(115)-H(11F)	109.5	C(36)-C(46)-C(106)	121.02(14)
C(105)-C(125)-H(12D)	109.5	C(46)-C(56)-C(66)	122.69(13)
C(105)-C(125)-H(12E)	109.5	C(46)-C(56)-H(56)	118.7
H(12D)-C(125)-H(12E)	109.5	C(66)-C(56)-H(56)	118.7
C(105)-C(125)-H(12F)	109.5	C(56)-C(66)-C(16)	118.47(13)
H(12D)-C(125)-H(12F)	109.5	C(56)-C(66)-C(136)	119.06(13)
H(12E)-C(125)-H(12F)	109.5	C(16)-C(66)-C(136)	122.30(12)
C(65)-C(135)-C(145)	110.39(12)	C(26)-C(76)-C(86)	109.64(11)
C(65)-C(135)-C(155)	112.71(12)	C(26)-C(76)-C(96)	114.05(12)
C(145)-C(135)-C(155)	109.82(13)	C(86)-C(76)-C(96)	108.80(13)
С(65)-С(135)-Н(135)	107.9	C(26)-C(76)-H(76)	108.1
C(145)-C(135)-H(135)	107.9	C(86)-C(76)-H(76)	108.1
С(155)-С(135)-Н(135)	107.9	C(96)-C(76)-H(76)	108.1
C(135)-C(145)-H(14A)	109.5	C(76)-C(86)-H(86A)	109.5
C(135)-C(145)-H(14B)	109.5	C(76)-C(86)-H(86B)	109.5
H(14A)-C(145)-H(14B)	109.5	H(86A)-C(86)-H(86B)	109.5
C(135)-C(145)-H(14C)	109.5	С(76)-С(86)-Н(86С)	109.5
H(14A)-C(145)-H(14C)	109.5	H(86A)-C(86)-H(86C)	109.5
H(14B)-C(145)-H(14C)	109.5	H(86B)-C(86)-H(86C)	109.5
C(135)-C(155)-H(15A)	109.5	C(76)-C(96)-H(96A)	109.5
C(135)-C(155)-H(15B)	109.5	С(76)-С(96)-Н(96В)	109.5
H(15A)-C(155)-H(15B)	109.5	H(96A)-C(96)-H(96B)	109.5
С(135)-С(155)-Н(15С)	109.5	С(76)-С(96)-Н(96С)	109.5
H(15A)-C(155)-H(15C)	109.5	H(96A)-C(96)-H(96C)	109.5
H(15B)-C(155)-H(15C)	109.5	H(96B)-C(96)-H(96C)	109.5
C(26)-C(16)-C(66)	119.76(12)	C(46)-C(106)-C(116)	112.45(13)
C(26)-C(16)-N(24)	120.94(12)	C(46)-C(106)-C(126)	111.49(14)

C(116)-C(106)-C(126)	109.43(15)	H(17A)-C(17)-H(17B)	109.5
С(46)-С(106)-Н(106)	107.8	С(27)-С(17)-Н(17С)	109.5
С(116)-С(106)-Н(106)	107.8	H(17A)-C(17)-H(17C)	109.5
С(126)-С(106)-Н(106)	107.8	H(17B)-C(17)-H(17C)	109.5
С(106)-С(116)-Н(11G)	109.5	C(37)-C(27)-C(77)	117.7(5)
С(106)-С(116)-Н(11Н)	109.5	C(37)-C(27)-C(17)	121.0(4)
H(11G)-C(116)-H(11H)	109.5	C(77)-C(27)-C(17)	121.3(5)
C(106)-C(116)-H(11I)	109.5	C(27)-C(37)-C(47)	120.9(4)
H(11G)-C(116)-H(11I)	109.5	C(27)-C(37)-H(37)	119.5
H(11H)-C(116)-H(11I)	109.5	C(47)-C(37)-H(37)	119.5
С(106)-С(126)-Н(12А)	109.5	C(57)-C(47)-C(37)	118.9(4)
С(106)-С(126)-Н(12В)	109.5	C(57)-C(47)-H(47)	120.5
H(12A)-C(126)-H(12B)	109.5	C(37)-C(47)-H(47)	120.5
С(106)-С(126)-Н(12С)	109.5	C(67)-C(57)-C(47)	120.8(5)
H(12A)-C(126)-H(12C)	109.5	C(67)-C(57)-H(57)	119.6
H(12B)-C(126)-H(12C)	109.5	C(47)-C(57)-H(57)	119.6
C(66)-C(136)-C(156)	114.37(12)	C(57)-C(67)-C(77)	118.8(4)
C(66)-C(136)-C(146)	109.52(13)	C(57)-C(67)-H(67)	120.6
C(156)-C(136)-C(146)	108.90(13)	С(77)-С(67)-Н(67)	120.6
С(66)-С(136)-Н(136)	108.0	C(67)-C(77)-C(27)	122.8(5)
С(156)-С(136)-Н(136)	108.0	С(67)-С(77)-Н(77)	118.6
C(146)-C(136)-H(136)	108.0	С(27)-С(77)-Н(77)	118.6
C(136)-C(146)-H(14G)	109.5	C(27')-C(17')-H(17D)	109.5
С(136)-С(146)-Н(14Н)	109.5	C(27')-C(17')-H(17E)	109.5
H(14G)-C(146)-H(14H)	109.5	H(17D)-C(17')-H(17E)	109.5
C(136)-C(146)-H(14I)	109.5	C(27')-C(17')-H(17F)	109.5
H(14G)-C(146)-H(14I)	109.5	H(17D)-C(17')-H(17F)	109.5
H(14H)-C(146)-H(14I)	109.5	H(17E)-C(17')-H(17F)	109.5
С(136)-С(156)-Н(15G)	109.5	C(37')-C(27')-C(77')	117.7(11)
С(136)-С(156)-Н(15Н)	109.5	C(37')-C(27')-C(17')	126.1(11)
H(15G)-C(156)-H(15H)	109.5	C(77')-C(27')-C(17')	115.3(11)
C(136)-C(156)-H(15I)	109.5	C(27')-C(37')-C(47')	122.5(12)
H(15G)-C(156)-H(15I)	109.5	C(27')-C(37')-H(37')	118.7
H(15H)-C(156)-H(15I)	109.5	C(47')-C(37')-H(37')	118.7
С(27)-С(17)-Н(17А)	109.5	C(57')-C(47')-C(37')	116.7(12)
С(27)-С(17)-Н(17В)	109.5	C(57')-C(47')-H(47')	121.7

C(37')-C(47')-H(47')	121.7
C(67')-C(57')-C(47')	123.1(12)
C(67')-C(57')-H(57')	118.4
C(47')-C(57')-H(57')	118.4
C(57')-C(67')-C(77')	117.9(12)
C(57')-C(67')-H(67')	121.0
C(77')-C(67')-H(67')	121.0
C(27')-C(77')-C(67')	121.7(14)
C(27')-C(77')-H(77')	119.1
C(67')-C(77')-H(77')	119.1
C(28)-C(18)-H(18A)	109.5
C(28)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(28)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(38)-C(28)-C(78)	118.01(19)
C(38)-C(28)-C(18)	121.15(19)
C(78)-C(28)-C(18)	120.8(2)
C(28)-C(38)-C(48)	121.24(19)
C(28)-C(38)-H(38A)	119.4
C(48)-C(38)-H(38A)	119.4
C(58)-C(48)-C(38)	119.8(2)
C(58)-C(48)-H(48A)	120.1
C(38)-C(48)-H(48A)	120.1
C(48)-C(58)-C(68)	119.7(2)
C(48)-C(58)-H(58A)	120.2
C(68)-C(58)-H(58A)	120.2
C(78)-C(68)-C(58)	120.1(2)
C(78)-C(68)-H(68A)	119.9
C(58)-C(68)-H(68A)	119.9
C(68)-C(78)-C(28)	121.2(2)
C(68)-C(78)-H(78A)	119.4
C(28)-C(78)-H(78A)	119.4

Table S6. Crystal data and structure refinement for L^{tBu}FeNPhNPh

Identification code	holas19
Empirical formula	C47 H63 Fe N4
Formula weight	739.86
Temperature	100.0(1) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a = 22.938(4) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 10.2673(17) \text{ Å} \beta = 115.543(2)^{\circ}$
	$c = 19.629(3) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	4170.9(12) Å ³
Ζ	4
Density (calculated)	1.178 g/cm^3
Absorption coefficient	0.398 mm ⁻¹
<i>F</i> (000)	1596
Crystal color, morphology	red-black, block
Crystal size	$0.32 \ge 0.28 \ge 0.12 \text{ mm}^3$
Theta range for data collection	1.97 to 32.03°
Index ranges	$-33 \le h \le 34, -13 \le k \le 15, -29 \le l \le 29$
Reflections collected	27124
Independent reflections	7230 [$R(int) = 0.0331$]
Observed reflections	5927
Completeness to theta = 32.03°	99.6%
Absorption correction	Multi-scan
Max. and min. transmission	0.9538 and 0.8833
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7230 / 0 / 243
Goodness-of-fit on F2	1.054
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0384, wR2 = 0.0965
<i>R</i> indices (all data)	R1 = 0.0512, wR2 = 0.1035
Largest diff. peak and hole	1.008 and -0.228 e•Å ⁻³

	Х	У	Ζ	Ueq
Fe	0	4752(1)	2500	13(1)
N1	317(1)	2976(1)	2783(1)	16(1)
C1	358(1)	2558(1)	3492(1)	17(1)
C2	952(1)	2704(1)	4124(1)	21(1)
C3	1026(1)	2264(1)	4826(1)	26(1)
C4	524(1)	1636(1)	4906(1)	30(1)
C5	-56(1)	1448(1)	4276(1)	28(1)
C6	-145(1)	1911(1)	3572(1)	21(1)
N11	720(1)	6028(1)	2917(1)	13(1)
C11	1161(1)	8364(1)	2944(1)	15(1)
C21	622(1)	7318(1)	2806(1)	14(1)
C31	0	7863(2)	2500	16(1)
C41	1872(1)	7943(1)	3365(1)	19(1)
C51	1056(1)	8809(1)	2146(1)	22(1)
C61	1084(1)	9562(1)	3376(1)	23(1)
C12	1319(1)	5524(1)	3481(1)	13(1)
C22	1713(1)	4704(1)	3279(1)	16(1)
C32	2285(1)	4239(1)	3856(1)	21(1)
C42	2453(1)	4523(1)	4608(1)	23(1)
C52	2043(1)	5275(1)	4798(1)	20(1)
C62	1473(1)	5794(1)	4245(1)	15(1)
C72	1533(1)	4310(1)	2464(1)	18(1)
C82	1766(1)	2933(1)	2408(1)	23(1)
C92	1795(1)	5268(1)	2062(1)	32(1)
C102	1036(1)	6610(1)	4482(1)	18(1)
C112	1415(1)	7467(1)	5169(1)	26(1)
C122	556(1)	5748(1)	4628(1)	31(1)

Table S7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for L^{tBu}FeNPhNPh.

Table S8. Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters (Å² x 10³) for L^{tBu} FeNPhNPh.

	Х	У	Z	U(eq)	
H2A	1304	3104	4072	25	
H3A	1426	2394	5256	32	
H4A	577	1337	5387	36	
H5A	-398	998	4326	33	
H6A	-547	1787	3145	25	
H31A	0	8789	2500	19	
H41A	1945	7160	3127	28	

H41B	1971	7753	3893	28
H41C	2153	8646	3345	28
H51A	1105	8061	1865	33
H51B	1376	9476	2190	33
H51C	620	9172	1878	33
H61A	1079	9277	3850	34
H61B	677	10008	3065	34
H61C	1446	10161	3486	34
H32A	2565	3715	3730	26
H42A	2847	4204	4991	28
H52A	2153	5441	5315	24
H72A	1051	4315	2187	22
H82A	1643	2335	2713	35
H82B	2237	2935	2596	35
H82C	1567	2648	1880	35
H92A	1600	6127	2036	48
H92B	1686	4954	1550	48
H92C	2265	5333	2344	48
H10A	779	7201	4051	21
H11A	1753	7939	5090	39
H11B	1615	6920	5620	39
H11C	1122	8092	5237	39
H12A	288	5269	4166	46
H12B	280	6294	4776	46
H12C	794	5130	5034	46

Table S9. Bond lengths [Å] and angles [°] for L^{tBu}FeNPhNPh

1.9527(10)	C(11)-C(51)	1.5471(15)
1.9527(10)	C(11)-C(21)	1.5701(15)
1.9871(9)	C(21)-C(31)	1.4045(12)
1.9871(9)	C(31)-C(21)#1	1.4045(12)
1.3976(18)	C(31)-H(31A)	0.9500
1.4203(14)	C(41)-H(41A)	0.9800
1.3974(16)	C(41)-H(41B)	0.9800
1.3998(16)	C(41)-H(41C)	0.9800
1.3894(17)	C(51)-H(51A)	0.9800
0.9500	C(51)-H(51B)	0.9800
1.388(2)	C(51)-H(51C)	0.9800
0.9500	C(61)-H(61A)	0.9800
1.384(2)	C(61)-H(61B)	0.9800
0.9500	C(61)-H(61C)	0.9800
1.3912(17)	C(12)-C(22)	1.4115(14)
	$\begin{array}{c} 1.9527(10)\\ 1.9527(10)\\ 1.9871(9)\\ 1.9871(9)\\ 1.3976(18)\\ 1.4203(14)\\ 1.3974(16)\\ 1.3998(16)\\ 1.3894(17)\\ 0.9500\\ 1.388(2)\\ 0.9500\\ 1.384(2)\\ 0.9500\\ 1.3912(17)\end{array}$	1.9527(10) $C(11)$ - $C(51)$ $1.9527(10)$ $C(11)$ - $C(21)$ $1.9871(9)$ $C(21)$ - $C(31)$ $1.9871(9)$ $C(31)$ - $C(21)$ #1 $1.3976(18)$ $C(31)$ - $H(31A)$ $1.4203(14)$ $C(41)$ - $H(41A)$ $1.3974(16)$ $C(41)$ - $H(41B)$ $1.3998(16)$ $C(41)$ - $H(41C)$ $1.3894(17)$ $C(51)$ - $H(51A)$ 0.9500 $C(51)$ - $H(51B)$ $1.388(2)$ $C(51)$ - $H(51C)$ 0.9500 $C(61)$ - $H(61A)$ $1.384(2)$ $C(61)$ - $H(61B)$ 0.9500 $C(61)$ - $H(61C)$ $1.3912(17)$ $C(12)$ - $C(22)$

C(5)-H(5A)	0.9500	C(12)-C(62)	1.4121(14)
C(6)-H(6A)	0.9500	C(22)-C(32)	1.3962(15)
N(11)-C(21)	1.3451(14)	C(22)-C(72)	1.5250(15)
N(11)-C(12)	1.4372(13)	C(32)-C(42)	1.3866(17)
C(11)-C(41)	1.5398(15)	C(32)-H(32A)	0.9500
C(11)-C(61)	1.5466(16)	C(42)-C(52)	1.3860(17)
C(42)-H(42A)	0.9500	N(1)#1-Fe-N(1)	41.94(5)
C(52)-C(62)	1.3966(15)	N(1)#1-Fe-N(11)	150.93(4)
C(52)-H(52A)	0.9500	N(1)-Fe-N(11)	110.92(4)
C(62)-C(102)	1.5247(15)	N(1)#1-Fe-N(11)#1	110.92(4)
C(72)-C(82)	1.5322(17)	N(1)-Fe-N(11)#1	150.93(4)
C(72)-C(92)	1.5345(18)	N(11)-Fe-N(11)#1	97.52(5)
C(72)-H(72A)	1.0000	N(1)#1-N(1)-C(1)	112.70(10)
C(82)-H(82A)	0.9800	N(1)#1-N(1)-Fe	69.03(3)
C(82)-H(82B)	0.9800	C(6)-C(1)-C(2)	119.15(10)
C(82)-H(82C)	0.9800	C(6)-C(1)-N(1)	122.98(10)
C(92)-H(92A)	0.9800	C(2)-C(1)-N(1)	117.61(10)
C(92)-H(92B)	0.9800	C(3)-C(2)-C(1)	119.99(12)
C(92)-H(92C)	0.9800	C(1)-N(1)-Fe	114.85(7)
C(102)-C(112)	1.5291(16)	C(1)-C(2)-H(2A)	120.0
C(102)-C(122)	1.5323(17)	C(3)-C(2)-H(2A)	120.0
C(102)-H(10A)	1.0000	C(4)-C(3)-C(2)	120.71(12)
C(112)-H(11A)	0.9800	C(4)-C(3)-H(3A)	119.6
C(112)-H(11B)	0.9800	C(2)-C(3)-H(3A)	119.6
C(112)-H(11C)	0.9800	C(5)-C(4)-C(3)	119.31(12)
C(122)-H(12A)	0.9800	C(5)-C(4)-H(4A)	120.3
C(122)-H(12B)	0.9800	C(3)-C(4)-H(4A)	120.3
С(122)-Н(12С)	0.9800	C(4)-C(5)-C(6)	120.78(12)
C(4)-C(5)-H(5A)	119.6	C(11)-C(41)-H(41C)	109.5
C(6)-C(5)-H(5A)	119.6	H(41A)-C(41)-H(41C)	109.5
C(5)-C(6)-C(1)	119.99(12)	H(41B)-C(41)-H(41C)	109.5
C(5)-C(6)-H(6A)	120.0	C(11)-C(51)-H(51A)	109.5
C(1)-C(6)-H(6A)	120.0	C(11)-C(51)-H(51B)	109.5
C(21)-N(11)-C(12)	121.11(9)	H(51A)-C(51)-H(51B)	109.5
C(21)-N(11)-Fe	122.08(7)	C(11)-C(51)-H(51C)	109.5
C(12)-N(11)-Fe	115.35(7)	H(51A)-C(51)-H(51C)	109.5
C(41)-C(11)-C(61)	105.89(9)	H(51B)-C(51)-H(51C)	109.5
C(41)-C(11)-C(51)	107.05(9)	C(11)-C(61)-H(61A)	109.5
C(61)-C(11)-C(51)	108.38(10)	C(11)-C(61)-H(61B)	109.5
C(41)-C(11)-C(21)	118.21(9)	H(61A)-C(61)-H(61B)	109.5
C(61)-C(11)-C(21)	111.82(9)	C(11)-C(61)-H(61C)	109.5
C(51)-C(11)-C(21)	105.09(8)	H(61A)-C(61)-H(61C)	109.5

N(11)-C(21)-C(31) 121.99(10)	H(61B)-C(61)-H(61C)	109.5
N(11)-C(21)-C(11) 125.59(9)	C(22)-C(12)-C(62)	121.17(10)
C(22)-C(12)-N(11) 120.91(9)	C(72)-C(82)-H(82A)	109.5
C(62)-C(12)-N(11) 117.74(9)	C(72)-C(82)-H(82B)	109.5
C(32)-C(22)-C(12) 117.90(10)	H(82A)-C(82)-H(82B)	109.5
C(32)-C(22)-C(72) 119.64(10)	C(72)-C(82)-H(82C)	109.5
C(12)-C(22)-C(72) 122.46(10)	H(82A)-C(82)-H(82C)	109.5
C(42)-C(32)-C(22) 121.65(10)	H(82B)-C(82)-H(82C)	109.5
C(42)-C(32)-H(32A) 119.2	C(72)-C(92)-H(92A)	109.5
C(22)-C(32)-H(32A) 119.2	C(72)-C(92)-H(92B)	109.5
C(52)-C(42)-C(32) 119.59(11)	H(92A)-C(92)-H(92B)	109.5
C(52)-C(42)-H(42A) 120.2	C(72)-C(92)-H(92C)	109.5
C(32)-C(42)-H(42A) 120.2	H(92A)-C(92)-H(92C)	109.5
C(42)-C(52)-C(62) 121.33(10)	H(92B)-C(92)-H(92C)	109.5
C(42)-C(52)-H(52A) 119.3	C(62)-C(102)-C(112)	112.70(9)
C(62)-C(52)-H(52A) 119.3	C(62)-C(102)-C(122)	111.03(10)
C(52)-C(62)-C(12) 118.21(10)	C(112)-C(102)-C(122)	110.47(10)
C(52)-C(62)-C(102) 119.41(9)	C(62)-C(102)-H(10A)	107.5
C(12)-C(62)-C(102) 122.37(9)	C(112)-C(102)-H(10A)	107.5
C(22)-C(72)-C(82) 112.04(10)	C(122)-C(102)-H(10A)	107.5
C(22)-C(72)-C(92) 112.37(10)	C(102)-C(112)-H(11A)	109.5
C(82)-C(72)-C(92) 109.20(10)	C(102)-C(112)-H(11B)	109.5
C(22)-C(72)-H(72A) 107.7	H(11A)-C(112)-H(11B)	109.5
C(82)-C(72)-H(72A) 107.7	C(102)-C(112)-H(11C)	109.5
C(92)-C(72)-H(72A) 107.7	H(11A)-C(112)-H(11C)	109.5
H(11B)-C(112)-H(11C) 109.5	C(31)-C(21)-C(11)	112.31(10)
C(102)-C(122)-H(12A) 109.5	C(21)#1-C(31)-C(21)	132.99(14)
C(102)-C(122)-H(12B) 109.5	C(21)#1-C(31)-H(31A)	113.5
H(12A)-C(122)-H(12B) 109.5	C(21)-C(31)-H(31A)	113.5
C(102)-C(122)-H(12C) 109.5	C(11)-C(41)-H(41A)	109.5
H(12A)-C(122)-H(12C) 109.5	C(11)-C(41)-H(41B)	109.5
H(12B)-C(122)-H(12C) 109.5	H(41A)-C(41)-H(41B)	109.5

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2

Details on Reaction of [L^{tBu}FeH]₂ with BEt₃.

The iron(II) hydride dimer $[L^{tBu}Fe(\mu-H)_2FeL^{tBu}]$ abstracts hydrocarbyl groups from BEt₃ to give $L^{Me}FeEt$ and $L^{tBu}Fe(\mu-H)_2BEt_2$. The most convenient synthesis of the dihydridoborate complex is the same as the synthesis of $[L^{tBu}FeH]_2$, but with a longer reaction time. An ORTEP diagram is given below, and details of the reaction will be reported separately.³

L^{tBu}Fe(μ-H)₂BEt₂. A Schlenk flask was loaded with a mixture of L^{tBu}FeCl (722 mg, 1.21 mmol) and KHBEt₃ (167 mg, 1.21 mmol) in toluene (50 mL). The mixture was stirred at 80 °C for 18 h. Volatile materials were removed under vacuum and the residue was extracted with pentane (50 mL), filtered and concentrated to 10 mL. Crystallization at -26 °C gave dark red blocks (224 mg, 59%). ¹H NMR (500 MHz, C₆D₆): 71 (6H, BEt₂ CH₃), 42 (1H, backbone), 35 (18H, backbone CH₃), 16 (4H), -13 (12H, *i*Pr CH₃), -61 (12H, *i*Pr CH₃), -66 (4H), -89 (2H, p-H), -313 (4H) ppm. UV-vis (pentane): 333 (ε = 9.42 mM⁻¹ cm⁻¹), 414 (ε = 6.82 mM⁻¹ cm⁻¹), 597 (ε = 1.27 mM⁻¹ cm⁻¹) nm. μ_{eff} (C₆D₆, 25 °C): 5.7(1) μ_B. Elem. Anal. Calcd for C₃₉H₆₅N₂BFe: C, 74.52; H, 10.42; N, 4.46. Found: C, 74.60; H 10.20, ; N, 4.34.

References

¹ Yamamoto, O.; Yanagisawa, M. Anal. Chem. 1970, 42, 1463-1465.

² Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. *J. Am. Chem. Soc.* **2006**, *128*, 756-769.

³ Yu, Y.; Brennessel, W. W.; Holland, P. L., submitted.