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The sequence of 863 contiguous nucleotides encompassing portions of the pol
and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region
of the xenotropic murine leukemia virus genome contains an env-specific segment
that hybridizes exclusively to xenotropic and mink cell focus-forming but not to
ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The
unique xenotropic env segment contained several characteristic deletions and
insertions relative to the analogous region in AKR and Moloney ecotropic murine
leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c
mouse embryo gene library that had a restriction map and hybridization properties
typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were
also sequenced. The sequence of the endogenous env gene was very similar to the
comparable region of the NFS-Th-1 xenotropic virus containing the characteristic
deletions and insertions previously observed and could represent a segment of an
endogenous xenotropic provirus.

The chromosomal DNA of inbred mice con-
tains multiple copies of murine leukemia virus
(MuLV)-reactive sequences (8, 27, 28). Some of
these type C proviral DNAs encode infectious
ecotropic or xenotropic MuLVs (24), some are
expressed only in the form of viral antigens (10,
20, 29), some may contribute portions of their
envelope (env) genes during the formation of
mink cell focus-forming (MCF) MuLVs (6, 16),
and others contain large deletions and may not
be expressed at all (16, 22). Evaluation of the
molecular organization of these different endog-
enous MuLV proviruses and their integration
sites in cellular DNA by nucleic acid hybridiza-
tion techniques has been hampered by the exten-
sive cross-reactivity of different MuLV types.
To overcome some of these problems, we con-
structed a recombinant plasmid (pEcen,), previ-
ously designated pEc-B4, that contains se-
quences specific for the env gene of ecotropic
MuLVs (5). This cloned 545-base-pair (bp)
BglII-BamHI env segment maps 221 bp from the
5' terminus of the envelope gene of the Akv
MuLV and partially overlaps a 400 bp SmaI
fragment that also specifically anneals to ecotro-
pic proviral DNAs (7). Radiolabeled pEcenv
DNA has been used to quantitate the number of
ecotropic proviruses in different inbred mouse
strains and to evaluate the stability of ecotropic
proviral DNA in AKR sublines (4, 5). More
recently, we described the molecular cloning of
an env-specific DNA fragment (pX,nv) derived

from NFS-Th-1 xenotropic MuLV that hybrid-
izes to xenotropic and MCF proviruses but not
to ecotropic proviral DNA (3, 16). Restriction
enzyme mapping studies and hybridization ex-
periments indicate that the env-specific seg-
ments present in pEcenv and PXenv DNAs are
located in analogous regions of the env genes
from which they were derived.

Since the structure of the envelope glycopro-
tein plays a major role in determining the tissue
tropism and host range of MuLVs (1, 9, 18), we
determined the nucleotide and deduced amino
acid sequences of the xenotropic env-specific
segment and compared them with the published
sequences for Moloney (Mo) and Akv MuLVs.
Our analysis indicated that although portions of
the xenotropic env-specific segment were simi-
lar to the analogous region of ecotropic proviral
DNA, this part of the xenotropic env gene
contained multiple deletions and insertions rela-
tive to the ecotropic env DNA that explain its
unique hybridization properties and could ac-
count for the biological characteristics of xeno-
tropic MuLVs. The nucleotide sequence of a
portion of the env region of an endogenous
BALB/c MuLV provirus was also determined. It
contained all of the deletions and insertions
characteristic of the NFS-Th-1 xenotropic env
gene and therefore could represent a portion of a
potentially infectious xenotropic provirus in
BALB/c chromosomal DNA.

(This work was performed in partial fulfilment
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FIG. 1. Diagrammatic representation of NFS-Th-1 xenotropic and AKR ecotropic MuLV proviruses,
showing the location of xenotropic and ecotropic env-specific segments. The construction and characterization
of recombinant plasmids containing unique portions of the ecotropic and xenotropic env regions have been
previously reported (3, 5). The strategy used for sequencing parts of the pol and env genes of NFS-Th-1
xenotropic proviral DNA is shown within dashed lines at the bottom. Abbreviations: A, AvaIl; Acc, AccI; B,
BamHI; Bg, BgiII; H, HpaI; R, EcoRI; S, SmaI.

of the requirements for the Ph.D. degree in
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MATERIALS AND METHODS
Cloned retroviral DNAs used for nucleotide sequenc-

ing studies. Two recombinant plasmids that contained
segments of NFS-Th-1 xenotropic proviral DNA were
used for sequencing the xenotropic env-specific re-
gion; their construction has been previously described
(3). One of the plasmids (pXen5'6.7) contained an 8.9-
kilobase (kb) DNA insert that encompassed 6.7 kb of
the 5' end of the xenotropic provirus and 2.2 kb of
flanking cellular DNA. The second plasmid (PXeny),
derived from the first, contained the 455-bp BglII-
EcoRI env-specific segment of NFS-Th-1 xenotropic
proviral DNA. The sequence of a portion of an endog-
enous MuLV env gene was determined from a 0.6-kb
DNA segment contained within clone B-77 isolated
from a BALB/c embryo gene library (16). Like other
xenotropic MuLVs, the B-77 envelope segment hy-
bridized to the xenotropic env-specific probe and not
to the unique ecotropic env fragment.
DNA sequencing. DNA was sequenced by the partial

degradation method of Maxam and Gilbert (19). Nu-
cleotide sequence analyses were made with the com-
puter program of Queen and Korn (21).

Reagents. Restriction enzymes were purchased from
New England Biolabs, Beverly, Mass., Boehringer
Mannheim, Indianapolis, Ind., or Bethesda Research
Laboratories, Bethesda, Md., and used as described
by the suppliers. T4 polynucleotide kinase and calf
intestine alkaline phosphatase were obtained from PL
Biochemicals, Inc., Milwaukee, Wis. [_y-32P]ATP

(3,000 mCi/mmol) was purchased from Amersham
Corp. Arlington Heights, Ill.

RESULTS AND DISCUSSION
Aligmnent of AKR ecotropic and NFS xenotro-

pic proviral DNAs. Because of the extensive
polynucleotide sequence homology involving
large portions of the genomes of different types
of MuLV, we constructed recombinant plasmids
for use in hybridization experiments that con-
tained segments specific for ecotropic and xeno-
tropic env regions (3, 5). The ecotropic env
segment consisted of the 545-bp BglII-BamHI
fragment, which maps 6.4 to 7.0 kb from the 5'
terminus of AKR ecotropic proviral DNA (Fig.
1). The 455-bp BglII-EcoRI xenotropic env-spe-
cific segment maps to an analogous region (6.3
to 6.7 kb) of the NFS-Th-1 xenotropic provirus
(3). Both of these segments have been used as
hybridization probes to evaluate the molecular
organization of endogenous MuLV proviral
DNAs (4, 13). In view of the importance of the
env gene in determining host range, the unique
env segment of xenotropic proviral DNA was
sequenced and compared with analogous re-
gions of Mo and AKR proviruses.

Since we had previously ascertained that the
xenotropic env-specific fragment did not hybrid-
ize to ecotropic proviral DNA under stringent
hybridization conditions (3), it become impor-
tant to establish precisely the region of heterolo-
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_____________________
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FIG. 2. Comparison ofpol gene sequences in NFS-Th-1 xenotropic (top line) and Mo MuLV proviral (bottom
line) DNAs. The sequence of 351 nucleotides extending in the 3' direction from the HpaI site located
approximately 5.9 kb from the 5' terminus of NFS-Th-1 xenotropic proviral DNA (see Fig. 1) was determined
and aligned with the analogous region ofMo MuLV. Homologous deduced amino acids are shaded, and the env

splice acceptor sequence is indicated. The asterisk marks the position of the initiator codon of the env precursor
polypeptide, which is translated in a different reading frame (see Fig. 3). The numbers above the Mo MuLV
sequence are identical to those used to Shinnick et al. (26).

gy and to determine whether the two env genes
had any polynucleotide sequence homology.
The strategy for sequencing the cloned xenotro-
pic proviral DNA is shown in Fig. 1. Nucleotide
sequencing was initiated at the HpaI site (5.9 kb)
located in the pol region of the NSF-Th-1 xeno-
tropic MuLV provirus, which is positioned ap-
proximately 360 bp from the 5' amino terminus
of the env gene. As anticipated, this 3' portion of
the xenotropic MuLV pol gene was 80% ho-
mologous with the analogous segment of Mo
MuLV (Fig. 2). Nonhomologous nucleotides fre-
quently occurred as third-base changes, which
resulted in 84% homology for the deduced amino
acids. The most striking example of conserva-

tion involved the 3' terminus of the xenotropic
and ecotropic pol genes, in which 16 of the 17
final amino acids and the last three codons,
including the TAA terminator, were identical. In
this segment of Mo MuLV (and, by analogy,
NFS-Th-1 xenotropic MuLV), the pol and env

genes overlap one another (26). The nearly iden-
tical structure of the two proviral DNAs within
the reading frame encoding the pol gene product
aligned the two proviruses.

Sequencing of the env-specific segment of NFS-
Th-1 xenotropic proviral DNA. The sequence of
the first 573 nucleotides of the NFS-Th-1 xeno-
tropic env gene could be aligned with the initial
666 nucleotides of the analogous segments ofMo

FIG. 3. Sequence of the 5' portion of the xenotropic NFS-Th-1 env region and its alignment with the env

genes ofAKR and Mo ecotropic MuLVs. The sequence of 573 nucleotides extending from the 5' terminus of the
env gene of NFS-Th-1 xenotropic MuLV to the EcoRI site located at 6.7 kb was determined as described in the
legend to Fig. 1 and compared with the comparable regions of two ecotropic MuLVs. The ecotropic env-specific
segments of Akv extends from the BgIII site at nucleotide 6,004 to the BamHI site at 6,542; the xenotropic env-

specific fragment is located between the BgIl site at 5,901 and the EcoRP site at 6,442. Homologous deduced
amino acids are shaded, and the 3' terminus of the overlapping pol gene is indicated (+). Letters A through I
indicate deletions or insertions in the xenotropic env sequence relative to the ecotropic env sequences. The
amino termini of AKR and Mo MuLV gp70s and potential glycosylation sites (outlined tripeptides) in all three
proviral DNAs are shown. Numbers refer to nucleotide number in the Mo MuLV genome (26).

CCT CCA GCC GSA ACA GCA G AAG 6TT CA- CGT TCT CAA AAC CCC TTA -A- ATA A6A TTA ACC CGT GGG
PRO ALA GLY THR ALA LYS GLY
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and Akv ecotropic MuLVs (17, 26) (Fig. 3). The
difference in the size (93 nucleotides) of compa-
rable regions between the xenotropic and eco-
tropic env genes was due to several small and
two larger deletions of 36 and 78 nucleotides
(Fig. 3, D and E) in the xenotropic proviral
DNA. Conversely, the xenotropic env-specific
region contained two small insertions and a

larger 42-bp insertion (Fig. 3, H) relative to the
two ecotropic env genes. The xenotropic and
ecotropic env-specific segments shared two dis-
crete regions of polynucleotide sequence homol-
ogy., The first involved sequences encoding ami-
no acids near the amino terminus of gp7O
(corresponding to Mo MuLV nucleotides 5,891
to 5,932 [26]), in which 29 of 42 nucleotides and
11 of 14 amino acids were identical. The second
occurred between Mo MuLV nucleotides 6,299
and 6,352, encompassing a stretch of 54 nucleo-
tides, of which 48 were identical to those present
in either Akv or Mo MuLV.
The xenotropic env gene sequence shown in

Fig. 3 had a single open reading frame. The
amino terminus of Mo MuLV gp7O was previ-
ously positioned at nucleotide 5,876, 100 bp
downstream from the beginning of the env gene

(26). By analogy, the amino terminus of Akv
gp7O was located at the same position, although
the amino acid at position 1 (valine) (17) is
different from the initial amino acid (alanine) of
the Mo MuLV gp70 (Fig. 3). Since the amino
acid sequence of the NFS-Th-1 xenotropic
MuLV gp7O has not been determined, its loca-
tion within the deduced env precursor polypep-
tide can only be speculated on. If the amino
terminus of the xenotropic MuLV gp7O is locat-
ed at precisely the same position within the env

gene as it is in the Akv and Mo MuLV gp70s,
then the first amino acid would be serine (Fig.
3). However, this region of the xenotropic env

gene shared little polynucleotide sequence ho-
mology with either of the two ecotropic env

segments. A shift in the alignment of the xeno-
tropic env sequence in this region by one codon
in the 3' or 5' direction would result in a gp7O
with an amino-terminal amino acid identical to
Mo MuLV (alanine) or Akv MuLV (valine).
As pointed out previously, the 5'-terminal

portion of the xenotropic env gene was highly
conserved relative to the analogous segments of
Mo and Akv MuLVs, particularly in the region
of overlap with the pol gene. The direction of the
shift from the pol to the env reading frame was
identical. This part of the MuLV env gene
encodes a hydrophobic leader sequence (17, 26)
that is removed during the maturation of gp7O
(11, 15). This portion of the NFS-Th-1 xenotro-
pic env region also contains uncharged, mostly
hydrophobic amino acids that are probably com-
ponents of an envelope precursor. MuLV enve-

lope glycoproteins are translated from spliced
mRNAs (12, 23). A consensus 3' acceptor se-
quence (25) was identified 275 nucleotides up-
stream from the 5' terminus of the xenotropic
env gene, at a location and with a nucleotide
sequence identical to that present in Mo MuLV
(Fig. 2).

Within the sequence shown (Fig. 3), the env
regions of both Mo and Akv MuLVs encoded
two potential glycosylation sites. One of these
(between Mo MuLV nucletides 5,909 and 5,917)
was also present in the xenotropic env gene. A
second potential glycosylation site in the xeno-
tropic env region with no counterpart in the
ecotropic gp7O was located between nucleotides
5,960 and 5,968 (Fig. 3).
As pointed out above, the xenotropic env gene

contains several insertions and deletions relative
to the analogous segment of the ecotropic
genome, which may be responsible for the
unique biological properties of each MuLV type.
Segment D (Fig. 3), which is missing from
xenotropic MuLVs, is particularly rich in pro-
line residues. Its absence would certainly affect
the secondary structure of this portion of the
xenotropic gp7O molecule. The base substitu-
tions found in the xenotropic env gene that
generate regions of polynucleotide heterology
could have a less obvious effect on the structure
of gp7O than would deletions or insertions. For
example, both ecotropic and xenotropic env
gene products have a peak of hydrophilicity
(average indices of 1.02 and 1.34, respectively,
calculated as described by Hopp and Woods
[14]) in the region just 5' to E (Fig. 3). Unexpect-
edly, an adjacent region of the xenotropic gp70
was also extremely hydrophilic (an average in-
dex of 0.94), in the area (between nucleotides
6,032 and 6,094) in which the ecotropic env
protein had an index of -0.07. Assuming that
this portion of the xenotropic envelope glyco-
protein, like other strongly hydrophilic regions,
is located on the surface of the gp7O molecule,
this polypeptide segment could determine some
of the characteristic properties of xenotropic
MuLVs.
The recently published sequence of the env

gene of BALB/c Mo MCF MuLV (2) is remark-
ably similar to the env segment of NFS-Th-1
xenotropic proviral DNA shown in Fig. 3. A
comparison of both the nucleotide and derived
amino acid sequences shows that homology was
greater than 85%. Without exception, the MCF
sequence also had the same insertions and dele-
tions identified in the xenotropic env segment
relative to the ecotropic MuLV env region (Fig.
3, A through I). In addition, the two putative
glycosylation sites in the NFS-Th-1 xenotropic
env gene were located in the same positions in the
MCF sequence; the second site (nucleotides 5,960

J. VIROL.
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FIG. 4. Sequence of a portion of an endogenous MuLV env gene cloned from BALB/c mouse embryo DNA
and its relationship to the env region of NFS-Th-1 xenotropic MuLV. (Panel 1) Diagrammatic representation of
the xenotropic env-specific segment of NFS-Th-1 xenotropic proviral DNA and its alignment with the analogous
region of clone B-77, isolated from a BALB/c embryo gene library and found to have a restriction map and
hybridization properties unique to xenotropic proviruses (16). The sequencing strategy is indicated by the
arrows; the regions of clone B-77 DNA not sequenced are shown by the dashed lines. (Panel 2) The sequence of
270 nucleotides of clone B-77 DNA (bottom line), extending from the pol-env gene junction in the 3' direction,
was aligned with the analogous segment of NFS-Th-1 xenotropic proviral DNA (top line). Identical deduced
amino acids are shaded. The letters designate insertions and deletions unique to the xenotropic MuLV env gene

relative to the ecotropic env segment and follow the convention described in the legend to Fig. 3. The boxed
tripeptides denote potential glycosylation sites. (Panel 3) Further comparison of the nucleotide sequence of clone
B-77 env region (bottom line) with the 3' portion of the NFS-Th-1 xenotropic env-specific segment (top line) as

shown in panel 1. Identical deduced amino acids are shaded. The letters indicate the insertion (H) and deletion (I)
in the xenotropic MuLV env gene relative to the comparable regions in the ecotropic MuLV genome (see Fig. 3).
Dashes indicate the nucleotide sequences of B-77 DNA that were not determined.
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5,968, Fig. 3), as mentioned previously, was not
coincident with any known ecotropic MuLV
envelope glycosylation site.

Identification of a xenotropic env gene present
in an endogenous MuLV provirus cloned from
BALB/c mouse DNA. Khan et al. (16) cloned
several endogenous MuLV proviruses from
AKR and BALB/c mouse DNAs. Five of the
twelve clones that contained long terminal re-
peat segments also had env regions that hybrid-
ized to the xenotropic env-specific probe. Re-
striction enzyme mapping of the five
endogenous env segments indicated that some
contained sites characteristic of MCF MuLVs
(such as a BamHI site at 6.2 kb associated with
an EcoRI site at 6.7 kb). More revealing, howev-
er, were the unique hybridization properties of
four of the five xenotropic env-reactive clones.
Unlike typical xenotropic MuLV proviral DNA,
which anneals exclusively to the pXen, probe
and not to the ecotropic env-specific DNA,
these four endogenous env segments reacted
strongly with labeled PXenv DNA and weakly
but reproducibly with the pEcenv probe (16).
This pattern of hybridization (dual reactivity)
was shown to be characteristic of the MCF env
gene, and the results obtained with the four
endogenous env segments suggested that they
might be progenitors of infectious MCF MuLVs
(16).
The fifth cloned endogenous env segment that

was isolated from a BALB/c mouse library (as-
sociated with clone B-77) behaved like a typical
xenotropic proviral DNA and hybridized only to
the PXen, DNA probe. Since the restriction map
of the B-77 env region was also similar to the
analogous segment of the NFS-Th-1 xenotropic
provirus, portions of its env gene were se-
quenced and compared with the xenotropic env-
specific sequence. The two segments of the B-77
envelope gene analyzed were identical to com-
parable portions of the xenotropic env gene in
380 out of 408 nucleotides (93% homology) and
123 out of 136 amino acids (90% homology) (Fig.
4). All of the characteristic insertions and dele-
tions of the NFS-Th-1 xenotropic env gene
shown in Fig. 3, including the 42-bp insertion H,
were present in the B-77 endogenous env seg-
ment. In addition, the B-77 env region, like the
xenotropic env gene, contained a second poten-
tial glycosylation site (located between A and B
in Fig. 4, panel 2) that was absent from the
comparable segment of the ecotropic proviral
DNA (nucleotides 5,960 to 5,968, Fig. 3). All of
the deduced amino acid differences between the
B-77 and the NFS-Th-1 xenotropic MuLV enve-
lopes were single base changes. These sequenc-
ing results showed several characteristic fea-
tures of xenotropic env genes that distinguished
them from analogous segments of ecotropic

MuLVs. The role of each in determining proper-
ties such as tissue tropism, host range, and
binding to cell receptors awaits the construction
of recombinants containing specific segments of
ecotropic and xenotropic MuLV env genes.
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