Critical Importance of Length Scale Dependence in Implicit Modeling of Hydrophobic Interactions

Jianhan Chen and Charles L. Brooks III*

Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037

Supplementary Materials

I. Complete Reference 16: MacKerell, A. D., Jr. et al., J. Phys. Chem. B, 1998, 102, 3586–3616.

A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. *J. Phys. Chem. B* 1998, 102, 3586–3616.

II. Dimer and Trimer Configurations: atomic coordinates can be requested from the authors.

Figure 1 Configurations of dimeric and trimeric clusters. Monomers marked as "1" were the translated during the PMF calculations. For the two trimeric clusters (fff_etf and lll), additional pair-wise PMFs were computed between monomers 12 and 13 by deleting either monomer 2 or monomer 3.

III. Production sampling time and Convergence of PMFs: numerical results of the full PMFs are available upon request from the authors.

			Cluster	sampling ¹	convergence ²	
			ff_p	2.0	0.1	
			ff_pd	2.0	0.05	
			ff_etf	2.0	0.03	
			fff_etf	2.0	< 0.01	
			fff_p12	2.0	0.06	
			fff_p13	2.0	0.04	
			fl_p	1.0	0.03	
			fl_pd	1.0	0.05	
			ll_h	1.0	0.03	
			ll_p	1.0	0.1	
			111	2.0	0.05	
			lll_p12	2.0	< 0.01	
			lll_p13	2.0	< 0.01	
			¹ in nanose	conds ² in k	cal/mol	
	0					
	2					
<u> </u>						
nol	1			\mathbf{A}		
al/n						
Ķ	0			/\		
Ň	U					
erg						
ŬШ	-1					
ee						,
Ľ	-2				Full	
٧e			\ /		First Half	
lati			\mathbf{V}		Cocond Light	
Re	-3	+	. V			}
_						
	-4					
	;	3	5	7	9 11	13

Figure 2. PMFs of trimeric Leu sidechain analog association, computed using all 2 ns (thick line), the first 1 ns (dashed line) and the second 1ns (thin line) of sampling.

Separation (A)